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Abstract

We propose to enhance decision support systems (DSS) by coordination capa-
bilities to align the decision making of consortium partners for improving the
process quality in volatile process environments. In computer simulation ex-
periments, we reveal conceptional shortcomings of traditional DSS if unforeseen
process-threatening events like unexpected workloads have to be handled by a
consortium. It is demonstrated for a transportation process planning scenario
that a process quality increase is achieved if a DSS is extended by components
that align the process-related decision making of legally independent supply
consortium partners. The central idea proposed to add coordination capabili-
ties to DSS is to temporarily adjust decision models of subordinate consortium
partners to the fulfillment degree of consortium objectives in order to establish
a coordinated decision making.

1. Introduction

A Decision Support System (DSS) is an information processing system es-
pecially dedicated to derive or support the derivation of goal-oriented decisions
in complex decision situations. Such a system combines process-related data
with analytical decision models in order to enable a computer-based control of
value creation processes [1]. DSS are set up according to some commonly agreed
design paradigms.

Within this contribution we report a research about the evaluation of existing
DSS-concepts for the management of transport processes in a volatile process
environment. In such an environment, the planning conditions and requirements
vary significantly within a small time span. Processes running in a volatile
environment need a frequent update in order to maintain their efficiency.

✩This research was supported by the German Research Foundation (DFG) as part of the
Collaborative Research Center 637 “Autonomous Cooperating Logistic Processes” (Subproject
B7)

Preprint submitted to Elsevier February 18, 2011

Schönberger, J.; Kopfer, H.: Decision Support Systems and the Coordination of Supply Consortium Partners. In: Computers in Industry,
accepted for publication



The management of processes in a volatile surrounding becomes even more
challenging if two or more decision makers are involved (often on different de-
cision levels). Here, the needs and objectives of all participating acteurs have
to be considered simultaneously during the process planning. A supply chain
consortium is an often found example for such a complicated decision making
scenario. The superior coordinator instructs a subordinate service partner to
fulfill certain orders. In reaction to this call, the service partner deploys its
resources to fulfill the orders by executing processes. In this report, we deal
with such a two-decision-maker-situation arising from a supply chain scenario,
in which the subordinate service partner offers transportation.

By means of the two-decision-maker situation from supply chain planning,
we reveal shortcomings of DSS design paradigms caused by extraordinary events
whose processing is not defined in advance. Although previous research [2, 3]
has addressed new ideas for handling those events DSS architectures are unable
to handle these events efficiently. The main contribution of this article is the
proposal of an extension of the three-layer event-handling-concept [4] by a fourth
layer that controls even the handling of extraordinary events. We define and
evaluate a four layer event handling system for the management of extraordinary
situations in the above-mentioned two-decision-maker-situation.

We state the following research hypotheses guiding the research reported
here: (i) Two (or more) concurrent process decisions makers cannot be suffi-
ciently supported by a DSS set up according to existing design paradigms (ii)
A consideration of several decision makers in the layout of a DSS contributes to
overcome some deficiencies arising from conflicting or even contradicting plan-
ning goals of interacting process decision makers.

The organization of this paper is as follows. We start with the description of
the investigated process decision situation (Section 2). Then, we compile DSS-
design principles (Section 3), propose a multi-agent-system-based DSS for the
aforementioned decision situation (Section 4), and demonstrate its shortcom-
ings. A conceptual extension of design guidelines for DSS is proposed in Section
5 and applied to extend the DSS from Section 4. Performing computational
simulation experiments, we evaluate the extended system (Section 6).

2. A Dynamic Transport Process Planning Problem

We start with the description of the derivation of transport processes from
customer demand in a supply consortium (Subsection 2.1). Then we introduce
a specific transport process challenge (Subsection 2.2) and discuss the need for
a coordinated decision making in a supply consortium (Subsection 2.3). An
online optimization model for the investigated scenario is proposed (Subsection
2.4).

2.1. Transport Process Planning in a Supply Chain Scenario

A supply chain consortium is a collaboration of independent companies that
set up, maintain and operate a value creation chain contributing their specific
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Figure 1: Transport Process Planning Scheme

knowledge and resources to the value creation processes. Due to the spatial
scatter of the value creating locations (plants, storages, customers) excessive
transport of raw materials, semi-finished or finished goods has to be carried
out. A freight forwarding company is the partner within the consortium that is
responsible for configuring the necessary transport processes and deploying the
accessible transport resources (trucks or external and booked capacities).

The derivation of profitable and reliable transport processes from customer
demand is figuratively presented in Figure 1. It is a realization of the hierar-
chical planning idea [5, 6]. Initially, customers of the consortium specify their
supply demand towards the coordinator. The coordinator derives internal orders
and reserves capacities at the consortium partners. Especially, the fleet man-
ager receives transportation orders. This order specification implies a decision
problem because the fleet manager has to derive transportation requests and
to decide about the setup (or update) of transportation processes for fulfilling
the requests. A fleet manager decides about the deployment of own trucks or
external resources provided by logistic service providers (LSPs). The execution
of the transportation processes leads to the fulfillment of the orders given to
the fleet manager so that the necessary flow of goods between the value cre-
ation locations is executed. This finally contributes to the customer demand
fulfillment.

2.2. A Transport Process Planning Challenge in a Supply Chain

We assume that the supply consortium coordinator has agreed a contract
with a customer. This customer specifies demand and submits this demand un-
regularly and at unpredictable times to the coordinator. Immediately after the
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reception of the demand, the coordinator specifies the consortium orders and
injects the generated orders into the order pools of the involved service agents.

The coordinator receives customer demands continuously over time. He
generates orders from the customer demands and the resulting requests are to
be executed by the transport providing partner. A reception of additional re-
quests triggers a process revision to incorporate the additional requests into the
so far followed transport processes. The process-planning problem of the fleet
managing agent is therefore a dynamic decision problem [7], which is solved in
online fashion, e.g. a process revision is carried out in an event-driven fashion
in response to the additionally submitted requests. Consequently, a sequence of
concatenated decision problem instances Pi is stated. Each instance is formu-
lated as a static and deterministic mathematical optimization model (all relevant
data at the re-planning time ti are assumed to be known). Solving such a model
means to find the most profitable process decisions for the transport operations
considering the so far actually known planning data.

