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Abstract. In this paper, we investigate how discourse context in the
form of short-term memory can be exploited to automatically group
consecutive strokes in digital freehand sketching. With this machine
learning approach, no database of explicit object representations is used
for template matching on a complete scene—instead, grouping decisions
are based on limited spatio-temporal context. We employ two differ-
ent classifier formalisms for this time series analysis task, namely Echo
State Networks (ESNs) and Support Vector Machines (SVMs). ESNs
present internal-state classifiers with inherent memory capabilities. For
the conventional static SVM, short-term memory is supplied externally
via fixed-length feature vector expansion. We compare the respective
setup heuristics and conduct experiments with two exemplary problems.
Promising results are achieved with both formalisms. Yet, our experi-
ments indicate that using ESNs for variable-length memory tasks allevi-
ates the risk of overfitting due to non-expressive features or improperly
determined temporal embedding dimensions.

Keywords: Sketch-based Interfaces, Stroke Grouping, Contextual Com-
puting, Reservoir Computing.

1 Introduction

In freehand sketch drawing, sketched objects often consist of multiple strokes.
Manipulating these objects within a sketch-based interface—e.g., during ag-
ile collaborative meetings or presentations—requires that all their constituent
strokes be selected and grouped. As of today, this step is usually performed man-
ually with lasso or box selection tools. This can be time consuming, especially
when strokes are distributed sparsely over a large canvas or placed densely within
a small area. In the sketch understanding domain, automatic stroke grouping is
typically addressed as part of the overall goal to recognize sketched objects. A
common consensus here is to perform stroke grouping by matching template ob-
jects from a prerequisite database. Such an approach requires explicit a priori
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knowledge of all the objects that may occur. What is more, it can pose a com-
binatorial problem.

In this work we present a possible alternative in the form of an intelligent assis-
tant that automatically groups strokes without matching explicitly represented
objects. We show that when using predictions that pertain to consecutive strokes
in a limited spatio-temporal context of a sketched scene’s creation history, no
explicit object recognition is required to form meaningful stroke groups in an
experimental setting. The view that the spatio-temporal patterns in a sketch
creation process represent an unfolding discourse context in a certain domain
context—using the terminology originally suggested by Gurevych et al.[4] for
natural language processing (NLP) tasks—governs our approach. In the case at
hand, we seek to capture discourse context via short-term memory (STM).

In the following section, we will shortly outline related work in the hand-
writing and sketch processing domain. After that, we state our fundamental
ideas and continue with methodical and technical details. Then, experimental
results are reported and consequently discussed.

2 Related Work

In the sketch understanding research domain, scene segmentation is often a nec-
essary prerequisite of sketch interpretation. Typically, this is done by performing
template matching algorithms. Sezgin & Davis, for instance, first perform prim-
itive fitting to approximate freehand strokes as a series of distinct line and arc
segments, then build Hidden Markov Models (HMMs) for all possible objects
to be recognized in a scene, and align these on the temporal vector of a scene’s
creation history [15]. This approach implies pre-computing log-likelihood scores
for all possible object classes, all possible per-class stroke counts, and all possi-
ble positions on the observation vector, then at the analysis stage to solve the
problem of determining the combination with the highest score.

In the field of mathematical handwriting recognition, Wan & Watt employ
both temporal and spatial proximity thresholds in order to determine when an
object segmentation decision is appropriate [17]. This is seconded by Xie et al.
who use an object grouping parser based on bounding box proximity thresholds
in the circuit diagramming domain [21]. Both techniques rely on fixed heuris-
tics or parser rules and capture only a specific sketching domain. Nataneli &
Faloutsos [12] and Zhou et al. [22] present SVM-based workflows for stroke clas-
sification and grouping and letter segmentation in handwritten Japanese text,
respectively. Except for the spatial structural approach of Nataneli & Faloutsos
[12], all of the aforementioned works employ the creation history of a sketched
scene for data organization and analysis. Sezgin & Davis provide empirical evi-
dence for per-user predictability of stroke orderings for recurring known objects
[15]. The part-by-part drawing principle as postulated by Avola et al. supports
the exploitability of the creation history for grouping decisions by stating that
“[d]uring the hand-drawing process of one or more than one objects whose parts
are clearly identifiable, the user generally ends one part or object before drawing
another” [1].



