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Abstract: Today, economic value creation is typically carried out in supply networks,
which are temporal coalitions of independent partners. Each partner has its own deci-
sion competencies but the common objective of value creation requires a coordinated
planning of the value creating processes. We show that the common decision making
process can be understood as a combination of a Multi Agent System (MAS) and de-
cision making according to the paradigm of autonomous control. This combination
is an appropriate approach to coordinate the agents in the demand fulfilment process.
We extract the advantages and deficiencies of autonomously controlled MAS. Our
example of transport process planning combines the advantages of autonomous deci-
sion making by the agents and of a central coordination instance. This coordination
instance may intervene only if the achievement of the common objective is severely
endangered.

1 Introduction

Today’s value creation is mainly based on a strict share of labour. Specialists providing
particular services act on the market instead of companies offering complete value creation
chains [Sch05]. As a consequence, the fulfilment of the supply network’s demand requires
the formation of temporal coalitions of the specialists in order to organize the required
value creation chains. These coalitions are called supply networks or supply chains.

The coordination and planning of value creation activities in supply networks come along
with several additional challenges compared to more traditional value creation systems.
A major driver of the need for enhanced decision support is the fact that the involved
partners want to maintain their own responsibilities, i.e. they want to decide autonomously
about the activities that form their contribution to the coalition. Traditional models and
decision mechanisms [Hal03] for supporting the decision making fail in supply chains
because these models and mechanisms explicitly exploit a centralized decision making and
coordination of all activities in a coalition [HWO07]. Concepts developed for centralized
process planning cannot be transferred. It is necessary to integrate planning concepts



into the supply chain process planning that support decentralized decision making under
the common roof of the rules agreed between the supply chain partners. Although, each
partner is granted the right to decide on its own about selected parts of the supply chain
processes, a supervising coordinator observes the acting of the partners. In case that the
individual behaviour endangers the fulfillment of the supply chain goals, the coordinator
is entitled to intervene and to overrule local decisions. Thus, the process planning in a
supply chain is neither central nor decentralized but somewhere in between.

Autonomous Control (AC) is a decision making paradigm developed to cope with this
special kind of heterarchically organized decision making processes [HW07]. Under this
paradigm, planning concepts are collected that particularly address the mix of decentral-
ized decision competence and central behaviour control. Multi-Agent-Systems (MAS)
are promising candidates to model decision processes in heterarchically organized supply
networks because they explicitly address the autonomy and the specific knowledge of the
different decision making units but, at the same time, they are equipped to represent the
coordinating opportunities of the supply chain coordinator. Together with the paradigm of
AC, MAS open new perspectives for the decision support in supply networks.

This article aims at analyzing the potentials of MAS using AC (MAS-AC) as decision
making and decision coordination paradigm. By means of the example of cross-enterprise
transport process planning, we analyse the appropriateness of MAS-AC in a heterarchi-
cally structured decision situation.

Section 2 surveys the process of resource allocation in supply networks and extracts the
challenges in the supply network’s operations planning. Section 3 introduces MAS and
the paradigm of AC and proposes a classification of different types of agents in the supply
network. Section 4 introduces the decision making processes in transport planning in
supply networks and links them with autonomously controlled agents. Section 5 analyzes
the extension of the transport planning from individual supply networks to a cooperation
of several networks. The cooperation extends the dispatching decision to the further option
of so called operational transport collaboration.

2 Cooperation in Supply Networks: Concepts and Deficiencies

The acting participants in supply network-based value creation are depicted in Fig. 1.
Several customers specify their demand of products provided by the supply network to-
wards the supply network’s coordinator. This coordinator derives the supply network’s
orders from the customer’s demand. The supply network’s orders are then to be fulfilled
by the coalition partners, the so called service agencies. Each service agency offers a
specific contribution to the supply network’s products, i.e. a production service agency
offers to produce semi-finished or finished goods and a storage service agency manages
a warehouse. The task of generating supply network orders and their assignment to ser-
vice agencies is referred to as network capacity disposition. The service agency receives
the supply network orders and derives resource requests. Each generated request is then
assigned to an appropriate resource in so called service agency resource dispatching. The
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Figure 1: Semi-hierarchical structure of a supply network

service agency then fulfils the received requests.