A release of one or more additional requests initiates the revision of the so far
constructed routes for the own vehicles. If needed some requests are excluded
from the routes of the own vehicles and forwarded to an LSP. A re-assignment
of requests formerly given away to an LSP to an own vehicle is impossible.

The fleet managing agent receives a certain amount as budget from the coor-
dinator for covering all expenses associated with the transport order fulfillment.
From this budget he has to pay his costs for fulfilling the necessary transport or-
ders (travel expenditures and fees to be paid for subcontracted shipments). The
difference between the overall budget and the request fulfillment costs remains
as surplus at the fleet managing agent.

A service degree is fixed in the contract agreed between the coordinator and
the fleet manager, e.g. a given percentage ptarget of the customers’ transport
demand has to be fulfilled within the customer-specified time restrictions. At a
certain time t, there are ft requests whose completion times (already realized or
scheduled) fall into the period [t− 500, t + 500] (moving time window). Among
these ft requests the number of fpunc

t requests is completed (or expected to be
completed) within the previously agreed time windows. The current process

punctuality rate pt is defined by pt :=
f

punc

t

ft
(representing the current reliability

of the transport system). When the quotient pt does not fall below the threshold
value ptarget the reliability requirement is met. This quote can be explained
as follows: Each demand comprises goods necessary to keep the production
processes at the customers’ factories running and goods used to build up security
stocks. The first kind of goods must be provided in time while the second
kind of goods can be delivered later without causing corruption on the running
production processes. In a high quality (HQ) period the requirement for the
least punctuality is fulfilled (pt ≥ ptarget) but in a low quality (LQ) period the
required punctuality rate is not attained (pt < ptarget).

For the reason of simplicity, we assume that each transport order is an
executable task and it is converted 1:1 into a transportation request and added
to the request pool of the fleet managing agent. A request instructs a transport
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resource to visit a given location during a customer specified time window.
Examples in which such a kind of request occurs are related to situations in
which a large number of small-sized packages are loaded at the beginning of a
day-trip so that packages (like spare parts) can be delivered to a large number of
customers without the necessity to re-visit a loading berth. Other applications
are the collection of used consumable items (collection of used laser or ink-
cartridges during office-hours) and the dispatching of service crews or repairmen
[8]. For a summary of further related scenarios we refer to [9]. If the number
of additionally released requests temporarily increases so high that it is not
possible to serve the additional requests immediately, then a workload peak
occurs.

Whenever an additional request corrupts the execution of the so far followed
processes a process revision (re-planning) becomes necessary. The arrival times
at some customer sites may be postponed to have the possibility to serve one or
several additional customers earlier by the same vehicle. Typically, the processes
of several transport resources have to be updated simultaneously because a re-
assignment of requests is necessary if the originally selected vehicle is not able
anymore to fulfill one or more requests in a profitable way. Subsequently arriving
requests are handled by updating the existing transportation plan by altering
the processes.

2.3. Coordination of the Consortium Partners

The two considered consortium members (agents) aspire different and to a
certain extend contradicting planning goals. While the fleet managing agent
aims at maximizing his profit by keeping costs as low as possible in each re-
planning scenario the coordinator agent targets to achieve the promised least
punctuality degree (pt ≥ ptarget) whenever a re-planning is carried out. The
strive for minimizing the operational costs restrains the fleet managing agent
from investing additional expenditures to increase the punctuality rate if this
rate has fallen below the threshold value, i.e. if the LSP charges are quite high.
For this reason, the contract between the coordinator and the service agent
must contain some specific measures in order to ensure that the service agent’s
strive for profit maximization does not lead to a negligence of the coordinator’s
requirements.

Efforts to improve the quality of processes conjointly derived by consortium
partners are subsumed under the term coordination [10]. Here, coordination
of the superior coordinator agent and of the subordinate fleet manager is nec-
essary in order to close an information gap caused by information asymmetry
among these two agents [11]. While the fleet manager maintains detailed infor-
mation about the transport processes and resources the coordinator agent has
(global) information about the system workload, expected demand or the cur-
rent punctuality of supply consortium wide processes. Coordination is achieved
by interchanging information between the two agents and using it for adjusting
processes to the current system state.

A direct way to ensure the achievement of the desired least punctuality rate
is to force the subordinate service providing agent to generate only processes
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fulfilling the least punctuality requirement (brute-force coordination). Every
process proposal which does not obey the least punctuality condition and which
leads to a lower punctuality will be rejected by the coordinator. The minimiza-
tion of costs is only addressed as a second rang desire. It is not a mandatory
planning requirement. The achievement of the least punctuality is the superior
planning goal. We refer to this configuration as the hard condition configuration
(HARD-configuration) of the investigated supply consortium scenario.

The least (minimal) punctuality rate ptarget has been agreed between the co-
ordinator and the fleet manager. An average workload has been assumed while
fixing the agreed service level ptarget. A significant increase in the number of
customer sites (workload peak) augments the process costs and therefore lowers
the profit of the transport partner. It is quite unfair that the additional expenses
are not shared with the coordinator (and thereby among all supply consortium
partners). Thus, a strict enforcement of the least punctuality discriminates the
transport partner and enforces him to leave the consortium as soon as possible
in order to prevent serious financial damage. For this reason, the HARD config-
uration is neither realistic nor applicable. We use it as reference configuration to
provide comparable results for simulation experiments. These reference results
enable an estimation of the costs necessary for ensuring the achievement of the
service goal.

In a more elaborated coordination scheme, the coordinator must provide
incentives to each service providing partner in the supply consortium if the
partners act in the sense of the common goals instead of acting only in the
sense of their own interest. For each partner, a major motivation to participate
in the supply consortium is to maintain or increase the own profit. Vice versa,
the attempt of a partner for maximizing its profit enables the supply consor-
tium controller to influence and regulate the behavior of this partner. Here, the
fleet manager is promised a higher benefit if it acts in accordance with the com-
mon supply consortium wide goals but its profit is reduced if the fleet manager
refrains from acting in the sense of the coordinator.

