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The paper investigates an online version of the vehicle routing problem with time windows, in which
additionally arriving requests cause the revision of so far followed routes and schedules. An extended
online optimization framework is proposed, which automatically adapts to problem variations and en-
ables the explicit consideration of up-to-date knowledge about the current performance of the controlled
system. Actually, we use the mean punctuality observed in the transportation system to adjust the ob-
jective function utilized for solving the next decision problem instance. The search is guided toward least
cost solutions coming along with high punctuality. We prove the applicability of this approach within
comprehensive numerical experiments.
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1. Introduction

The supply chain of a product describes the sequence of activ-
ities to be carried out in order to create the desired output from
one or several inputs factors. Supply chain planning (SCP) aims at
achieving the highest possible efficiency of a supply chain by coordi-
nating and consolidating the necessary material flows ("processes'')
so that economies of scale are exploited to the largest possible
extent.

Recent trends in the management of supply chains compromise
the successful application of existing concepts for computational
planning support.

• The ability to consider unexpected events in an ad hoc fashion is
propagated as significant competitive advantage. The continuous
incorporation of recent problem data requires a continuous plan
revision.

• The partners forming the supply chain are not willing to give
up the responsibility and self-reliance for the material flow
decisions in their part of a supply chain. Consequently, the cen-
tralized supply chain wide top-down material flow determina-
tion and the goals of the incorporated partners are sometimes
contradicting.
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Contracts between supply chain partners are fixed for severalmonths
and must consider both the responsiveness of the involved partners
to dynamics (e.g. demand variations and peaks) and the partners'
autonomy in the operational deployment planning. Although a sup-
ply chain is built by independent partners, one of them, the supply
chain coordinator is dedicated and entitled to persuade the indepen-
dent partners to behave and act in the sense of the superior supply
chain goals instead of the subordinate partner's aims.

Computer-supported decision making is necessary for all
supply chain partners. The definition of a suitable mathematical
decision model is a prerequisite for the successful application of
automatic decision making tools like optimization algorithms. How-
ever, the fine-tuning of such a model is a sophisticated task that
typically requires some trial-and-error runs in order to identify the
best parameter setting. Solving a concatenated sequence of decision
problem instances is referred to as online optimization. The defini-
tion and the solving of a new instance are triggered by events that
compromise the realization of the so far optimal solution. There is no
time to experiment on the right parameters for the decision model
of the new problem. Here, the right parameters have to be adjusted
automatically.

Within this article, we investigate the impacts of different con-
figurations for the interaction between the supply chain coordinator
and a transport-providing partner in a given supply chain. We ana-
lyze the implications of different intervention rights that enable the
coordinator to bias the planning decisions of the transport partner
by adjusting relevant decision model parameters. We show that a
performance-oriented adaptation of the transport partner's decision
logic has positive impacts on the overall supply chain reliability.
An extension of the well-established online decision making frame-
work is proposed. It enables a planning system of the coordinator to
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detect supply chain performance variations and to implement
autonomously the necessary decision model adaptations in the
planning system of the subordinate transport partner. Numerical
simulation experiments are reported in order to assess the proposed
extension.

Section 2 introduces the investigated problem. Section 3 re-
ports the results of numerical simulations using the pure online
decision making framework without performance feedback. Section
4 presents the concept for automatic decision model adaptation.
Section 5 reports results of comprehensive numerical experiments.

2. Vehicle deployment planning problem with uncertain demand

We introduce the investigated supply chain setting in this section.
Related scientific literature is compiled in Section 2.1. The supply
chain layout is described in Section 2.2. Three configurations for
the interaction between the coordinator and a transport partner are
described and motivated in Section 2.3. A model for the deployment
problem of the transport partner is presented in Section 2.4. The
derivation of artificial testcases used in the simulation experiments
is explained in Section 2.5.

2.1. Literature

A major strategic (long-term) decision task in SCP is the compo-
sition of a portfolio of adequate partners cooperating in a value cre-
ation project. Some partners are selected from this portfolio to agree
mid-term contracts describing the rights and responsibilities of each
partner for the management of a single supply chain project. A typi-
cal topic is the agreement about the provided resources and capaci-
ties as well as the performance and refunding [1]. In the short-term
planning, the next completed tasks are selected, tasks are assigned
to resources (persons or machines) and their processing sequences
are determined for each resource.