The provision of resource capacity by the service agencies in response to a coordinator’s
call for resources is regulated in contracts agreed for a fixed period between the coalition’s
leader (the coordinator) and the participants (the service agencies). Incentives to be given
to the service agencies to contribute the service agencies expenditures are fixed in the
contracts.

The previously described stepwise allocation of resources in the supply network induces
a natural kind of hierarchy in the supply network. The coordinator has global knowl-
edge about demand and available service agents (depicted by the dark-grey shaded arca
surrounding all agents in Fig. 1). A service agency only knows about the orders received
from the coordinator (depicted by the middle-grey shaded area surrounding the service and
resource agents). Similarly, an information asymmetry is observed for the relationship be-
tween the service agency and the resource representative (the small, light-grey shaded area
around it represents the knowledge of the resource representative). The service agency
knows about the overall order(s) but the resource representative (e.g., a machine operator
or a truck driver) only knows about the requests assigned to this resource.

Hierarchy in the traditional sense cannot be found in the supply network’s structure. A
superior actor (i.e. the coordinator) cannot intervene directly into the dispatching deci-
sions of the subordinate service agencies. This fact is mainly based on the desire of each
service agency to maintain its organizational and economic independence. Considering
the differently coloured areas in Fig. 1, we can describe this independence as areas of



autonomy as follows. Each coalition member can only influence (and sometimes even
perceive) what happens in the area painted in its own colour. Thus, the supply network’s
coordinator knows only about the dark-grey shaded part of the supply network. A service
agency knows only about the middle-grey shaded part and a resource representative can
only recognize and understand information arising and affecting the light-grey shaded part
of the supply network.

As a consequence, conflicts and mistrust between the coalition’s partners occur from the
aforementioned information asymmetry and endanger the efficiency of the supply net-
work’s business operation. The impacts of these disturbances in the cooperation between
superior coalition members (the principal) and subordinate coalition members (the agents)
are subject of the principal-agent-theory [Els91].

Kaluza et al. [KDMO03] apply the principal-agent-theory to coordination and adjustment
problems in supply chain and supply network scenarios. They point out two major sources
of information asymmetry:

e The principal does not know how the agents will react after they have been instructed
to fulfil a certain order (hidden action).

e The principal is not informed about all objectives of the agents when making a
decision (hidden intention).

In a supply network setting we have two principal-agent interfaces. At first, the supply
network’s coordinator acts as the principal towards the service agencies who act as agents
arranging the fulfilment of the supply network’s orders. Secondly, a service agency plays
the role of the principal towards the resources. In both principal-agent relations, mistrust
and conflicts prevent the identification and realization of common decisions that lead to
so-called pareto-optima representing the disposition or dispatching decisions that provide
non-dominated solutions to the benefit of both, the principal and the agents.

The introduced supply network coalition represents some kind of vertical integration of
(partially) autonomous decision making units. However, horizontal integration is also
relevant in value creation. Unpredicted capacity-shortage of the resources endangers the
performance of the supply network. In order to ensure that the supply network’s demand is
fulfilled to the customer’s satisfaction despite of capacity shortcomings, external resources
belonging to other supply networks are incorporated in the order fulfilment.

The coordination of decisions in a coalition is a quite sophisticated challenge because the
autonomous areas of the coalition members have to be respected. If resources from an-
other supply network have to be included into the value creation activities, the challenge
becomes even more complicated. Coordination methods can be classified with respect to
the decision making instances of centralized and decentralized control. Centralized control
assumes a central planning instance with global knowledge and decision power. Decentral-
ized control in contrast describes a system consisting of entities that decide independently
and aim at optimizing their own objectives. To our understanding, both, centralized and
decentralized control, are opposite elements on a continuum with realizations of planning
systems being placed along this continuum. Examples for pure centralized control are



found in the previously mentioned traditional models [Hal03], and an example of pure
decentralized control is provided by [FMP96].