Sketch-Based Interfaces: Exploiting Spatio-temporal Context 141

3 Concept, Methods, and Implementation

3.1 Rationale and Overview

We present an intelligent stroke grouping assistant which uses only few spatio-
temporal characteristics of strokes and does not employ feature selection algo-
rithms. With reference to the part-by-part drawing principle [15,1], we assume
that stroke interspersion does not occur between consecutively drawn objects.
Grouping decisions are irrevocable and pertain to a current event, taking into
account a series of consecutive past events, but neither is there an anticipation
of future events, nor will new insights have an effect on past decisions. In order
to analyze to what extent meaningful grouping decisions can be made based
on STM, we utilize and compare two different state-of-the-art machine learning
techniques that appear sufficient to cope with the given problem. The first one is
a support vector machine (SVM) [2] that serves as our baseline and operates on
explicitly represented contextual features which pertain to a fixed number of past
strokes. The second is a relatively recent approach to recurrent neural networks,
namely the echo state network (ESN) technique as introduced by Jaeger [7]. In
contrast to the SVM approach, this classifier has an internal state, i.e., it does
not only statically operate on the currently supplied input. Both techniques work
with subsymbolic numerical input—as opposed to HMMs, for instance, which
require prior vector quantization and codebook creation. We follow established
recommendations for commonly used basic setups wherever applicable, cf. Hsu
et al. [6] and Jaeger [7]. Both concurrently used assistant variants are supplied
with input from two exemplary “toy problems”. We assess the suitability of both
candidate techniques for the given problem and compare the results in terms of
precision and recall measures.

3.2 Sketching “Toy Problems”

Näıve Landscape Scenes (NLS). The first problem—näıve landscape
sketches—is designed to reflect a rather general problem in freehand sketch-
ing. There are numerous perceived objects in each scene. There is left room for
arbitrary drawing strategies in terms of stroke dynamics, per-object stroke or-
dering, object detail, and object creation order. NLS as we consider them contain
outline style objects as follows, drawn in arbitrary order: 1 hill, 1 house with 1
door, 1 sun with rays, at least 2 trees, at least 1 cloud, 2 stick figures, at least
1 flock of birds, 1 kite with a cord that one of the stick figures holds. Figure
1 shows an example from the NLS test set. The overall number of strokes in
the train set is 1061, with 813 group decisions (76.63%) and 248 segmentation
decisions (23.37%). The number of strokes in the test set is 131, with 99 group
decisions (75.57%) and 32 segmentation decisions (24.43%). Of the total 1192
decisions in the overall dataset, 912 are group decisions (76.51%) and 280 are
segmentation decisions (23.49%), therefore the prior segmentation probability is
ω = 0.2349.
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(a) (b)

Fig. 1. Excerpt scenes from the employed toy problems. (a): Näıve landscape sketch
scene. (b): Hatchings and Arrows Scene. Correct groups (ground truth) are highlighted
with transparent blue convex hulls.

Hatchings and Arrows (H+A). The second problem—a hatching scene with
additional arrows—is much more constrained and further specialized. It is de-
signed to pose a specific problem to the classifier, which can only be disam-
biguated using discourse context in the form of short term memory. Here, strict
constraints as to a spatio-temporal drawing order, object constitution, and di-
rection are employed. In the particular case exhibited in cf. Fig. 1 (b), the local
ambigious measurement is implied by the similarity of the arrow heads and the
transition between the two different kinds of hatchings. Both are composed of
exactly the same strokes. However, the arrows’ strokes should be grouped while
the last stroke of the first hatching and the first stroke of the second hatching
should be segmented. In the following, we describe the creation of a H+A scene
by using compass-style pointers to coarsely indicate stroke directions. The first
shape drawn in the scene is a rectangle that is constructed with one single stroke,
counter-clockwise, starting in the NW quadrant of the canvas: N–S; W–E; S–N;
E–W. The side aspect ratio is approximately 2:1. Next, a division element is
added (approximately in the center of the already present box) by drawing a
straight downward stroke N–S. This virtually segments the box into two parts
which subsequently are both filled with different hatching patterns. The left
hatching fills the box segment SW–NE, the filling direction on the right is NW–
SE. The constituting individual strokes are directed NW–SE for the left hatching
pattern, SW–NE for the right one. Three arrows are finally drawn above the box
with loosely equidistant spacing so they point down towards the box. Each ar-
row is constructed from three separate strokes, the first one in N–S direction.
The second (NW–SE) and third (SW–NE) one form the arrow head. The overall
number of strokes in the train set is 660, with 549 group decisions (83.18%) and
111 segmentation decisions (16.82%). The number of strokes in the test set is 77,
with 65 group decisions (84.42%) and 12 segmentation decisions (15.58%). Of
the total 737 decisions in the overall dataset, 621 are group decisions (83.31%)
and 123 are segmentation decisions (16.69%), therefore the prior segmentation
probability is ω = 0.1669.
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Table 1. Symbol look-up table w.r.t. the feature sets employed for the NLS task and
for the H+A task. Note that for the event-coded cases, stroke-level mean ∅vel and σvel
are used instead of vertex-level horizontal and vertical velocity.

