
 1 

ROUTING AGVS IN CONTAINER TERMINALS BY USING Q-LEARNING 

 

Su Min Jeon*, Kap Hwan Kim* and Herbert Kopfer ** 

 
* Department of Industrial Engineering, Pusan National University, Jangjeon-dong,           

Kumjeong-ku, Busan 609-735, Korea.  

 e-mail: {1006sumin, kapkim}@pusan.ac.kr 
** Lehrstuhl für Logistik, FB 7, University of Bremen, D-28334 Bremen, Germany.  

e-mail: kopfer@uni-bremen.de 

 

 

ABSTRACT 

This paper suggests a routing method for automated guided vehicles (AGVs) in port terminals 
by using a Q-learning technique. One of the important issues for the efficient operation of 
automated guided vehicle system (AGVS) is to find the shortest time route instead of the 
shortest distance route which is usually being used in practice. For the estimation of the travel 
time, the waiting time must be estimated accurately. This study proposes a method for 
estimating the waiting time of vehicles resulting from the interference among vehicles during 
the travel by using the Q-learning technique. An experiment was performed to evaluate the 
performance of the learning algorithm by a simulation technique. The performance of the 
learning-based routes was compared to that of the shortest distance routes by the simulation 
study. 
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1.  INTRODUCTION 

There are four types of operations (unloading, loading, receiving, and delivery) performed by 
handling equipment in port container terminals. We assume that three types of equipment are 
used for ship operations such as QC (Quay Crane), AGV (Automated guided vehicle), and 
AYC (Automated yard crane). For example, the unloading operation can be decomposed into 
3 steps. The first step is performed by a QC transferring a container from a ship and putting 
down the container on an AGV. The second step is performed by an AGV delivering the 
container from the QC to a block in the storage yard. The last step is performed by an AYC 
picking up the container and stacking it into a position in a yard block. 

For the operation of AGVs, the control system must have such functions as dispatching, 
routing or scheduling, and traffic control. The routing function of vehicles is one of the most 
important components of operational control systems to achieve a high productivity in 
automated container terminals. The routing function selects a specific path for a vehicle to 
follow to reach its destination from the present position. 
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Usually, a vehicle is given a predetermined route from its starting position to its 
destination. Considering the efficiency of the terminal operation, the shortest distance routes 
are usually provided to vehicles. This paper attempts to find the shortest time route instead of 
the shortest distance route by considering the congestion at intersections and bidirectional 
path segments. To find the shortest travel time route, the expected delay time of vehicles at 
each intersection is estimated by utilizing travel experiences of vehicles collected during a 
simulation process.  

The AGV routing problem has been addressed by several researchers. The conceptual 
foundations of the AGV routing problem were first laid by Broadbent et al (1985). They 
proposed an AGV scheduler that uses Dijkstra’s shortest path algorithm and generates a 
timetable containing the node occupation times for each vehicle. A study by Gaskins and 
Tanchoco (1987) suggested an integer programming model to determine the directions of path 
segments on guide path in a way of minimizing the total travel distance of vehicles. Kim and 
Tanchoco (1991) used the concept of time window graph, which is a directed graph of the 
free time windows, for finding the shortest time route on bi-directional guide path networks. 
Rajotia et al. (1998) proposed a semi-dynamic time window routing strategy, the principle of 
which is quite similar to the path planning method of Kim and Tanchoco (1991). Time 
windows modeling the traffic flow direction are placed on bi directional arcs, which can only 
be crossed according to one direction at a time. Based on these time windows, the Dijkstra 
algorithm was applied to find the least congested and fastest routes for vehicles. Oboth et al. 
(1999) addressed operational control problems such as the demand assignment and the route 
planning. They proposed a route generation procedure called the sequential path generation 
(SPG) heuristic. Lim et al. (2000) applied a Q-learning method (Mahadevan 1996, Mitchell 
1997) to estimate the expected travel time of vehicle on path segments for designing guide 
paths in AGVSs. 

This study also applies the Q-learning method for a route planning for AGVs in automated 
container terminals. For finding the shortest time route for a vehicle from its starting location 
to a final destination, the schedule has to ensure a conflict and deadlock free travel during the 
entire travel. Thus, this study addressed not only the route construction method but also a 
traffic control issue for resolving the deadlocks during the travel of the vehicle.  
The rest of this paper is structured as follows. In section 2, we introduce a guide path 

network for AGVs assumed in this study and the traffic control problem. Section 3 describes 
how to apply the Q-leaning method to make the shortest time routes. Section 4 compares the 
system performance between routes by the learning method and the shortest distance route by 
a simulation study. Finally, the conclusion and summary are provided in section 5. 