Fischer et al. [FMP96] do in fact describe a MAS transport system, which is similar to
the one we will introduce in Section 5. However, their approach is entirely decentralized
with no central control instance and focuses on the technical implementation of the MAS.
We, in contrast, use a central control instance capable of intervention in case of perfor-
mance collapses. Further, Fischer et al. grant the right to decide on order acceptance and
route planning to individual trucks. Those rights are limited to the maximum of route
planning in our approach since we believe that the organisational change required for the
approach of Fischer et al. is not feasible. The intention of our approach is a supporting
system preparing and recommending decisions to the human decision makers. As such
our approach is located in the continuum between centralized and decentralized control.

AC is discussed as alternative to central planning systems in logistics systems. The basic
idea behind AC is that due to their size, complexity and organisational restrictions the
central planning of logistics systems cannot be executed any more. The definition of AC
is then as follows.

Autonomous control describes processes of decentralized decision-making in
heterarchical structures. It presumes interacting elements in non-deterministic
systems, which possess the capability and possibility to render decisions. The
objective of autonomous control is the achievement of increased robustness
and positive emergence of the total system due to distributed and flexible cop-
ing with dynamics and complexity [HWO07].

Decentralized decision-making thereby implies that the system’s elements, such as ser-
vice or resource agents, have decision power and make those decisions independent of
each other. Being responsible for those decisions, the element is said to be autonomous.
However, autonomy does not imply economic independence since the elements form a
larger system through their interaction having a joint purpose such as the operation of the
supply network. In Fig 1, this is represented by the autonomous areas of superior ele-
ments including the smaller autonomous areas of subordinates. The system then changes
with the decisions of its autonomous elements which can be made at any time as reaction
to environmental or system internal changes. As such, the system is referred to as non-
deterministic; the outcome of certain events cannot be predicted in advance. The objective
of such a system is then a better reaction to the dynamic business environment compared
to the situation under central, static planning; thereby ensuring robustness, i.e. future suc-
cessful operation of the business.

As such, the concept of AC refers to a decentralized planning system. In contrast to cen-
tralized control, top-down planning cannot be found in systems with decentralized control.
Thus, an alignment of the autonomous elements’ objectives to the overall objectives of the
system cannot be guaranteed. To overcome this impediment, we suggest a system in-
cluding an instance that may influence the planning of the autonomous agents in order to
rectify the overall situation. As such, our system moves back from pure decentralization
and remains in the continuum between centralized and decentralized control.



3 Autonomous Control and Multi-Agent-Systems

The description of a system and its elements is very close to the idea of MAS in informa-
tion technologies. MAS are analyzed in the field of Artificial Intelligence and are referred
to as distributed Artificial Intelligence systems. The distribution of the problem solving ca-
pabilities for complex problems to smaller units can improve effectiveness and efficiency.
This certainly contradicts classical game theoretic viewpoints, where the existence of sev-
eral Nash equilibria may lead to suboptimal outcomes[Tim06].

If describing the autonomous system as MAS-AC, then the autonomous elements can
also be referred to as ‘agents’. When using the term agent we follow the definition of
Timm et al. [TKKTGO07] according to which agents are situated in an environment, act au-
tonomously, and are able to sense and react to changes. In accordance with the definition
of autonomous elements above, autonomous agents make decisions independent of each
other always taking their currently perceived environment into account. As such, they act
within an area of autonomy as part of a larger system. Depending on the scenario and
modelling, the agents only have limited perception, i.e., they are not capable of seeing the
overall system as in the theoretic case of perfect information, and as such optimize their
own situation subject to uncertain environmental reactions and developments.

According to [Tim06], autonomous agents are characterized and distinguished by four
features:

e Non-deterministic action of an agent describes the possibility that an agent might
react differently in exactly the same situation occurring repeatedly.

e This may happen because of their pro-active behaviour, i.e. autonomous agents
interpret their environment, reason about their goals and change those goals if re-
quired.

e Further, they can communicate and perceive each others behaviour which leads to
interaction and

o Emergence leads to new system design and behaviour which may improve the over-
all solution compared to what the agents could achieve individually.