The main idea of the penalty configuration (PEN-configuration) is to mone-
tarily penalize the fleet manager for each request whose on-site fulfillment starts
with a delay. Thereby, this partner is motivated to fulfill as much requests as
possible on time so that the punctuality rate ptarget can be guaranteed. If a
demand peak occurs then the fleet manager freely decides whether to accept
the profit reduction or to spend more efforts to maintain or even increase the
service level. Here, the negative impacts of a workload peak are shared between
the coordinator (and therefore among all partners in the consortium) and the
fleet manager: The latter pays penalties for late arrivals but the supply chain
consortium accepts a temporarily reduced punctuality.

2.4. Dispatching Task of the Fleet-Managing Agent

A sequence of transportation plans TP0, TP1, TP2, . . . is generated reactively
at the ex ante unknown update times t0, t1, t2, . . . and each single transportation
plan is executed as long as it is not updated. In order to determine the trans-
portation plan TPi at time ti a static decision problem Pi requires a solving.
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The problem Pi represents the task of selecting the least cost transportation
plan from the set of all transportation plans available at time ti. Thus, Pi is
an optimization problem and the sequence P0, P1, . . . is an online optimization
problem representing the dynamic decision problem of the subordinate fleet
managing agent.

In the following, we propose a mathematical model Mi for each instance
Pi of this online optimization problem. A single request r attains consecutively
different states that change with ongoing time. Initially, r is known but it is not
yet scheduled (K). Then, r is assigned to an own vehicle (I, short for internal
fulfillment) or subcontracted (E, short for externalization). If the operation
at the corresponding customer site has already been started but not yet been
finished the state S (short for started request) is assigned to r. The set R+(ti)
is composed of additional requests released at time ti. Requests completed
after the last transportation plan update at time ti−1 are stored in the set
RC(ti−1, ti). At time ti, the recent request stock R(ti) is determined by R(ti) :=
R(ti−1) ∪ R+(ti) \ RC(ti−1, ti). Each request belongs at each time to exactly
one of the sets RK(ti), RE(ti), RI(ti) or RS(ti), in which the requests having a
common state are collected.

The plan updating problem Pi at time ti is as follows. Let V denote the set
of all own vehicles, Pv(ti) the set of all paths (sequence of visited sites beginning
with the position of the vehicle at time ti and ending with the central depot)
executable by vehicle v in TPi and let P (ti) denote the union of the sets Pv(ti)
(v ∈ V ). If the request r is served in a path p then the binary parameter arp is
set to 1, otherwise it is set to 0. A request r, already known at time ti−1 that is
not subcontracted in TPi−1 is served by vehicle vr. The travel costs associated
with path p are denoted as C1(p). Finally, C3(r) gives the subcontracting costs
of request r.

In order to code the necessary decisions for determining a transportation
plan in the representation Mi of Pi, we deploy two families of binary decision
variables. Let xpv = 1 if and only if path p ∈ P (ti) is selected for vehicle v ∈ V
and let yr = 1 if and only if request r is subcontracted.

7



∑

p∈P (ti)

∑

v∈V

C1(p)xpv +
∑

r∈R(ti)

C3(r)yr → min (1)

∑

p∈Pv(ti)

xpv = 1 ∀v ∈ V (2)

xpv = 0 ∀v ∈ V , p /∈ Pv(ti) (3)

yr +
∑

p∈P (ti)

∑

v∈V

arpxpv = 1 ∀r ∈ R(ti) (4)

yr = 1 ∀r ∈ RE(ti) (5)
∑

p∈Pv(r)

arpxpvr
= 1 ∀r ∈ RS(ti) (6)

pt ≥ ptarget (7)

xpv ∈ {0, 1} ∀p ∈ P (ti), yr ∈ {0, 1} ∀r ∈ R(ti) (8)

For the HARD-configuration the process-planning problem is represented by
the mathematical optimization model Mi stated in (1)-(8). The costs for TPi

are minimized (1). One route is selected for each vehicle (2) and vehicle v is
able to execute the selected path p (3). Each single request known at time ti
is either served by a selected vehicle or forwarded to the LSP (4) but a once
subcontracted request cannot be re-inserted into the path of an own vehicle (5).
An (S)-labeled request cannot be re-assigned to another vehicle or LSP (6) and
overall, the percentage ptarget of all requests must be scheduled in time (7).

The model (1)-(8) is NP-hard to solve since it represents the traveling sales-
man problem in a specific parameter setting.

∑

p∈P (ti)

∑

v∈V

(

C1(p) + C2(p)
)

xpv +
∑

r∈R(ti)

C3(r)yr → min (9)

In the PEN-configuration the punctuality constraint (7) is skipped and the
objective function (1) is replaced by the evaluation function (9) that incorpo-
rates the penalty payments C2(p) for lateness. Penalties associated with p are
summed up to C2(p) from all late customer site visits according to p. According
to (9) each late arrival at a customer’s site is penalized independently from the
fact if pt ≥ ptarget. Doing so, we have a unique quantification of lateness of the
scheduled requests. We cannot uniquely identify those late requests (among all
late requests) that finally cause the decrease of pt below ptarget. Therefore, we
use the “more strict” penalization scheme coded into (9). However, the penal-
ties summed up in (9) do not necessarily have to be accounted in complete to
the fleet manager’s budget.

Parameterizable test cases for the presented online optimization problem are
described in detail in [3].
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3. Decision Support for Dynamic Transport Process Planning

This section summarizes the state of the art for the development of decision
support systems applied to the process management in volatile environments.
A compilation of the basic principles of DSS for the management of processes
in a dynamic environment introduces this section (Subsection 3.1). Next, we
focus on the event handling by DSS (Subsection 3.2). Finally, we connect the
paradigm of rolling horizon planning paradigm with DSS (Subsection 3.3).

3.1. Automated Transport Process Control by Decision Support Systems

The purpose of using a decision support system is to assist or even automate
the setup and update of processes. According to [12], a DSS consists of three
parts: the data base management system (DBMS), the model-base management
system (MBMS) and the dialog generation and management system (DGMS).
All data previously collected and/or necessary for deriving appropriate decisions
are managed by the DBMS. The MBMS hosts formalized representations of the
decision tasks (decision models) to be used for deriving decisions in a specific
data setting. Tools for enabling the interaction of the DSS with its users are
contained and managed by the DGMS.