 

2. AGV PATH NETWORK AND THE ROUTING PROBLEM 

Figure1 illustrates a typical logistics process for unloading operation in automated container 
terminals. In automated container terminals (ACT), free-ranging AGVs are usually used, 
which do not have physically permanent guide paths constructed by using electric wires or 
magnetic tapes and thus can travel on a guide path network temporarily specified in the 
memory of the supervisory control computer. Two types of the guide path network used in 
practice are of closed- loop type and of cross- lane type. The guide path network of the closed-
loop type has several large circular guide paths for vehicles follow for the travel. Thus, the 
guide path network of the closed- loop type allows a simplified control of vehicles but requires 
long travel distances for vehicles. 
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Fig1. An illustration of unloading operation 
 

 
 

 
Fig 2. An illustration of a guide path network 
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its destination. Although cross-lane guide path networks can reduce the travel distances of 
AGVs significantly, the traffic control of vehicles becomes much more complicated. 
This study assumes the guide path network of the crossed lane type as illustrated in Fig2. Fig2 
shows a layout of the guide path network with yard blocks laid out in the perpendicular to the 
berth. In the network, a node corresponds to an intersection point of path segments or pickup 
and delivery (P/D) points for QCs or blocks. We use the zone control policy for preventing 
the collision among AGVs. An arc in the network represents the traveling direction allowed 
for AGVs. Defining the travel direction on each arc is an important decision-making for the 
design of the guide path network. We assume that there are 5 traveling lanes under QCs 
including 3 lanes allocated for transferring containers with QCs. The other two lanes are used 
only for the running of vehicles. All the lanes under QCs are directed toward the same 
direction. Some lanes in the parking area are directed toward the berth, while some lanes are 
directed toward the yard. There are 7 lanes for the running of vehicles in front of blocks and 
each block has 3 transfer points (TPs).  
 

3. APPLICATION OF THE Q-LEARNING TECHNIQUE FOR AGV ROUTING 

 This section introduces how to plan the routes for vehicles by Q-learning technique. The 
objective is to get routes for minimizing the travel time for a given starting location and the 
destination.  

Reinforcement learning is a process of learning how to match situations with actions in 
order to maximize a numerical reward signal. The learners are not told what actions to take, as 
in the case of most of machine learning algorithms. Instead, learners must discover by trial 
and error what actions yield the most reward. The four sub-elements of reinforcement 
learning are policy, reward function, value function, and model of environment. The 
following describes how the Q-learning technique can be applied to the rout ing of vehicles 
(Lim et. al, 2002). 

In the routing problem of this study, a state is defined by the current location of a vehicle 
and its destination and an action is defined as the next immediate destination node to be 
selected. For the reinforcement learning, a reward function is related to the goal of the 
problem. However because the objective of the problem is to minimize the travel time, a 
penalty function will be used instead of the reward function. 
The travel time from a node to the next immediate node will be penalty of the corresponding 
state action pair. A value function specifies which decision is good in the long run, whereas a 
reward function indicates how good a decision is in the immediate future. For this study, the 
total travel time from a start node to a destination node will be the value function. 
The following notation is introduced to describe the learning process. 

 
t : The destination node of a current vehicle 

k : The node where a current vehicle is located 

(k,t) : The state of  the vehicle, which consists of the current node (k) and 
the destination node (t) 

A(k,t) : The set of candidates for the next node (action) from which a vehicle 
in state (k, t) may choose 

a 
: 

An action taken by a vehicle, which is an element in A(k,t). The 
action corresponds to the next node selected. 
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γ  
: 

The discount factor for future penalties (0 ≤≤ γ 1). This study 
assumed γ =1, because the number of stages is finite in this study. 

r[(k,t),a] 

: 
The penalty, which is the travel time of a vehicle at state s from a 

current node to the next node (a). The travel time may also include the 
waiting time caused by traffic congestion. 

Q[(k,t),a] 

: The expected discounted cumulative travel time, from the current 
node to the destination node, of a vehicle that select action a, 

at state (k, t). 