[TKKTGO07] derive a mapping of levels of autonomy to agent types from [Tim06, RNO3].
The authors distinguish four different types and related degrees of autonomy:

Simple reflex agents are best described by input-output functions, i.e. a certain external
input leads to a deterministic output as specified by the agent designer. The simple reflex
based agents’ degree of autonomy is basically zero; they are strongly regulated. Their
decisions are made in a deductive fashion, e.g. the agents act according to some simple
rules. As such, the simple reflex based agents’ decisions are entirely predictable. In an
MAS-representation of a supply network scenario, the resources are represented by sim-
plex reflex agents waiting for requests as input.

The model-based reflex agents possess an internal model that helps them to reflect on
their behaviour and external developments. They base their decision on those forecasts.



Those agents do however not establish any structures that can be used again. As such, their
autonomy is aligned to the operational level. On the operational level, problem solving has
to be done repeatedly always based on current information and requires high communica-
tion efforts [Tim06]. The agents derive decisions inductively searching for the best pos-
sible alternative among all available alternatives. The alternatives are indirectly described
by constraints representing the limits of the agents’ acting. Compared to simple reflex
agents, they are capable of making more complex decisions for which several alternative
decisions are possible and have to be evaluated. The service agents in a supply network
are model-based reflex agents. They maintain a decision model to determine their own
decisions. The decision making is guided by optimizing their individual own objectives.

Utility-based agents can reflect on the environment and their actions and they can also
assess how their actions and the environment influence each other. Further, utility-based
agents evaluate possible actions by reflecting on their goals and deciding on the action
that promises the highest achievement with regards to those goals. Therefore utility based
agents remember past situations and consequences for their goal achievement and use this
information to make decisions. This degree of autonomy is then defined as tactical with
the agents deliberating on the consequences of their actions. A service agent falls into the
category of utility-based agents if it is equipped with a memory and with detectors that
enable it to recognize the impacts of his decisions with respect to the overall supply net
but also with respect to particular resource agents.

Finally, goal based agents are additionally capable of reflecting on their goals and adjust-
ing them where necessary. Goal adjustment happens on the level of strategic planning and
as such goal based agents possess strategic autonomy by definition. The supply network
coordinator is a representative of a goal based agent. Normally, the coordinator agent’s
acting is guided by the desire to maximize the efficiency of the supply network’s opera-
tions (“accepting only profitable demand for network’s capacity disposition”). However,
the coordinator may desist temporarily from the achievement of this goal especially in
temporary crises (“accepting temporarily unprofitable demand in order to keep the supply
network alive”).

4 Representation of Agents in Transport Networks

In transport networks, customers approach the company with varying transport demand.
The demand ranges from more than-full-truckload jobs to less-than-truckload jobs and
from packaged goods to bulk cargo. Further, the demand can be repeated frequently or
can be one-off demand. However, most demand occurs on rather short notice and has to
be incorporated into operative planning immediately after the demand has been accepted
for completion.

The contact between the customers and the supply network is made by the transport net-
work’s coordination agent, who usually is the sales department of the freight forwarding
company (Fig. 2). This coordination agent represents the highest level of the transport net-
work. It decides on the acceptance of demand. If the coordination agent accepts a certain
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demand, it becomes responsible for the completion of it. In network capacity disposition
the coordination agent then forwards the demand as transport service orders to the next
level, the service agency. Since only the task of ‘transport service’ is considered here, only
one service agency is required. We refer to this agency as Transport Service Agent (TSA).
In service agency resource dispatching, the TSA receives transport service orders and con-
verts them into executable transport requests. These transport requests are then forwarded
to the resource agents. In contrast to an order, requests can be completely fulfilled by one
of the resource agents.

In resource dispatching, the TSA faces two options: delegating the requests to own ve-
hicles (vehicle agents) or to subcontractors (subcontracting agents). In order to delegate
the requests, the TSA has to solve an integrated vehicle routing problem as described in
[KKO09] for example. By solving this problem, the TSA decides on the allocation of re-
quests to available vehicle agents and to possible subcontracting agents. The TSA may
further decide on the optimal sequence of requests for each vehicle agent that is the route



to be driven. For subcontracting agents, the TSA can usually choose between agents with
different features. The spectrum of subcontracting services ranges from long term con-
tracts with trucks rented on a daily basis to single trips bought on an electronic freight
exchange market. The TSA’s decision has to incorporate those possible execution modes
and find a solution matching the service requirements by the customers as well as the bud-
get constraints. Budget constraints are created by the price resulting from the negotiations
between the coordination agent and the customers. As such, the TSA can influence the
profit margin by reducing costs.