Figure 2 outlines the usage of a DSS for contributing to a transport process
revision. The gray-shaded area represents the environment in which a previ-
ously generated process is running. A process revision cycle is initiated by an
event occurring in the environment and disturbing the planned execution of the
current process instance (1). Immediately after the detection of the disturbing
event, an update of the planning data hosted in the DBMS is triggered (2) and
the necessary data revisions are established (3). After the necessity of a process
revision has been determined by an analysis of the altered data, the MBMS
component of the DSS is requested to instantiate a new suitable decision model
(4). The MBMS selects an appropriate decision model type and parameterizes
it using the stored planning data (5). The complete decision model is forwarded
to a decision making algorithm and one or more proposals for an update of
the process are derived using computational methods from operations research
and/or artificial intelligence (6). These proposals are handed over to the DGMS
that prepares the presentation of the proposals towards the responsible decision
making agent (7). One proposal (8) is then implemented and executed (9) until
the next process disturbing event is detected.

The components and actions (1) to (5) in Figure 2 form the model building
phase in a process revision cycle. At the end of the model building phase, a
formalized representation (the decision model) of the current decision task is
available. At the second phase of an update cycle, the components and activities
(5)-(9) are grouped to the model solving phase in which an implementable
solution of the set up decision model is identified, selected and implemented.
The MBMS (5) connects the two phases. Thus, the management of the formal
decision model plays a central role for the process control.

The model solving phase is investigated in numerous research groups that
want to speed up the solving of complex decision models. Two striking facts
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Figure 2: Process Revision Cycle in a Decision Support System

are extracted from the scientific literature about the model building subsys-
tem of DSS for the operational management of transport processes in dynamic
environments:

• Only one decision model type is maintained in the DSS. The type depends
upon the kind of requests to be served, the number of depots and the kind
of transport resources.

• There are fixed rules that describe how a new decision model instance
is parameterized with the updated planning data. These rules remain
unchanged throughout the complete running time of the DSS. They are
not changed over time or in response to an unexpected event.

3.2. Event-Handling in DSS for Dynamic Transport Dispatching

[4] propose a generic three-layer architecture for DSS used to handle dynami-
cally emerging events (cf. Figure 3) in the administration of transport processes.
Adjacent layers communicate by exchanging messages. If a layer is not able to
handle an event, it informs the next higher layer and asks for support from
there. A response to a received message is replied to the lower layer after the
message has been processed.

The lowest layer is the interface layer which hosts the event characterizer and
the instructor. If an unexpected event is detected then an event message is
sent to the event characterizer that checks whether the processes must be revised
or not. In the latter case the instructor sends an all-clear implementation
message back to the field teams (drivers and/or electronic on-board-units),
which are currently waiting for an answer from the DSS. A typical event handled
by the interface layer is the completion of a request. In the former case, the
event leads to a process corruption and a call for revision of the process is
sent to the next layer (choice layer).

In the choice layer, the verbalizer receives the call and analyzes the process
corruption caused by an event. The selector tries to remedy the corruption.
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If it succeeds then a revision message is given down to the interface layer
that broadcasts the relevant implementation message to the vehicles. A typical
example for an event to be handled by the choice layer is an occurring traffic
congestion that endangers the compliance of announced arrival times. Here,
the selector defines a new path for the affected vehicle(s) without shifting the
arrival time at a customer site out of the time window or re-assigning requests
to other vehicles. If the corrupting event causes a major corruption that cannot
be solved in the second layer then a global re-planning is triggered by sending
a re-plan query from the choice layer into the generation layer.

The generation layer only hosts the planner which derives process update
proposals. An additionally arriving request is an example for an event that
requires the call of the planner. Its update proposals are fed back in an update
message to the selector in the choice layer. If the event is handled by the choice
layer then the application of local process revisions leads to a process recovery.
In case that an event cannot be handled by the choice layer the process revision
cycle (1)-(9) given in Figure 2 is started in the generation layer. A new decision
model using up-to-date planning data is instantiated and solved. The solution
of the model is sent back to the choice layer in an update message.

3.3. Rolling Horizon Disposition and Dispatching

The update cycle (1)-(9) reported in Subsection 3.1 provides the infrastruc-
tural framework for the automatic process update if major process corruptions
have been detected. The basic principle to inject the recently acquired process
data into the running process is rolling horizon planning. A sequence of plans
S0, S1, . . . (Si is a solution of the decision model Mi of problem instance Pi) is
generated. At time ti the plan Si is derived and its realization is initiated. It
is continued with the execution of Si until, at time ti+1, additional data is re-
vealed. The plan Si is replaced by Si+1 and Si+1 is executed until it is corrupted

11



at time ti+2 by events providing additional data and so on. The solution update
is carried out if a pre-specified time point is reached [13, 14, 15, 16] or if one or
more certain events take place [17, 18, 19]. In the first case, the update of Si is
called time-triggered but in the second case the revision is event-triggered. Two
general concepts for the update of Si to Si+1 are distinguished. Rule-based up-
dating follows the hypothesis that a few basic reasoning rules are valid and that
it is possible to inductively reason the behavior in all other cases not explicitly
stated in the basic rules [20]. The a-priori-route-concept [21, 22] is an example
of rule-based updating. Additionally, update rules like MST-algorithms [19] or
cheapest insertion approaches [17] are representative examples for rule-based
reasoning. A deductive reasoning is carried out in model-based update. Here,
the set of all possible update alternatives is implicitly described by a formal-
ized problem description (the decision model Mi) and a structured scanning of
the set of alternatives leads to the desired solution. Examples of model-based
approaches include the linear programming based optimization of a traveling
salesman’s route and the solving of a mixed-integer linear programming model
of the capacitated vehicle routing problem. Typically, mathematical optimiza-
tion models are selected as decision problem representation.

4. A DSS for Online Model-Based Process Planning

We report the development and evaluation of an event-triggered automatic
model-based transport process update system. In a real-time setting event-
triggered rolling horizon disposition comes along with some disadvantages (sub-
stantial workload slows the systems response time down; if dynamism is low
then processing time is not used for further plan improvements). Since we are
not aiming at real-time decision making but want to investigate online decision
making features, these shortcomings can be ignored here.