Fleischmann et al. [1] identify the ability to handle uncertain-
ties as the most important competency in the planning of logistic
activities. Two generic methodological approaches for dealing with
decision problems associated with known or expected incomplete-
ness and inaccuracy of data are mentioned in the scientific literature.
A single deciding strategy derives decisions merging the incomplete
data ignoring that additional data might become known later on. If
a decision is made it is tried to keep the necessary modifications of
the once made decisions as small as possible. A typical representa-
tive in transportation planning is given by the a priori route concept
[2]. An online solving strategy allows and emphasizes the revision of
(all) previously made decisions with the goal to derive the best de-
cision for the actual problem. Consequently, a sequence of decision
problems (a sequence of instances) has to be solved consecutively.
Such a sequence is called a dynamic decision problem [3]. In rolling
horizon planning [4], the revision times are fixed and known in ad-
vance but in an event-oriented planning [5], a decision revision cycle
in triggered by pre-specified events whose occurrence times cannot
be anticipated. In online traveling salesman problems [6], in online
vehicle routing problems [7] and in pickup and delivery problems
[8], uncertainty is typically caused by the nescience about future
transport requests.

The research on dynamic decision problems and their manage-
ment with online solution strategies follows two directions. First,
research on competitive analysis [9,10] investigates algorithmic as-
pects of decision revision. In particular, algorithms are searched that
keep the additional computational efforts caused by the need for
re-planning on a low level. Second, the modeling of the dynamic de-
cision problems is a focal point of the research. Here, the incorpora-
tion of additional data into the formal decision models reflecting the
changed decision situation is addressed. Static rules for updating the

so far used model instance are investigated in [9,10]. Wasserburger
[11] proposes to define the next instance with respect to the current
time of day.

A performance-based re-adjustment of a formal problem repre-
sentation in order to adapt automatically the representation to the
changed real world equivalence has received only minor attention
so far. Arnold et al. [12] survey corresponding approaches for opti-
mizing a compiler on a virtual machine and S̆egvic̀ et al. [13] apply
a reformulation approach in specific software to retrieve informa-
tion from pictures (computer vision). Gutenschwager et al. [14] and
Gutenschwager [15] propose a concept, which enables the definition
of a new (and potentially revised) objective function to be used only
for representing and solving the next instance of a dynamic planning
problem.

2.2. Transport request fulfillment in a supply chain

Fig. 1 outlines the order fulfillment in a supply chain and demon-
strates the role of each partner. Customers express their demand
in terms of external orders submitted to the supply chain coordi-
nator. This coordinator receives the external customer orders and
overtakes the responsibility for their reliable fulfillment [16,17]. The
coordinator splits each customer order into the necessary internal
purchasing, production, distribution (transport), and retailing tasks.
Tasks associated with different customer orders are combined into
internal purchasing, production and transport requests. Then, each
department involved in the supply chain is instructed to execute the
specified requests according to their competencies in order to con-
tribute to the fulfillment of the customer orders.

The supply chain including the coordinator as well as each de-
partment is considered as a group of agents who cooperatively ful-
fills a set of tasks (the external customer orders). None of the agents
is able to fulfill the complete tasks without the support of the oth-
ers. The coordinator agent has no knowledge, resources and abili-
ties, to setup and execute the material flow processes, while neither
the purchasing agent nor the production agent nor the distribution
agent is able to acquire customer orders.

In this contribution we investigate formal methods to support the
interactions between the supply chain coordinator and the partner
who is providing distribution services (transport partner). The coor-
dinator generates streams of internal transport requests from cus-
tomer demands and the distribution partner has to ensure that the
required physical movements are executed respecting service guide-
lines previously agreed in a cooperation contract. Special attention
is dedicated to maintain a high reliability level even if spontaneous
workload peaks appear.

2.3. Compared supply chain configurations

The main task of the supply chain coordinator is to ensure that
the cooperative actions of the independent partners in the supply
chain accord with superior supply chain wide goals stated in the
directives for the cooperation. In this investigation, the achieve-
ment and maintaining of a least transport process punctuality rate of
ptarget is agreed as the transport partner's contribution to the over-
all supply chain wide goals. Typically, a punctuality rate ptarget <1
is agreed because the hedging of the complete risk caused by the
uncertainty of future demand causes extremely increasing marginal
costs [18].