Symbol ΔP (pause) ΔS(duration) dAABB(distance) velx(hor.) vely(vert.)

¶ (NLS) • • • ◦ ◦
† (NLS) • • • • •
£ (NLS, H+A) ◦ • ◦ • •
$ (H+A) ◦ • • • •

3.3 Unfolding the Scene History

Feature Extraction. Among the feature-oriented taxonomic approaches to
contextual computing in the machine learning domain, we highlight the works
of Katz et al., Turney, or Widdows [10,16,19,18]. With our focus on STM ex-
ploitation, we differentiate between discourse-contextual features that already
encode (spatio-)temporal inter-stroke measurements and stroke-centric features
that only contain local intra-stroke characteristics measured on the vertex level.
We extract horizontal stroke velocity (velx), vertical stroke velocity (vely), prox-
imity as the absolute axis aligned bounding box (AABB) distance between a
stroke and its predecessor stroke (dAABB), absolute constrained time delay—
i.e., pause—between a stroke and its predecessor stroke (ΔP ) with a timeout of
3000 milliseconds, and the absolute time duration of a stroke (ΔS).

For event-timed scene encoding, inter-stroke features are calculated per stroke
(e.g., distance between two bounding boxes or horizontal and vertical velocity
mean and standard deviation). In contrast, for discrete-time approaches such
inter-stroke features are calculated per vertex (e.g., distance between the current
vertex of the current stroke to the bounding box of the predecessor stroke). We
will use different constellations of the extracted features within the following
problem-specific evaluations with labels as given in Table 1.

Data Set Construction. The SVM is supplied with an event-timed (ET)
representation of the scene history. In this representation, each stroke represents
an event. That is, short-term memory is provided to the SVM externally by
employing a sliding window method. As explained above, in the ET approach
vertex level features are summarized to numerical values that represent these
aspects only on the stroke level. Because of the transformation of vertex level
dynamics to mean and standard deviation as stroke level features, potentially
indicative dynamics on the vertex level are only rudimentarily accounted for.

In contrast to the ET case introduced for the SVM, we supply an ESN with a
discrete time signal (DTS) sampled over the scene history so that it can capture
actual vertex level dynamics. Feature vector expansion is not necessary here since
the temporal dynamics of the scene history can be encoded and supplied in the
temporal domain—as a signal representing a time series. We expect the discrete
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Fig. 2. User test result plots for the experimental assessment of workload reduction
based on two scenes from the NLS set (left/right). r is the workload reduction ratio, the
horizontal straight line labeled ‘Unassisted’ expresses the underlying assumption that
there is no workload reduction when no assistant is employed (with Fω unspecified)

time representation of the scene history to be most suitable for the ESN because
of its nature as a classifier designed to deal with spatio-temporal dynamics.

To allow for direct commensurability of classifier setups with the SVM and
ESN formalisms, we also provide the ET signal representation of the scene history
to an ESN in another line of experiments. With this approach to composing an
ESN input signal, each time step represents information about one stroke. The
internal memory of the recurrent network can thus be seen as an alternative to
the explicitly represented fixed window that is necessary in the SVM case.