 
The final output of the learning process is a decision matrix in which the numeric value in 
entry (k, t) represents the imminent next node of a vehicle at node k whose destination is node 
t. For obtaining the decision matrix, for a given state (k, t), the state-action pair with the 
lowest value of Q[(k,t),a] will be adopted as the value of entry (k,t) of the decision matrix. 
Thus, in order to obtain the decision matrix, it is only necessary to estimate the value of 
Q[(k,t),a]. The following equation is for updating the value of ˆ

nQ [(k,t),a] which is an 
estimator of Q[(k,t),a]. 

ˆ
nQ [(k,t),a] =(1- nα ) 1

ˆ
nQ − [(k,t),a]+ nα {r[(k,t),a] + 1'

ˆmin na
Qγ − [(k’,t),a’]},                             (1) 

where 
]),,[(1

1
atkvisitsn
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visitsn[(k,t),a] represents the total number of the visiting time during the learning process.  
The conditional probability of selecting action a, given state[k,t], is calculated as follows: 

∑
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where ),( tkAa ∈  and ρ  is a positive constant. 
 
For implementing the learning process, a simulation model was developed by using eM-plant 
7.6 versions. During the learning process, the action node is selected among the adjacent node 
set of current node of vehicle. In the initial state of the learning, Q̂ [(k,t),a] is set to be the 
travel time from node k to t through node a under the assumption that the vehicle travels 
without any interruption by other vehicles during the travel.  
However as experience accumulates, differences in Q[(k,t),a], among different next nodes for 
the current node and the destination node, become larger. For using the computational time 
efficiently, more effort must be devoted to estimating lower values of Q[(k,t),a] among 
different actions, which expression (2) attempts to do. According to (2), when Q[(k,t),a] for a 
next candidate node has a lower expected travel time among those of different candidate 
nodes at a given state, a higher probability of selecting the next candidate node results in a 
higher estimation accuracy of Q[(k,t),a]. As a result, more samples will be collected from 
traveling of vehicles from the current node to the candidate nest node. 
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4. TRAFFIC CONTROL RULES USED TO SUPPORT THE LEARNING PROCESS 

 
During the learning process, it is necessary that traffic control rules must be provided for 
guaranteeing conflict and deadlock free travel of AGVs. In the following, several deadlock 
situations are described, which were found during the experiment and so some rules for 
resolving the deadlock situation must be provided. Figure 3 illustrates a possible deadlock 
situation, in which a cyclic deadlock may occur when requests of vehicles for the next nodes 
form a cycle of nodes. Figure 3 shows four vehicles from AGV1 to AGV4 and shaded nodes 
are the current locations of the vehicles. The arc represents the claim of a reservation for the 
next node for the travel by a vehicle on a node. For example, the vehicle on node 1 is 
claiming node 2 for the travel. However, if AGV1 is allowed to enter node 2, there will be a 
cyclic claim for the next node, which means the deadlock. 

 

 
 

Fig 3. A cyclic deadlock situation on block lanes 
 
There are two areas in which there are high possibilities of the deadlock situation. The first 

is the area of block lanes which consist of driving lanes of opposite directions or bidirectional 
lanes. The other area is between the lanes of the berth and those in front of blocks.  
We use ‘Semaphore’ concept (Evers,1996) to prevent AGVS from cyc lic deadlock situations. 
A semaphore is a classical solution to prevent resource deadlock. Whenever a vehicle arrives 
at semaphore area, the counting semaphore is triggered to check the availability of resources. 
The control logic of the counting semaphore can be defined by the following procedure of 
‘wait and proceed. 

 
Wait and proceed 
When a vehicle predicts a deadlock on its route, the vehicle stops at its entry location and  
waits until at least one vehicle gets cleared from the predicted deadlock region. 

 
Wait: if the capacity of semaphore is the same as the number of resources occupied, then 

wait until the occupied number of resources becomes smaller than the capacity. 
Proceed: if the capacity of semaphore is greater than the number of occupied resources, 

then the number of occupied resources = the number of occupied resources + 1, 
and proceed to this semaphore area. 

 
Semaphore areas with the capacity of 4 are illustrated in Fig 4. A semaphore, SPi, is a set of 
nodes for which vehicles can request a reservation. In some cases, there may be nodes in an 
overlapped area by more than one semaphore areas. For example a vehicle arrives at node3 
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and the next visiting node is 4 triggers the counting semaphores, SP1 and SP2. The set of 
nodes in SP1 is {1,2,3,4} and the set of nodes in SP2 is {3,4,5,6}. Only when of the numbers 
of reserved resources in both sets are smaller than the capacities of the two semaphore areas, 
which are 3, then vehicle can enter the node and then the number of reserved resources is 
updated; otherwise the vehicle must wait until the conditions are satisfied. 