As long as this threshold is achieved, the transport partner might
aspire its own benefit without explicitly considering any supply
chain wide service quality goals. Uncontrollable external events, es-
pecially workload peaks, endanger the achievement of the agreed
service level. As soon as the observed punctuality rate runs into dan-
ger to fall below the specified threshold or if it even has fallen below
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Fig. 1. Customer transport demand fulfillment in a supply chain.

then a coordinator intervention into the deployment planning of the
transport partner becomes necessary.

Depending on the agreed contracts, the coordinator is provided
with different opportunities to intervene into the deployment deci-
sions of the transport partner in order to ensure the achievement of
the supply chain wide goals. In order to analyze the impact of dif-
ferent configurations of the interactions between the supply chain
coordinator and the transport partner, we distinguish three differ-
ent configurations. Every configuration represents a strategy used by
the coordinator to maintain or immediately recover the punctual-
ity rate ptarget of the transport processes even in extreme workload
peak situations.

2.3.1. Reference configuration
The direct way to ensure the achievement of the desired least

punctuality rate is to force the service provider to generate processes
fulfilling the least punctuality requirement. Every process proposal
which does not obey the least punctuality condition and which leads
to a lower punctuality will be rejected by the coordinator. The min-
imization of costs is only addressed as a second rank desire but not
as mandatory planning requirement. The achievement of the least
punctuality is the superior planning goal. We refer to this configura-
tion as the hard condition configuration (HARD-configuration) of the
investigated supply chain scenario. The decision task of the transport
partner is a covering problem.

The least punctuality rate has been agreed between the coor-
dinator and the transport-providing partner. Therefore, an average
workload has been assumed while deriving the agreed service qual-
ity. A significant increase in the number of customer sites (workload
peak) augments the process costs and therefore lowers the profit of
the transport partner. It is quite unfair that the additional expenses
are not shared with the coordinator (and thereby among all supply
chain partners). Thus, the strict enforcement of the least punctuality
discriminates the transport partner and enforces him to leave the
cooperation as soon as possible in order to prevent serious finan-
cial damage. For this reason, the HARD configuration is not realistic.
We use it as reference configuration to provide comparable results
for simulation experiments with sufficiently high profitability rates.
These reference results enable an estimation of the costs necessary
for ensuring the achievement of the service goal.

2.3.2. Penalization of late arrivals
Actually, the coordinator must provide incentives to each partner

in order to act in the sense of the common goals instead of acting only
in the sense of its own interest. For each partner, themainmotivation
to contribute to the supply chain is to maintain or increase the own
profit. Vice versa, the strive for a profit maximization enables the
supply chain controller to influence and regulate the behavior of a
partner. The partner gets a higher benefit if it acts in accordance

with the common supply chain wide goals but its profit is reduced
if the partner acts contrarious.

The supply chain coordinator receives charges paid by the cus-
tomers for the fulfillment of the customer orders. Using the sum of
earned charges, budgets are funded that are used to cover the ma-
terial flow process costs specified by the service center agents. In
order to stimulate a partner agent to determine processes of highest
efficiency, the difference between the budget and the process costs
remains in the service center as its gain (profit). The main idea of the
penalty configuration (PEN-configuration) is to penalize the trans-
port partner for each request whose on-site fulfillment starts with
delay. Thereby, this partner is motivated to fulfill as much requests
as possible on time so that the punctuality rate ptarget can be guar-
anteed. If a demand peak occurs then the service-providing partner
can freely decide whether to accept the profit reduction or to spend
more efforts to maintain or even increase the service level. Here, the
negative impacts of a workload peak are shared between the coor-
dinator (and therefore among all partners) and the transport part-
ner: The latter pays penalties for late arrivals but the supply chain
consortium accepts a temporarily reduced punctuality.

2.3.3. Adaptive accounting schemes
The partner responsible for the transport decides about the trans-

port request fulfillment. High quality (HQ) services (express courier
or individual same-day delivery) are quite reliable but very costly.
On the other hand, standardized request execution processes are
cheaper due to the realization of economies of scale but cannot fulfill
individual requirements. In case that the punctuality rate is higher
than ptarget the transport partner's expenses are refunded similarly
for each fulfillment mode (individual service and consolidated trans-
port) and accounted to the budget designated for covering the trans-
port costs. However, if the punctuality rate is at risk to fall below
ptarget or has even fallen below this threshold, then expenses for the
reliable services are reimbursed at a higher percentage or even com-
pletely but expenses for the cheap and unreliable transport services
are only partly covered.