3.4 Evaluation Metrics

Precision & Recall Analysis. Building on the common precision and re-
call analysis [14], we introduce the Fω score as a weighted mean of two class-
specific macro-average F1 scores determined for grouping and for segmentation
decisions. With ω as the prior segmentation probability, we simply calculate
Fω = ω ∗ F1group + (1 − ω) ∗ F1segment . In what follows, Fω denotes the biased
mean with ω pertaining to the respective prior probabilities of the used datasets.

User Utility Value vs. Fω. In order to coarsely estimate the actual utility
value of the proposed assistant for different achieved Fω scores, we perform a
small-scale experiment as a “sanity check.” Here, three test subjects have to
manually repair two exemplary scenes from the NLS set, each at different levels
of degradation. We consider as workload reduction the difference between the
cost of manually grouping a flattened scene with standard tools as known from
Adobe Illustrator, for instance, and the cost of establishing grouping ground
truth from a scene with potentially erroneous groups as yielded by the grouping
assistant. Our understanding of measuring cost here is to log the number of clicks
and keystrokes and the task completion time. We normalize these quantities per
scene with respect to the manual grouping results and calculate a savings ratio
rq per measured cost class q with this ground truth baseline.

The resulting rq is negative if the repair process cost exceeds that of unassisted
manual grouping. To obtain a unified value for the three measured quantities
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duration, clicks, and keystrokes, the overall workload reduction ratio r is heuris-
tically calculated with doubled weights for duration. This weighting schemes
does not involve coefficients depending on the workstation or device topology, it
can thus only suffice for an exemplary assessment in a constrained setting. The
user test results as shown in Fig. 2 suggest that higher Fω scores indeed im-
ply better assistance, and that the utility value variance between different users
appears to decrease with increasing scores. However, we must also note that as-
sistive technologies with performance levels below a certain threshold according
to this metric (≈ 0.75) can add substantial workload (rather than diminish it as
intended). This will guide our interpretation of Fω scores.

3.5 Classifier Setups

ESN Setup Procedure. Echo state networks as proposed by Jaeger [7] denote
an approach from the domain of reservoir computing (RC) where the hidden
layer of a recurrent neural network (RNN) is treated as a dynamical reservoir
(DR). Training is performed by linearly combining the desired output signal from
a variety of nonlinear dynamical transformations of the input and/or output
signals inside the DR. In contrast to conventional RNN training methods, the
internal connection weights of the DR are not trained. The main advantages
of this approach are computational cheapness and guaranteed convergence. In
order for the approach to work, a DR used in an ESN should exhibit a special
type of damped dynamics. A DR with such dynamics is said to have the echo
state property, which basically ensures that the current network state is uniquely
defined by its input and output. As a consequence of the echo state property,
ESNs exhibit a form of short term memory—cf. Jaeger [9].

ESN setup parameters are estimated manually first following the experience
and intuition of the experimenter as described by Jaeger [8]. Once a functioning
standard configuration is found it is consequently reused and adapted only if
needed. An assumption here is that the ESN should be applicable to deal with
different toy problems whose solutions require different amounts of discourse
contextual information. In contrast to the SVM, the ESN’s performance should
neither be significantly decreased by unnecessary additional contextual informa-
tion nor should it be necessary to make exhaustive adaptations to the classifier’s
setup parameters for different toy problems from the same domain.

Our general ESN configuration for the scope of this work is as follows: a
standard ESN is set up with multiple input signals ui(n) and one output signal
y(n). Internal units use the tanh activation function while output units use
the logistic sigmoid activation function. The number of internal units is set to
N = 800 for the discrete time signal case and to N = 80 for the event-timed
case. The DR spectral radius is set to α = 0.999 as to maximize short-term
memory capacity [8]. Input weights are sampled from a uniform distribution
within range [−3.0, 3.0]. The sampling rate is set to Δt = 0.1sec (10Hz). At this
sampling rate input signals obtained from the discrete time signal construction
approach on the NLS train set unfold to 9692 samples, of which 200 samples are
initially discarded for a washout phase during training. The resulting network’s
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memory capacity is approximately MC ≈ 27 time steps in simulated time or
∼ 2.7 seconds in real time. Statistical data extracted from the NLS train and
test set indicates that this enables the network to roughly capture two to four
strokes on average, determined based on the arithmetic mean of stroke duration
and stroke delay times. This estimation of memory capacity is based on similar
approaches by Hertzberg et al. and by Jaeger [5,8].