The vehicle and subcontracting agents receive transport requests to be executed from the
TSA. Relevant to those agents is the information on the loading and unloading locations,
the size of the transport requests and the time windows they have to comply with. Further,
the TSA might specify a sequence for execution or if not, the vehicle and subcontracting
agents autonomously determine their best routes. These agents also have the autonomy to
adjust their route planning in case of unforeseen events such as traffic jams [SK09].

The agents in the transport network can be classified according to the agent types of
[TKKTGO7] introduced in Section 3. This classification also provides the framework for
the planning horizon and the extent for which individual agents make autonomous de-
cisions. As such, the agents are assigned to the strategic, tactical and operational level
and receive the respective decision power. Thus, the MAS is not entirely autonomous
since a hierarchy results from the three different planning horizons: the strategic level cre-
ates a framework for both, tactical and operational level, and the tactical level creates a
framework for the operational level but depends on the decisions of the superior strategic
planning. These frameworks do limit the autonomy of decision making of the agents. The
hierarchy is depicted in Figure 2 as arrows reaching from higher to lower levels and pro-
cessing orders or requests. These orders or requests are commands that cannot be rejected
or negotiated anymore.

The coordination agent is classified as goal-based agent since it operates in the mar-
ket and is responsible for selling the transport network’s services thereby ensuring future
business operation. The coordination agent may negotiate the request fulfilment terms
with customers and can adjust the transport network’s offers to the market and demand
situation. This means that during negotiations the coordination agent can change the goals
of the entire supply network for example from cost minimal fulfilment to highest customer
service.

The TSA operates within the framework created by the coordination agent. As such, it
cannot adjust the systems goals anymore but can still optimize its own objectives. Those
objectives might be in maximizing profit by minimizing operative cost, for example. As
such, the TSA operates within tactical planning. In resource dispatching, the TSA has to
decide on the splitting of transport orders into requests and then on the execution mode for
all transport requests. When splitting transport orders, the TSA has to keep in mind, how
the resulting requests can be aligned to the operative agents in the system. As such, the
TSA has to be able to recognize the impact of its decisions on the system state and as such
the TSA is represented as utility-based reflex agent.

On the operational level each transport network has several agents for physically executing



the requests. Those agents might either be vehicle or subcontracting agents. The differ-
ence between both is in cost structure. Two ways for modelling those agents are thinkable
and also found in practice. One option is to model these vehicle and subcontracting
agents as simple-reflex based agents with the agents receiving their transport requests as
route plans from the TSA and driving the routes as demanded by the TSA. When mod-
elled as simple reflex agents, the vehicle and subcontracting agents possess no autonomy.
The second option is, to grant the autonomy of deciding on their route to the vehicle and
subcontracting agents, modelling them as model-based reflex agents. This means that
the TSA only assigns a certain number of feasible transport requests to each agent and the
agent decides on how to fulfil these requests. Further, the agents then have the ability to
react to unforeseen events such as traffic jams and adjust their planning dynamically. How-
ever, the TSA’s decision in this case is a challenge to the system-wide planning efficiency.
This decision is usually based on planning feasibility with a certain number of transport
requests and their specifications (such as time windows). Using model-based reflex agents
on the level of operational planning might then lead to solving a similar problem twice
which is certainly not desirable. As such and if modelling vehicle and subcontracting
agents as model-based reflex agents this conflict has to be solved first.

Delegating decision power and responsibility to subordinates can lead the involved agents
to use their information optimally. Contrarily, in central planning an information system
for reporting this information to a central planner is required and the network members are
required to report this information. This situation then neither induces truthful reporting
nor creates trust in the central planner’s abilities. The second argument for decentralized
planning is the short planning horizon. Information reporting is time consuming - although
supported by information systems - and the interpretation of this information, the decision
making and communication by the central planner require even more time. As such, it
might be beneficial to empower the subordinate transport network members by granting
them larger areas of autonomy.