An accounting scheme describes how expenses of a subordinate
agent are accounted to the given budget. The main idea of the ac-
counting scheme adaptation is to define a rule that determines the
refunding of the transport partner only taking into account its re-
liability and not its actually incurred costs. The accounting scheme
is adapted to the currently observed punctuality rate. Consequently,
if the transport partner's performance varies the rule for refunding
the transport partner's expenses also varies.

Each participating agent decides independently about the plan-
ning of its processes (resource deployment, etc.) but the coordina-
tor agent (as the superior agent) modifies the accounting scheme in
order to make the exploitation of expensive express services more
attractive for the subordinate agent because the additional expenses
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are not or only partly charged to his budget. Consequently, the pro-
cess determination carried out by the subordinate agent is biased by
the coordinator agent by means of the accounting scheme variation.
This forces the subordinate agents to adopt its process decisions to
the guidelines of the superior coordination agent.

The application of an accounting scheme in a process revision
adapts the decision making process of the transport partner (the
benefit of a specific decision depends upon the currently applied
accounting scheme). We refer to this strategy as Search Direction
ADaptation configuration (SDAD-configuration).

2.4. The transport partner's planning problem

The coordinator receives customer demand continuously over
time. Every �t time units he generates internal requests from the
customer demand and forwards the requests to the transport part-
ner. The transport partner has to incorporate the additional requests
into the so far followed transport processes. The process-planning
problem of each service partner is therefore a dynamic decision
problem, which is solved in online fashion, e.g. a process revision is
carried out in event-driven fashion in response to the additionally
submitted requests. Consequently, a sequence of concatenated deci-
sion problems is stated. Each instance is formulated as an optimiza-
tion model. Solving such a model means to find the most profitable
process decisions for the transport operations. Each instance repre-
sents a generalized common vehicle routing problem with time win-
dows [19]. It is the multi-vehicle version of the traveling repairman
problem [20], which is additionally extended by subcontraction. The
transport partner's dynamic decision problem has been previously
formulated and investigated in [21].

2.4.1. Subcontracting
The transport partner compiles and schedules requests in routes

executed by the vehicles belonging to its own available fleetV (self-
fulfillment by guided vehicles [21]). However, requests that do not
fit into the routes of the guided vehicles are forwarded to a logis-
tics service provider (subcontraction) [22,23]. The logistic service
provider (LSP) is a trustful partner of the transport partner and is
paid for the reliable fulfillment of the subcontracted requests. It re-
ceives a certain previously known amount of payment for this ser-
vice and ensures the reliable fulfillment of these requests (similarly
to an individual express service request fulfillment). A subcontracted
request remains unconsidered while constructing the routes for the
own vehicles. If a request has been subcontracted then this decision
cannot be revised later while solving forthcoming decision problem
instances.

2.4.2. Uncertain demand
Only a subset of all requests is known to the planning authority at

the time when the decision concerning subcontracting is made and
the routes for the own vehicles are compiled. The planning authority
decides about subcontracting or self-fulfillment of a request as soon
as it becomes known. A release of one or more additional requests
initiates the revision of the so far constructed routes for the own
vehicles. If needed, some requests so far planned for self-fulfillment
are excluded from the routes of the own vehicles and forwarded to
an LSP. The arrival times at some customer sites may be postponed in
order to serve one or several additional customers earlier by the same
vehicle. Furthermore, the number of additionally released requests
temporarily increases unpredictably, so that workload peaks occur
from time to time.

2.4.3. Soft time windows
Lateness at a customer site is possible but causes penalty costs.

Let f ′
t be the number of requests fulfilled (completed) during the

interval from t−t− until t and let f ′′
t be the number of requests whose

completion time is later than t but not later the t + t+. Although a
particular request is allowed to be late, it is required that the portion
ptarget of the ft := f ′

t + f ′′
t requests is served timely. Let f

comp
t be the

number of the requests completed timely within the last t− time
units and let f

expec
t be the number of punctually scheduled requests

within the next t+ time units, then pt := (f
comp
t + f

expec
t )/ft �ptarget

has to be achieved. In a HQ period the requirement for the least
punctuality is fulfilled (pt �ptarget) but in a low quality (LQ) period
the required punctuality is not attained anymore (pt < ptarget).