SVM Regularization and Kernel Parameter Estimation. The underlying
idea of the SVM approach is to find a maximum margin hyperplane that sepa-
rates data points from two classes. The set of support vectors closest to this plane
comprises all points with non-zero weights after the training procedure, which
presents a convex optimization problem. With a soft margins SVM as proposed
by Cortes & Vapnik [2], the constant C needs to be determined as a penalty
parameter for regularizition (it is also referred to as complexity parameter). In
line with the recommendations of Hsu et al. [6] for basic SVM setups, we choose
a radial basis function (RBF) kernel, for which another parameter (γ) has to be
estimated. Our heuristic to employ a cross-validation-based grid search proce-
dure is directly adopted from Hsu et al. We first perform one coarse search with
C = {2−5, 2−5+ΔC , 2−5+2ΔC , ..., 215} and γ = {2−15, 2−15+Δγ , 2−15+2Δγ , ..., 23},
where ΔCcoarse = Δγcoarse = 1.0. This result is then refined with a more fine-
grained search (step size ΔCfine = Δγfine = 0.25) within the respective neigh-
borhood (within a ±2.0 range for the exponents yielded by the coarse search).

We iteratively expand the feature vector with additional memory steps to
which we will also refer as the embedding dimension with m = 0 for no addi-
tional past events, cf. the terminology of Mukherjee et al. [11]. This procedure
is followed in two variants concurrently: to keep all other parameters except the
embedding dimension m constant, we run each of the experiments once with
an “out-of-the-box” SVM setup that only uses default values C = 1.0 for the
complexity parameter and γ = 0.01 for the RBF kernel parameter. Additionally,
we conduct the rather time-consuming parameter estimation with the previously
outlined grid search heuristic for each experiment—that is, for each expansion
step of the feature vector (embedding dimension). Consequently, we refer to clas-
sifiers with estimated parameters (EP) and such with unestimated parameters
(UEP) to distinguish these setups. All classifier setups use feature scaling with
factors determined prior to training by normalizing the training set features to
the range [0.0, 1.0]. The same scaling factors are then applied during testing.
We employ the sequential minimal optimization SVM training implementation
included in Weka [13,20].

4 Evaluation

As is common practice in machine learning research, we use ∼ 90% of each
set for training and the remainder for testing. Each set contains 20 sketched
scenes annotated with ground truth, of which 18 are initially randomly chosen
as train set, and the remaining two are used as a test set. These data sets are
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Table 2. Comparison of classifier results. Best test results per feature constellation
(Fts.) and task are highlighted. m denotes (stroke) events for the SVM cases, for the
ESN setups m expresses MC in simulation steps.

Experiment series: Näıve Landscape Scenes Hatchings and Arrows
Default setup Est. parameters Default setup Est. parameters

Classifier Fts. m Fω Train Fω Test Fω Train Fω Test Fω Train Fω Test Fω Train Fω Test

ESN DTS ¶ 27 0.944 0.933 – – – – – –
ESN ET ¶ 14.3 0.973 0.960 – – – – – –
SVM ET ¶ 0 0.943 0.973 0.962 0.960 – – – –
SVM ET ¶ 1 0.957 0.973 0.985 0.960 – – – –
SVM ET ¶ 2 0.957 0.973 0.985 0.947 – – – –
SVM ET ¶ 3 0.957 0.973 0.988 0.947 – – – –

ESN DTS † 27 0.962 0.947 – – – – – –
ESN ET † 14.3 0.956 0.950 – – – – – –
SVM ET † 0 0.947 0.959 0.990 0.960 – – – –
SVM ET † 1 0.959 0.973 0.993 0.974 – – – –
SVM ET † 2 0.961 0.973 1.000 0.974 – – – –
SVM ET † 3 0.965 0.960 1.000 0.987 – – – –