At first, the layout of the planning system is outlined (Subsection 4.1). Next,
the experimental setup of computational simulation experiments is given (Sub-
section 4.2). Process performance indicators are defined (Subsection 4.3). Sim-
ulation experiment results are presented and discussed in Subsection 4.4.

4.1. Planning System Layout

We use the mathematical optimization model (1)-(8) as process model main-
tained by our DSS. The application of the coordination scheme HARD requires
the elimination of delayed arrivals at customer sites. In case that a solution of
the internal process model exhibits a punctuality rate pti

less than ptarget, the
solution is repaired using the procedure REPAIR() shown in Figure 4.

As discussed above there are application obstacles associated with the HARD
coordination idea discussed in Section 2 that impede the application of HARD
to align the requirements of the superior principal and the requirements of the
subordinate agent. Therefore, we also model the PEN-coordination approach.
In the PEN-configuration, the constraint (7) is skipped and objective function
(9) replaces (1).
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1. All requests r which are fulfilled unpunctually are collected in the
set S1. If S1 is empty then goto (4).

2. For each request r ∈ S1 the savings s1(r) are calculated. Here,
s1(r) is defined as the difference between the travel costs saved
by deleting r in its tour and the subcontracting costs Fr. The
requests contained in S1 are sorted in decreasing order according
to s1(r).

3. Finally, the fulfillment mode of the first request in the sorted list
(the one with the highest savings) is switched to subcontraction
and the request is deleted from the list. Goto (1)

4. The repair has been completed.

Figure 4: procedure REPAIR()

In order to generate and evaluate tentative model solutions we apply the
Memetic Algorithm (MA) comprehensively presented in [3]. The MA realizes a
hybrid search strategy consisting of a global genetic search space sampling and
a local 2-opt improvement procedure for solving the scheduling model instances
M0, M1, . . . of the online decision problem introduced in Subsection 2.

The proposed DSS has been implemented as a simulation of a multi-agent-
system on a standard PC (Intel Core2 Duo CPU, T7500 Processor 2.2 GHz,
2GB RAM, Windows XP SP3). It has been programmed in Visual C++.

4.2. Configuration

The minimum punctuality (the reference signal) to be achieved throughout
the complete simulation is set to ptarget = 0.8.

The suitability of the PEN- and the HARD-technique for integrating the
planning goals of the coordinator and the fleet manager is investigated within
several numerical simulations. An experiment (α, tech) is defined by selecting
one of the six values for the LSP-tariff levels α ∈ {1, 1.25, 1.5, 1.75, 2, 3} and com-
bining it with one of the two coordination techniques tech ∈ {HARD, PEN}. If
the tariff level α equals 1 then both request fulfillment nodes self-entry and sub-
contraction have the same costs. If α is increased then the LSP-incorporation
becomes more expensive compared to the usage of own vehicles (even if time
window violations are penalized).

We simulate each scenario (α, P, tech, ω) in three independent runs ω ∈
{1, 2, 3} starting with differently seeded initial populations. From the four
Solomon instances P ∈ {R103, R104, R107, R108} we derive the request set
R+(ti) for each instance P (ti). Overall, there are 6×2=12 experiments (α, tech)
leading to 12×4×3=144 simulated scenarios (α, P, tech, ω).

For the PEN-coordination strategy, we define the following penalization func-
tion C3(r). If the request r is scheduled in time, the penalty C3(r) is zero for the
associated single customer site, C3(r) increases proportionally up to 25 mone-
tary units for a delay of 100 time units. Further delays do not lead to additional
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penalties. Initial experiments with different penalization schemes have revealed
that infinite right shifts of requests do not occur because there are no spatially
isolated request locations in the scenarios.

The processing time for each simulated scenario is about 6 minutes in average
independently from the applied coordination technique HARD or PEN.

4.3. Observed Indicators

The punctuality rate recorded at time t within the scenario (α, P, tech, ω)

is denoted as pt(α, P, tech, ω). Let pt(α, tech) :=
1

12

3
∑

ω=1

∑

P∈P

pt(α, P, tech, ω)

denote the average punctuality observed at time t for the parameter combination
(α, tech) .

In order to study the impacts of the demand peak on the punctuality, we cal-
culate the deviation of pt(α, P, tech, ω) from the reference value p1000(α, P, tech, ω)
for all times in the observation time interval [1000, 5000] by

pt(α, P, tech, ω)/p1000(α, P, tech, ω) − 1. (10)

The largest past-peak deviation from the reference value is then calculated by
mint≥1500{pt(α,P,tech,ω)}

p1000(α,P,tech,ω) − 1. Now, the average δ(α, tech) of the largest observed

deviation from the reference values for the parameter combination (α, tech) is
defined as shown in (11).

δ(α, tech) :=
1

12

3
∑

ω=1

∑

P∈P

(

mint≥1500{pt(α, P, tech, ω)}

p1000(α, P, tech, ω)
− 1

)

. (11)

Let T below
α,tech denote the first time in which pt(α, tech) falls below ptarget and

T heal
α,tech := min{t ∈ [1000, 5000] |6 ∃ l ∈ [t, 5000], pl < ptarget} referring to the time

in which an HQ state is finally re-achieved by pt(α, tech). We define

π(α, tech) :=
T heal

α,tech − T below
α,tech

4000
(12)

determining the percentage of LQ periods within the observation interval [1000, 5000].
Throughout the simulation time, we have recorded the percentage of sub-

contracted requests in qt(α, P, tech, ω). These values have been summarized
in

qt(α, tech) :=
1

12

3
∑

ω=1

∑

P∈P

qt(α, P, tech, ω) (13)
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Figure 5: Development of the punctuality pt(α, PEN)

for each setting (α, tech). The observed maximal subcontraction rate is defined
by σ(α, tech) and calculated according to (14). It indicates the exploitation of
the subcontraction fulfillment mode.