  
  

Fig 4. An example of semaphore areas in block lanes 
 

Figure 5 illustrates a head-to-head conflict on a bidirectional path segment. In the simulation 
of this study, when a conflict of this type was detected, a detour, instead of the original route, 
was selected for avoiding this conflict. 

 
 

Fig 5. Head to Head conflict at bidirectional path 
 
 

5. SIMULATION STUDY 

5.1 Simulation scenario    

A simulation program was developed by using the Em-plant simulation package for testing 
the routing method for vehicles. A container terminal with one berth of the length of 360m, 3 
QCs, and 7 storage blocks, each of which has 3 transfer points, was modeled. The guide path 
network corresponded to that in Figure 3. The size of a node was assumed to be large enough 
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to cover a vehicle. We assumed that the length of all the nodes was 16m and the total number 
of nodes in the terminal was 320. Five vehicles were assigned to each QC. During the 
simulation, each vehicle was dedicated to a single QC.  
 The simulation study was conducted for three different scenarios which have different 
delivery requirements as shown in Table 3. Because the delivery requirements are different 
from each other, the resulting route for the same starting node and the destination may be 
different in different scenarios.  
The value of Q̂ [(k,t),a] is updated by using expression (1), whenever a vehicle arrives at a 
node until it arrives at node t which is the destination. If the change of a Q̂  is smaller than a 
pre-specified small value, ε, then the count of the stability is increased by one. If the change 
of a Q̂  is greater than or equal to ε, then the count of the stability is reset to zero. When the 
count becomes to exceed a pre-specified limit, the learning process stopped. By using the 
final values of Q̂ [(k,t),a], we can construct the final imminent destination matrix (decision 
matrix) by inserting a* = ˆargmax [( , ), ]

a
Q k t a  into entry (k,t). The decision matrix derived like this 

will be used for determining the travel route of a vehicle of each delivery request. 
 

5.2 Simulation results 

The simulation program was developed for learning and comparison purposes by using Em-
plant simulation package which was run on the process of Pentium IV of 3Gh and memory of 
1GB. For the simulation modelling, the configuration of the terminal in Fig 2 was assumed. 
Three scenarios of the delivery requirements as shown in Table 1 were assumed for the 
simulation. 

The travel time of vehicles using routes obtained from the learning method was compared 
with that from the shortest distance routes which are being used in the most popular in 
practice. Table 2 shows the ratio of the travel time from the learning method to that from the  
shortest distance routes. The travel time consists of the moving time and the waiting time. It 
was found that the learning-based routing method outperformed the shortest travel distance 
route in the travel time. In the experiment, the value of ε was set to be 0.01. The counter of 
the stability was set to be 3000. Table 3 shows the computational time and the number of 
containers delivered for different values of ε. 
 

Table1. An example of QC work schedule for simulation 
                            

Delivery 
demand QC ID 

Assigned 
block ID 

Ratio of containers 
handled 

1 1,2,3 39% 

2 3,4,5 36% 1 

3 5,6,7 25% 

1 1,2,3 28% 

2 3,4,5 41% 2 

3 5,6,7 30% 

1 1,2,3 27% 3 

2 3,4,5 34% 
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 3 5,6,7 38% 

 
 
 
Table2. Comparison of travel time between the learning method and the shortest distance 

route (SDR) 
 

Delivery demand Q-learning process SDR 

1 94% 100% 

2 96% 100% 

3 80% 100% 

 
 
 

Table3. Computational time for different values of ε  
 

Delivery 
demand 

ε  range Learning time  (min) 
Number  
of  containers Travel  time 

0.01 250 161,500 100% 

0.03 200 146,300 100.19% 1 

0.05 140 127,300 102.54% 

 
 

6.  CONCLUSION 

This study applied a Q-learning algorithm to a routing planning for AGVs in port container 
terminals. The goal of routing planning is to find routes with the shortest traveling time for 
each delivery demand. It was shown how the Q-learning method can be used to estimate the 
expected travel time of vehicles between two nodes in the guide path network. 

Through a simulation study, the performance of learning algorithm was compared with that 
of the shortest travel distance routes. It was shown that the travel time can be reduced by 10% 
by using the learning based routes instead of the distance based routes. For the future study, 
the results in this study should be generalized by much more extensive experiments. 
Moreover, the approach in this study can be extended to the problem of designing guide path 
networks for AGVs. 
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