ESN DTS £ 27 0.875 0.774 – – 0.980 0.856 – –
ESN ET £ 14.3 0.773 0.865 – – 0.988 1.000 – –
SVM ET £ 0 0.422 0.314 0.771 0.673 0.679 0.657 0.826 0.743
SVM ET £ 1 0.617 0.611 0.926 0.842 0.819 0.828 0.948 0.790
SVM ET £ 2 0.608 0.620 0.949 0.826 0.907 0.922 1.000 0.903
SVM ET £ 3 0.619 0.629 0.947 0.886 0.884 0.922 1.000 0.965
SVM ET £ 4 0.629 0.629 0.916 0.838 0.883 0.922 1.000 0.965
SVM ET £ 5 0.636 0.629 0.929 0.800 0.889 0.922 1.000 0.933

ESN (DTS) $ 27 – – – – 0.992 0.962 – –
ESN (ET) $ 14.3 – – – – 0.988 1.000 – –
EP SVM (ET) $ 0 – – – – 0.904 0.922 0.909 0.922
EP SVM (ET) $ 1 – – – – 0.904 0.922 0.956 0.767
EP SVM (ET) $ 2 – – – – 0.909 0.922 1.000 0.933
EP SVM (ET) $ 3 – – – – 0.909 0.922 1.000 0.903
EP SVM (ET) $ 4 – – – – 0.912 0.922 1.000 0.850
EP SVM (ET) $ 5 – – – – 0.909 0.922 1.000 0.903

kept constant during all experiments to conserve the ability to conduct visual
inspection of the results based on well-familiar scenes. We perform this basic
sequence of experiments with each of the feature sets specified above—¶, †, and
£ for the NLS example, £ and $ for the H+A problem—in their respective en-
coding (event-timed or discrete-time sampled). In the SVM case, we additionally
exercise iterative expansion of the embedding dimension, with m ∈ {0, 1, 2, 3}
(NLS with ¶, †) and m ∈ {0, 1, 2, 3, 4, 5} (H+A, NLS with £).

The overall results obtained from all experiments conducted in this series are
listed in Table 2. The ET ESN and the DTS ESN perform similarly with all
feature sets considered except feature set £, for which the event-timed ESN
achieves considerably better scores. In all cases, the event-timed ESN reaches
Fω scores equal or better than those of the respective discrete time ESN setups.
We therefore put emphasis on the comparison of the event-timed ESN with the
event-coded SVM. For the memory-range tested with both EP and UEP SVMs,
it can be observed that the ET ESN performance is always slightly below the
optimum value reached by the best-performing SVM in the NLS case. This is
the EP version (estimation per each classifier training) in two out of three cases.
Recall that the parameters for the ESNs employed are manually adjusted only
once, in contrast. For the ¶ feature set the ESN is initially en par with the



148 L. Dickmann et al.

0.4

0.6

0.8

1

F
ω

sc
or

e

0 1 2 3 4 5

Embedding dimension m

Test EP £
Test UEP £
Train EP £
Train UEP £

(a)

0.7

0.8

0.9

1

F
ω

sc
or

e

0 1 2 3 4 5

Embedding dimension m

Test EP $
Test UEP $
Train EP $
Train UEP $

(b)

Fig. 3. SVM result plots for the NLS task with feature constellation £ (a) and for the
H+A task using feature set $ (b)

EP SVM—however, while increasing memory can increase SVM classification
performance, this may also lead to a decline as compared to smaller values of
m due to overfitting. In the treatment of the H+A toy problem, only the ESN
classifiers achieve an Fω score of 1.0 on the test set (with Fω = 0.988 on the
train set), while the EP SVM variants overfit on the train set with Fω = 1.0 and
cannot achieve test performance higher than Fω = 0.965. The extended feature
set $ has no impact on the ET ESN and increases the performance of the DTS
ESN slightly but does not aid to let the EP or UEP SVM variants achieve higher
test scores than with feature set £ only. The result plots in Fig. 3 shed further
light on the SVM sensitivity to different feature constellations and embedding
dimensions.