σ(α, tech) := max
t≥1500

qt(α, tech). (14)

4.4. Results

In contrast to the results already published in [2] for scenarios with α = 3,
we here analyze the impacts of variations of α starting from α = 1 up to α = 3
with respect to the previously defined performance indicators. Especially, we
are interested in the growth of the gap between the indicator values observed in
the PEN- and the indicator values observed in the HARD-experiments in case
that α increases.

The PEN-approach can guarantee to keep the threshold of 80% for the av-
erage punctuality only for α = 1 (Figure 5). The punctuality even increases
just after the demand peak is over (t ≥ 1800) because the routes of the own
vehicles are compiled from a larger number of available requests. So, a higher
number of matching requests is found. If the tariff level α exceeds 1.25, the LSP-
incorporation becomes more and more unattractive. Its actual costs are getting
higher than the travel costs plus penalty payments. As a consequence, the usage
of own trucks is preferred although it does not come up with an on-time service.
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Table 1: Maximal punctuality deviation δ(α, tech)

tech α

1 1.25 1.5 1.75 2 3

δ(α, tech) HARD 3.6% 0% 5.3% 4.4% 4.2% 3.5%
PEN -1.0% -1.8% -7.8% -13.6% -22.0% -38.8%

π(α, tech) HARD 0% 0% 0% 0% 0% 0%
PEN 0% 60.0% 70.0% 97.5% 82.5% 97.5%

σ(α, tech) HARD 22.2% 14.9% 10.0% 8.0% 7.2% 8.0%
PEN 21.4% 15.5% 10.0% 5.8% 5.1% 4.1%

Overall, the HARD-configuration outperforms the PEN-configuration. We
first analyze the maximal decrease of the punctuality rate pt. The evolution of
this parameter is completely different for the two controller configurations. If
PEN is used then the maximal decreasing rate of pt falls from -1.0% (α = 1)
down to -38.8% (α = 3) as it can be seen in Tab. 1. In contrast, we observe
that a tariff level increase hardly influences the punctuality if the consortium is
organized according to the rules of HARD. Here, no significant decrease of pt

is detected. The slight increase of the punctuality during the acute peak man-
agement is caused by the fact that the increased number of available requests
enables an improved compilation of routes without being endangered to achieve
a too low punctuality.

We now draw our attention to the appearance of LQ-situations. Clearly,
it is π(α, HARD) = 0 for all investigated tariff levels α. In addition, the
HARD-configuration is able to slightly enlarge the punctuality compared to the
referential value at time t = 1000. The additional knapsack-constraint enables
the memetic search to evaluate different separations of the request portfolio into
self-fulfilled and subcontracted requests. Since the constraint (7) ensures that
at least 80% of the requests are in time, no penalty costs contradict the route
composition. Due to the parameter sensitivity of the punctuality pt(α, PEN) to
tariff level increases, the percentage π(α, PEN) of LQ-situations increases from
π(1, PEN) = 0 up to π(3, PEN) = 97.5%. Therefore, a short-time demand
peak has a long lasting negative impact on the punctuality of the service.

The maximal rate σ of subcontracted requests decreases with increasing
tariff level α. For comparable freight tariffs (α ≤ 1.5) both configurations
behave similarly with respect to the subcontraction of requests. The maximal
externalization rate σ(α, tech) is nearly the same in both cases for each α ≤ 1.5.
However, if the tariff levels climb further then σ(α, HARD) remains stable at
≈ 8% while σ(α, PEN) falls further down to ≈ 4%.

A reason for the bad performance of the PEN-configuration is its non-obser-
vance of the reliable subcontracting services if its costs are significantly higher
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than the sum of self-fulfillment costs and penalty payments. For α = 1 the max-
imal percentage of subcontracted requests is σ(1, PEN) = 21.4% but for large
tariff levels, this portion is significantly reduced down to σ(3, PEN) = 4.1%.
In the same situation, the HARD resource allocation strategy identifies the ex-
ternalization as the preferred mode for nearly the double number of requests
(8.0%).

5. Enhanced DSS with Image Modification

In this section, we propose a structural extension of the process control
system introduced in the previous section. The motivation is to equip a DSS to
manage even crisis situations like workloads in which state-of-the-art systems
are not able to maintain a sufficiently high process quality. Image Modification
(IM) [23] is used to modify the maintained process model used to update existing
models. The objective function or the constraints of the maintained model are
altered and changes of the model are made after having evaluated the current
process performance. From the perspective of the supply chain IM enables the
alignment of the decision goals of the supply consortium coordinator and of
the behavior of the fleet manager. Thus, IM enables the coordination of the
coordinator agent and of the fleet managing agent in the consortium.

In case that an event disturbs a process, the three-layer-model introduced in
Subsection 3.2 is invoked. The type of the DSS response depends on the severe-
ness (or impacts) of a disturbing event. A considerable event is managed without
incorporating the process model but according to some pre-given process update
rules (e.g. a delayed arrival at a customer side without deferments of subsequent
arrivals). Only an event of major significance leads to the re-call of the process
planner (the process controller) with the aim to generate a process control signal
which enables the update of the corrupted process (e.g. the arrival of additional
requests that require a re-compilation of the tours and re-sequencing with the
routes). However, not all events can be successfully managed by the proposed
event handling as we have seen by means of the example of a load peak in the
previously reported simulation experiments. Here, the planner is not able to
return a process update message that implies a process update coming along
with a sufficiently high punctuality even if PEN is applied. If such a threaten-
ing event is detected IM intervenes into the regular DSS-process-management
cycle (1)-(9) shown in Figure 2 and IM varies the internal process model of the
process with the goal to enable the generation of a feasible process update.

In order to enable the DSS to handle such a threatening event and thereby
invoking an IM intervention, we extend the three-layer model of Séguin et al.
(cf. Subsection 3.2) and add a fourth event handling layer. This additional layer
(coordination layer, cf. Figure 6) is invoked by the third layer if a threatening
event has appeared that cannot be handled in the current configuration (e.g.
solving the mathematical process model) of the planning system. The third layer
is extended by an error signal generator that compares the actual system state
(pt) with the desired state (pt ≥ ptarget) and maps the detected deviation into
a numerical value (the error signal). This value is forwarded into the fourth
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Figure 6: Four-layer event handling model for a process management system (the proposed
extensions are shown in bold)

layer in which a model controller transforms the error signal into decision model
modification instructions (model control signal). This signal is sent back
into the generation layer. The planner is reconfigured by replacing the so far
used process optimization model by the re-parameterized process optimization
model. Then, the required process re-planning is carried out using the re-
adjusted model (the planner-component). The application of IM enables the
DSS to automatically select a suitable process update model out of the MBMS.