As such, a hierarchical structure exists in the transport networks, with the decisions of the
coordination agent creating the framework for the TSA’s decisions. The TSA’s decisions
in turn create a framework for the vehicle and subcontracting agents leaving them little to
no autonomy. All decisions made in the transport supply network rely on the framework
created by superior network members and on locally available information. The TSA’s
decision might be the best example for this, since the operational planning decision relies
only on the number of requests and required capacity as specified by the coordination agent
and on data related to the availability of execution agents (i.e. vehicle and subcontracting
agents) and their related cost (which in turn depends on the number of requests assigned to
this agent). Especially the required local information is an argument in favour of decentral-
ized instead of centralized transport network planning. The availability of the information
required by the decision makers is limited because of hidden action and intention of the
respective subordinate agents.

However, each request or order processing requires feedback on completion. As such,
each processing creates an informational flow pointing to the opposite direction. For the
coordination agent further information is required. Since each coordination agent may
decide on order acceptance and arrangements it needs information on capacity utilization,



feasibility of individual orders and cost estimators. This information has to be provided
by the TSA.

5 Extension to Transport Cooperations

Idle trips and low utilization rates in terms of truck load pose a challenge to operational
planning in transport. Recent business trends to overcome those obstacles are the forma-
tion of transport cooperations and the usage of electronic freight exchange marketplaces.
In research, a combination of both has been suggested in operational transport collabo-
ration [KK06, BB08, GSV07]. In operational transport collaboration several individual
transport networks cooperate with each other in their operational planning. Thus, they
form larger systems.

The idea of operational transport collaboration is that freight forwarders might addition-
ally cooperate with other freight forwarders and exchange some of the requests with the
cooperation partners. The process of exchanging requests is referred to as collaboration.
As such, operational transport collaboration extends the possible execution modes for the
TSA’s decision problem: For the classic option as described above, freight forwarders
either use subcontractors or own vehicles on the operational level. Here, they may also
choose the option of collaboration.

Two main benefits of this cooperation can be identified. The first is cost reduction since
with limited capacities at the freight forwarders, collaboration is cheaper than using sub-
contractors [Sch05]. Second, the motivation is in increased capacity utilization of own
vehicles, as might be done by collaborating in order to minimize idle trips. The purpose
of the request re-allocation in operational transport collaboration can then be described as
a levelling of capacity amongst the participating freight forwarders.

The cooperation between transport networks can be analyzed on two levels: strategic and
operational. On the strategic level decisions on the formation and the design of the emerg-
ing system are made. On the operational level, only decisions within this design are made
such as on which transport requests to exchange. The following discussion is limited to
this operational level.

For the scenario, we assume the same structure for each freight forwarder, namely that of
an individual transport network as introduced in the previous section. An exemplary coop-
erative transport network with the option of operational transport collaboration formed by
two transport networks and including a separate collaboration system is depicted in Fig. 3.
The individual transport networks are both structured as described in Section 4, with the
TSAs additionally exchanging requests with each other by means of collaboration.

Each freight forwarder has a coordination agent who is again responsible for demand ac-
quisition and negotiations with customers. The acquired demand is then forwarded to the
TSA in network capacity disposition. The TSA is responsible for the service agency re-
source planning, that is operative transport planning. Thereby, the TSA now faces three
options: assigning the transport requests to the own fleet, to subcontractors, or to the col-
laborative exchange mechanism. For all transport requests assigned to the own fleet the



TSA has to create operational plans such as assignment of requests to vehicle agents and
route planning. We assume that all requests assigned to subcontracting agents are always
accepted and fulfilled by those agents. Those transport requests assigned to the collabora-
tion become visible to all other cooperation members and may be exchanged. We follow
the assumption of [Sch05] that all requests not re-assigned are forwarded by the collab-
oration agent to subcontracting agents who then fulfil those requests. The collaborative
exchange mechanism is represented as agent, namely the collaboration agent.

The TSAs at different freight forwarders all face the same decisions. All transport requests
assigned to the collaboration agent are collected in a central pool, the market, and all
information relevant for incorporating such requests into the transport planning of a freight
forwarder’s own fleet is revealed to all TSAs.