In order to complement the results from our main evaluation based on fixed
test sets, we conduct examplary resampled paired t-tests—the applied procedure
is detailed by Dietterich [3]. Such a “statistical sanity check” appears reasonable
for situations where an ESN setup and an SVM setup both achieve identical
Fω scores for the same task. Note that ESNs are initialized randomly, therefore
the validity of the reported scores requires confirmation. We pick the NLS case
with feature set ¶, for which both the ET ESN and the EP SVM (with m = 0)
score Fω = 0.96. 30 trials are conducted with uniformly random partitions of the
overall available NLS dataset (with a train set proportion of ∼ 66%). In each
trial, the instantiations of both classifier variants are trained and tested on the
same data—the null hypothesis is that both algorithms will exhibit the same
performance and error rate. The accuracy-based resampled paired t-test yields
t = −0.18706, with the primary metric Fω as employed in this work t = 0.18868.
In both cases, |t| < t29;0.975 = 2.04523 and also |t| < t29;0.9 = 1.3114. Thus we
cannot reject the null hypothesis: there is no significant difference in performance
between the two considered classifier setups (with identical reported Fω scores).
In a second approach, we conduct two further t-tests with 10 trials each to check
whether in the H+A case the ET ESN is also significantly better in comparison
to an EP SVM with m = 0 and m = 1 for feature set $ if we diverge from the
fixed test set. Also, we use a more fine-grained parameter estimation grid search
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for these re-runs, which renders slightly altered SVM Fω scores on the original
fixed test set: FωT rain = 0.909 and FωT est = 0.922 for m = 0; FωT rain = 0.959 and
FωT est = 0.789 for m = 1 (cf. Table 2). In all cases (m ∈ {0, 1}, accuracy-based
and Fω-based) we find that |t| ≈ 10 > t9;0.99 = 2.8214. Here, the null hypothesis
can be rejected: it appears to hold that the ESN indeed performs significantly
better in the regarded exemplary cases, no matter whether we spend more cycles
on SVM parameter estimation and/or whether we vary the train and test sets
for the H+A task.

5 Discussion

We find that a discourse-contextual paradigm for exploiting STM can help to suc-
cessfully form meaningful stroke groups. Feature choice along with domain/data
knowledge is a primary prerequisite to proper configuration with both used for-
malisms. This can be seen for the NLS case, where both classifiers do not perform
notably better with more features. The temporal delay and spatial proximity
features appear to be most expressive here. An important issue w.r.t. the ex-
ploitation of discourse context by an SVM is that different problems may require
different memory lengths to reach the best solutions. Mukherjee et al. note w.r.t.
potential SVM sensitivity to embedding dimension expansion that overfitting
problems may occur with non-linear kernels [11]. With regard to tackling differ-
ent sketching problems, this may pose a problem when using the SVM. The ESN
apparently deals with such issues more robustly. Inferring from the comparison
results, we can state that while the SVM can reach slightly better classification
results when we experimentally determine and optimize it for a particular mem-
ory length, the ESN appears to be relatively robust to overfitting issues and
provides a more general solution with its inherent STM at similar performance.
We were able to determine one adequate network setup from the first ESN ex-
periment conducted and then transfer that setup to other signal codings, feature
sets, and toy problems with little or no modification of setup parameters. How-
ever, it is to be noted that the determination of a suitable ESN setup is rather
complex and laborious. As stated by Jaeger [9], it requires profound experience
and intuition to determine adequate network setups. Then, however, a solution
that works for one problem is likely to work for other related problems as well.
This makes the ESN a more suitable technique when considering a transfer to
other sketch domains and applications.

6 Conclusion

Considering the rapidly developing field of surface computing and sketch-based
interfaces, we have focused on the problem of automatically grouping consecu-
tively drawn strokes. Posing that a database of explicit object representations
for template matching on a complete scene is not desirable, we have investigated
how grouping decisions can be made relying only on limited spatio-temporal con-
text in the form of short-term memory. The formalisms of internal-state ESNs
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(inherent memory capabilities) and conventional static RBF-SVMs (memory rep-
resentation in Euclidian space via feature vectors) have been proposed for this
time series analysis task and set up according to the respective requirements.
An evaluation has been performed based on two different exemplary problems,
“Näıve Landscape Scenes” and “Hatchings and Arrows.” We have shown that
the contextual computing approach as exercised here yields promising results
in terms of error rates and workload reduction for both formalisms in the con-
sidered experimental settings. Moreover, our overall results suggest that ESNs
are better suited for variable-length memory tasks as their use alleviates the
risk of overfitting that may otherwise occur due to non-expressive features or
improperly determined temporal embedding dimensions.
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