For the considered online decision situation the error signal is the deviation
perror

t := −min{pt−(ptarget +0.1), 0} of the current process punctuality pt from
the reference punctuality ptarget. In order to prevent a reduction of pt below
ptarget an error is already determined if the punctuality falls below ptarget +
0.1. An intervention strategy determines how the so far used decision model is
updated with respect to perror

t .

h(perror
t ) :=







0, perror
t ≤ 0

1, perror
t ≥ 0.2

5 · perror
t , 0 < perror

t < 0.2
(15)

An intensity function h scales the error signal into the interval [0; 1].
The h-value determines the applied percentage of the possible interventions.
We use the piece-wise linear intensity function given in (15) that is zero if
pt ≥ ptarget + 0.1 (no error, no intervention). If pt ≤ ptarget − 0.1 then the
h-value is 1 which means that all possible model modifications are applied. If
pt decreases from ptarget + 0.1 down to ptarget − 0.1 then the h-values increase
proportionally from 0 up to 1, so that an appropriate portion of the available
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process decision model modifications is applied.
Existing constraints of the mathematical update model are temporarily sharp-

ened or relaxed according to the current h-value. To apply the Constraint Set
ADaptation (CSAD) intervention strategy the constraint (5) has been re-
placed by the constraint (16). The set Rintervention(h(perror

t )) is adjusted before
the next re-planning is performed. From the set R+

t of recently arrived but so far
unscheduled requests the portion h(perror

t ) is put into Rintervention(h(perror
t ))

according to a so-called request selection rule SEL: Rintervention(h(perror
t )) :=

H(h(perror
t , R+

t , SEL). A detailed description and evaluation of the CSAD-
intervention is given in [2].

yr = 1 ∀r ∈ RE(ti) ∪ Rintervention(h(perror
t )) (16)

Another possibility to adjust the maintained optimization model is to vary
the objective function of the process update model. The objective function (17)
replaces (1). This objective function does not determine the actually incurred
costs of the generated transportation plan but the fictitious costs, which are
actually accounted to the budget available for the fleet manager within the
consortium [3]. The service agent aims at minimizing this amount in order to
maximize its own remaining profit.

λt ·
∑

p∈P (t)

∑

v∈V

(

C1(p) + C2(p)
)

xpv + ·
∑

r∈R(t)

C3(r)yr → min (17)

The parameter λt is adjusted to perror
t by setting λt := 1 + h(perror

t ) · α. If
the error signal is zero then λt equals one. As soon as perror

t starts growing, the
parameter λt is increased until it finally reaches the value 1 + α which makes
the subcontraction of additional requests more attractive then the integration
of additional requests into existing routes. Since subcontracted requests are
fulfilled timely, a further decrease of pt is prevented.

Since the variation of λt changes the search trajectory of an exact or heuristic
model solver through the search space (described by the constraint set), we call
the feed-back triggered modification of (17) Search Direction ADaptation
(SDAD). A detailed description of the application of the SDAD-based model
controller can be found in [3].

Beside the limitation of the adaptation of the objective function or the con-
straint set a third adaptation opportunity comprises the simultaneous variation
of the objective function and of the constraint set. Before the next process up-
date is carried out, both the constraint set as well as the objective function are
adjusted to perror

t . We refer to this hybrid adaptation strategy as (SDCS).
The pseudo-code of the SDCS-based process update function is presented in

Figure 7. Both the so far used process decision model and the so far implemented
process are provided for the update (1). The process update time is fetched (2)
and the additionally arrived requests are collected (3). In step (4) the current
process punctuality is calculated. Next, the error signal is determined (5). The
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1. function update process SDCS(Mold, Procold);

2. t := fetch current time();

3. R+
t := get new requests();

4. pt:= get current process punctuality(Procold);

5. perror
t := −min{pt − ptarget, 0};

6. (λt, R
intervention
t ) := (1 + h(perror

t ) · α, H(h(perror
t ), R+

t , SEL));

7. Mnew:=update model(Mold, λt, Rintervention
t );

8. Procnew :=solve(Mnew);

9. return(Mnew , Procnew);

10. end;

Figure 7: Pseudo-code representation of the process update function using SDCS

model modifications are fixed in step (6) and the new decision model is defined
(7). Now, the process update is generated by solving the new decision model
(8) and the new process decision model as well as the new process is returned
to the DSS-cycle (9).

The application of IM demonstrates the superiority of the coordinator over
the fleet manager. However, this relationship can be beneficiary for both part-
ners on the longer perspective. Although the interventions are myopically nega-
tive for the fleet manager (profit reduction), they ensure that the performance of
the overall consortium is protected (high process reliability). The fleet manager
benefits from this protection because it is part of the consortium. If another
subordinate partner of the consortium is affected from coordinator interventions
(like a production partner) then the fleet manager benefits from coordinator in-
terventions if they prevent the process collapse.

6. Experimental Evaluation of the Extended DSS

We have repeated the experiments reported in Section 4. Now we apply the
three model adjustment strategies SDAD, CSAD and SDCS using the LSP-tariff
level α = 3. In these scenarios, a workload peak impacts most severely as shown
in Table 1. Again, the averaged scenario processing time is 6 minutes.

The development of the punctuality pt of all five investigated strategies is
printed in Figure 8. Two details are striking. At first, pt(SDCS) never leaves
the system development corridor. Only a slight decrease of pt(SDCS) is ob-
served after the peak of incoming demand/incoming requests is over. Secondly,
SDCS outperforms not only PEN but also SDAD and CSAD with respect to
the maintained punctuality. From these results, we conclude that the simulta-
neous application of both model adjustment strategies is more suitable than the
application of one of the two strategies CSAD or SDAD.