For the theoretical case of perfect information, the transport requests could then be traded
as on a real market, i.e. with TSAs offering a certain price for the acquisition of one
or several requests. However, in most cases, the information on terms negotiated with
customers is private and will not be revealed. This case is referred to as informational
asymmetry. The discussion here is oriented towards this second case. With informational
asymmetry only limited information is reported to the collaboration agent. This informa-
tion may include the loading and unloading location, the time windows and the quantity to
be transported, for example. Further the submitting TSA then needs to specify the maximal
remuneration for the execution of a certain transport request. The TSAs have the option to
bid on transport requests in the market and the collaboration agent re-assigns the transport
requests in the market to the freight forwarders. Depending on the exchange mechanism,
the fulfilling freight forwarder then either receives exactly the offered remuneration or
less. In this second case (as for example described in [KK06]), the remuneration is an in-
formation only known to the collaboration agent. Further, if the remuneration paid is less
than originally offered, a profit of collaboration arises which is to be redistributed amongst
the cooperation partners. In the example of [KKO06], the cooperation partners bid their
potential fulfilment cost. For the exchange, combinatorial auctions have been suggested
[KK06, BB08, GSV07].

In terms of information, the TSAs have to report to the coordination agents. Further, they
communicate with the collaboration system. The TSAs report available transport requests
for exchange to the collaboration system and state their evaluations of such requests in the
market. From the collaboration system, the TSA receive the information on transport re-
quests available for exchange plus the results of the execution of the exchange mechanism.
The decision on execution mode also involves the interaction with the collaboration agent.
The TSAs have to evaluate the transport requests in the market and have to assess how
their bidding and possible request acquisition renders the operative planning. As such, the
area of autonomy (depicted as middle-grey shaded part in Fig. 1) of each of the TSAs is
extended to areas outside the transport network.

The collaboration agent is a separate entity not integrated into the organizational structure
of any of the freight forwarders. This agent is responsible for an optimal re-allocation
of traded requests as well as for the determination of the transfer payments related to
this exchange. The collaboration agent’s decision problem thereby depends on the goals
of the cooperation, such as cost minimal execution or high capacity utilization. The agent
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Figure 3: Structure of the exemplary cooperative transport network

therefore has to receive all relevant information from the TSAs. Since a freight forwarder’s
costs related to the execution of one or more of the requests in the market depend on the
TSA’s planning, this information is private. However, such cost data have to be used for
finding an optimal re-allocation (cf. [KKO06, KK09] for example). Thus, an exchange
mechanism that induces truthful reporting to the collaboration agent has to be used.

The collaboration agent is also on the operational level, although it is outside of the hi-
erarchical structure of any of the transport networks. The collaboration agent’s decisions
are the re-allocation of transport requests between cooperating transport networks and, if
necessary, the redistribution of collaboration profits. This might seem a simple task for the
example of Fig. 3 but the complexity of the re-allocation problem and of the profit sharing
is increased significantly with more than two cooperating networks.

The collaboration agent might be modelled either as simple reflex agent or as model-
based reflex agent. If modelled as simple reflex agent, it possesses a pre-specified al-
location mechanism, with the same situation basically leading to the same redistribution
and the redistribution being predictable. The benefit of such a setting is, that it is better
accepted by the participants, since the mechanism is understood by everybody. However,
with more cooperating transport networks, the complexity of the re-allocation problem



increases. Conflicts may arise when two TSAs express exactly the same valuation for
transport requests in the market. With a large number of possible transport requests, it is
impossible to specify rules for solving such a conflict in advance. Granting the collabo-
ration agent more autonomy could then mean that the agent creates different alternatives
and evaluates those alternatives thereby achieving an acceptable solution to the conflict. In
this case the collaboration agent is described as model-based reflex agent.

6 Conclusions

The discussion in the previous sections enables the conjecture that MAS are adequate
to serve as a modelling base for decision processes in supply networks in general and
in transport process planning in particular. AC as underlying coordination mechanism
for supply network’s process planning provides appropriate concepts to enable the cross-
border decision making.

Transport planning has been identified as a representative example for such a decision
making scenario. The main features of AC, pro-active behaviour, non-deterministic action,
emergence and communication, are found in the scenario with its horizontally as well as
vertically cooperating and interacting agents.