All three adaptive strategies (CSAD, SDAD, SDCS) decide a significantly
higher externalization quote qt than the static strategies (HARD, PEN) dur-
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Figure 8: Development of the punctuality pt(exp)

ing the experiments. SDCS is able to identify a higher percentage qt(SDCS)
of requests to be given away to an LSP immediately after the demand peak
is over than SDAD does (Figure 9). However, compared to CSAD, the per-
centage of requests selected by the coordinator for being subcontracted in the
aforementioned period is lower (qt(SDCS) ≤ qt(CSAD)). This means that the
analytical capabilities of SDCS to identify portfolio incompatible requests are
improved compared to CSAD. However, compared to SDAD, the strategy SDCS
demonstrates a stricter and more assertive behavior: SDCS identifies more in-
compatible requests than SDAD, so that a higher percentage of requests are
subcontracted if SDCS is applied.

An offline process quality and reliability assessment of SDCS uncovers that
the hybrid adaptive strategy SDCS outperforms PEN and the two “individual”
adaptive strategies SDAD and CSAD. On the other hand, it turns out that the
quality gap between the HARD strategy and the hybrid adaptive strategy is
closer than the gap between HARD and SDAD or HARD and CSAD respec-
tively.

From the results compiled in Table 2 we learn that the relative decrease
δ(SDCS) of pt(SDCS) is significantly smaller than the relative punctuality rate
decrease δ(PEN). In addition, the relative decrease of the punctuality in the
SDCS-experiments is less than the relative punctuality rate decrease δ(CSAD).
The relative decrease δ(SDAD) is only slightly less than δ(SDCS).

Only HARD and SDCS ensures that no LQ-situations occur. All three
other strategies (PEN, SDAD and CSAD) are not able to guarantee to keep the
punctuality rate pt above 80% throughout the complete simulation experiments.

Finally, we state that SDCS leads to the highest maximal externalization
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Figure 9: Percentage qt(exp) of externalized requests in the schedule generated at time t

quote qt(·) among all five applied strategies. Although SDCS combines SDAD
and CSAD, the observed maximal externalization quote σ(SDCS) does not fall
between the quotes σ(SDAD) and σ(CSAD) but it is significantly higher than
σ(SDAD) and even higher than σ(CSAD).

Table 2: Value of the indicators for the offline process quality performance

exp
HARD PEN SDAD CSAD SDCS

δ(exp) 3.5% -38.8% -5.6% -9.5% -5.79%
π(exp) 0% 97.5% 16.7% 15.0% 0%
σ(exp) 8.0% 4.1% 14.5% 15.2% 15.9%

Table 3 consolidates the achieved cumulated costs (c5000), the cost increase
compared to the HARD-experiments (γ5000) and the contributions of the three
cost drivers, which are travel costs (c̄travel

5000 ), penalty payments (c̄pen
5000) and LSP-

charges (c̄ext
5000). The reduced marginal costs of a request finally leads to a

decrease of the cumulated request fulfillment costs c5000(SDCS) of SDCS com-
pared to the costs observed for the CSAD-configured scenarios. A reduction
from c5000(CSAD) = 82696.6 to c5000(SDCS) = 78350.8 money units is ob-
served. However, the application of SDAD leads to significantly less costs than
the application of SDCS.

SDCS exhibits the least portion of travel costs ctravel
5000 among all five strate-

gies. Only 37.6% of the total sum of expenditures are used to cover the distance-
related expenses of the own fleet. At the same time, SDCS causes the least
penalty expenditure percentages among the investigated approaches (2.7%). On
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the other hand, SDCS comes along with the highest portion of LSP-charges. In
the experiments, 59.7% of the total costs are used to entrust LSPs with the ful-
fillment of incompatible requests. This value is maximal among the five adaptive
strategies.

Table 3: Cumulated costs and contributions of cost drivers
exp

HARD PEN SDAD CSAD SDCS
c5000(exp) 56301.5 55748.3 64225.6 82696.6 78350.8
γ5000(exp) – -1.0% 14.1% 46.9% 39.2%

c̄travel
5000 (exp) 81.1% 84.5% 44.4% 40.7% 37.6%
c̄pen
5000(exp) 3.6% 12.0% 3.8% 3.6% 2.7%

c̄ext
5000(exp) 15.4% 3.5% 51.8% 55.7% 59.7%

7. Conclusions

We have presented recent research about DSS-improvements for processes
running in a volatile environment that are managed by two decision making units
(forming a supply consortium): a superior coordinator and a subordinate fleet
managing agent. The research hypotheses stated in the report’s introduction
have been verified.

Within computational simulation experiments we have first approached the
limits of model-based DSS applied in a volatile process environment: a collapse
of the process punctuality caused by a short but severe workload peak is pro-
voked. These simulation results have revealed that the interests of the superior
supply chain coordinator cannot be sufficiently integrated into the DSS. The
reasons for this bad performance of the DSS have been analyzed and it has
turned out that coordination between the acting agents is not possible using a
state-of-the-art DSS. It has been revealed that significant changes of the plan-
ning situation (the temporal scarceness of resources) have not been reflected
into the formalized problem representation (process model) maintained by the
DSS because the superior coordinator that knows about the varied planning
situation has not been part of the DSS.

To remedy this shortcoming of a DSS we have proposed to improve the
MBMS-component of the DSS by adding a component that emulates the be-
havior of the superior consortium coordinator. This component adjusts the
maintained formal process model to a varied process environment so that un-
expected planning situation variations can now be reflected into the process
model. We have defined and evaluated the proposed extension for the inves-
tigated dynamic vehicle routing problem. Strategies to adjust the objective
function and/or the constraint set of the maintained decision model have been
set up and tested. We have been able to show that the enhancement of the DSS
by coordination issues leads to a significant increase of the process quality even

23



after the appearance of a workload peak. Thereby, we have verified our second
research hypothesis.

Future research regarding enhanced DSS will follow two directions. On the
one hand, we will analyze the applicability of multi-dimensional performance
metrics for the transport scenario. Here, the major challenge is the consol-
idation of concurring or even contracting feedback signals into an applicable
intervention directive. On the other hand, we will transfer the idea of integrat-
ing coordination-issues into DSS to other application areas in order to evaluate
the general applicability of the proposed concept.
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