However, a certain hierarchy is retained in the transport planning scenario thus contradict-
ing the idea of heterarchy in AC to a certain extent. This still holds for the cooperating
transport networks, for which the traditional borders between networks open up. The hier-
archy aims at binding the autonomous agents to a larger system, providing a joint purpose
for their operation.

Further research on autonomy in transport networks will look closer into the decision
making processes at individual agents. Simulations of different agent types and differ-
ent underlying decision models may then aim at a more detailed evaluation of the AC
paradigm.

Acknowledgement

This research was supported by the German Research Foundation (DFG) as part of the
Collaborative Research Centre 637 ”Autonomous Cooperating Logistic Processes - A
Paradigm Shift and its Limitations” (Subprojects B7, B9).

References

[BBOS] Susanne Berger and Christian Bierwirth. Ein Framework fiir die Koordination
unabhéngiger Transportdienstleister. In K. Inderfurth, G. Neumann, M. Schenk,
G. Wischer, and D. Ziems, editors, Netzwerklogisitk: Logistik aus technischer und



[Els91]

[FMP96]

[GSV07]

[Hal03]

[HW07]

[KDMO3]

[KK06]

[KK09]

[RNO3]

[Sch05]

[SK09]

[Tim06]

[TKKTGO7]

o6konomischer Sicht. (13. Magdeburger Logistik-Tagung), pages 137-151, 2008.

R. Elschen. Gegenstand und Anwendungsmoglichkeiten der Agency-Theorie. zfbf -
Schmalenbachs Zeitschrift fiir Betriebswirtschaftliche Forschung, 43(11):1002—1012,
1991.

Klaus Fischer, Jorg P. Miiller, and Markus Pischel. Cooperative Transportation
Scheduling: An Application Domain for DAI. Applied Artificial Intelligence, 10:1-33,
1996.

Oleg Gujo, Michael Schwind, and Jens Vykoukal. The Design of Incentives in a Com-
binatorial Exchange for Intra-Enterprise Logistics Services. In /EEE Joint Conference
on E-Commerce Technology (CEC’07) and Enterprise Computing, E-Commerce and
E-Services (EEE °07); Tokyo, Japan, July, pages 443-446, 2007.

Randolph W. Hall, editor. Handbook of Transportation Science. Kluwer, 2 edition,
2003.

Michael Hiilsmann and Katja Windt, editors. Understanding Autonomous Coopera-
tion and Control in Logistics. Springer, Berlin, Heidelberg, 2007.

Bernd Kaluza, Herwig Dullnig, and Franz Malle. Principal-Agent-Problem in der
Supply Chain - Problemanalyse und Diskussion von Losungsvorschlagen. Technical
Report 2003/03, College of Business Administration Unversity of Klagenfurt, Austria,
2003.

Marta A. Krajewska and Herbert Kopfer. Collaborating freight forwarding enterprises
- Request allocation and profit sharing. OR Spectrum, 28(3):301-317, 2006.

Marta A. Krajewska and Herbert Kopfer. Transportation Planning in Freight-
Forwarding Companies - Tabu Search Algorithm for the intergrated operational tran-
portation planning problem. European Journal of Operational Research, 197(2):741—
751, September 2009.

Stuart Russel and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, Englewood Cliffs, New Jersey, 2nd edition, 2003.

Jorn Schonberger. Operational Freight Carrier Planning. Basic Concepts, Optimiza-
tion Models and Advanced Memetic Algorithms. GOR Publications. Springer, Berlin,
Heidelberg, New York, 2005.

Jorn Schonberger and Herbert Kopfer. Online Decision Making and Automatic Deci-
sion Model Adaptation. Computers & Operations Research (COR), 36(6):1740-1750,
2009.

Ingo J. Timm. Strategic Management of Autonomous Software Systems. TZI Bericht
Nr.35, Universitdt Bremen, 2006.

Ingo J. Timm, Peter Knirsch, Hans-Jorg Kreowski, and Andreas Timm-Giel. Auton-
omy in Software Systems. In Hiilsmann and Windt [HWO07], pages 255-273.