A transportation plan describes how the known requests are ful-
filled. Subsequently arriving requests are accepted and handled by
updating the existing transportation plan. A sequence of transporta-
tion plans TP0, TP1, TP2, . . . is generated reactively at the ex ante un-
known update times t0, t1, t2, . . . and each single transportation plan
is executed as long as it is not updated.

A single request r attains consecutively different states. Initially, r
is known but it is not yet scheduled (K). Then, r is assigned to an own
vehicle (I, short for internal fulfillment) or subcontracted (E, short
for externalization). If the operation at the corresponding customer
site has already been started but not yet been finished the state S
(short for started request) is assigned to r. The set R+(ti) is composed
of additional requests released at time ti. Requests completed after
the last transportation plan update at time ti−1 are stored in the
set RC(ti−1, ti). The new request stock R(ti) is determined by R(ti) :=
R(ti−1) ∪ R+(ti)\RC(ti−1, ti). Each request belongs at each time to
exactly one of the sets RK(ti), RE(ti), RI(ti) or RS(ti), in which the
requests having a common state are collected.

The problem of updating a transportation plan at time ti is as
follows. Let V denote the set of all own vehicles, Pv(ti) the set of all
paths (sequence of visiting sites beginning with the position of the
vehicle at time ti and ending with the central depot) executable by
vehicle v in TPi and let P(ti) denote the union of the sets Pv(ti) (v ∈
V). If the request r is served in a path p then the binary parameter
arp is set to 1, otherwise it is set to 0. A request r, already known at
time ti−1 that is not subcontracted in TPi−1 is served by vehicle vr .
The travel costs associated with path p are denoted as C1(p). Finally,
C3(r) gives the subcontracting costs of request r.

In order to code the necessary decisions for determining a trans-
portation plan, we deploy two families of binary decision variables.
Let xpv = 1 if and only if path p ∈ P(ti) is selected for vehicle v ∈ V

and let yr = 1 if and only if request r is subcontracted.∑
p∈P(ti)

∑
v∈V

C1(p)xpv +
∑

r∈R(ti)

C3(r)yr → min (1)

∑
p∈Pv(ti)

xpv = 1 ∀v ∈ V (2)

xpv = 0 ∀v ∈ V, p /∈ Pv(ti) (3)

yr +
∑

p∈P(ti)

∑
v∈V

arpxpv = 1 ∀r ∈ R(ti) (4)

yr = 1 ∀r ∈ RE(ti) (5)
∑

p∈Pv(r)

arpxpvr = 1 ∀r ∈ RS(ti) (6)

pt �ptarget (7)

For the HARD-configuration the process-planning problem is repre-
sented by the mathematical optimization model (1)--(7). The costs
for TPi are minimized (1). One route is selected for each vehicle (2)
and vehicle v is able to execute the selected path p (3). Each single
request known at time ti is either served by a selected vehicle or
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forwarded to the LSP (4) but a once subcontracted request cannot be
re-inserted into the paths of the own vehicles (5). An (S)-labeled re-
quest cannot be re-assigned to another vehicle or LSP (6) and overall,
the percentage ptarget of all requests must be scheduled in time (7).

The model (1)--(7) is NP-hard to solve since it represents the
traveling salesman problem in a specific parameter setting.

∑
p∈P(ti)

∑
v∈V

(C1(p) + C2(p))xpv +
∑

r∈R(ti)

C3(r)yr → min (8)

In the PEN-configuration the punctuality constraint (7) is skipped
and the objective function (1) is replaced by the evaluation func-
tion (8) that incorporates the penalty payments C2(p) for lateness.
Penalties associated with p are summed up to C2(p) from all late
customer site visits according to p. If the request is performed in
time, the penalty is zero for the associated single customer site, it
increases proportionally up to 25 monetary units for a delay of 100
time units. Further delays do not lead to additional charges.

�a
t ·

∑
p∈P(ti)

∑
v∈V

(C1(p) + C2(p))xpv + �b
t

∑
r∈R(ti)

C3(r)yr → min (9)

In the model of the SDAD-configuration the constraint (7) is skipped
and (9) replaces (1). Since the two coefficients �a

t and �b
t are re-

calculated before the decision model of instance TPi (2)--(6), (9) is

defined, the ordered pair (�a
t ,�b

t ) represents an adaptive accounting
scheme.

If �a
t is increased relatively to �b

t then the fulfillment of a request
with own vehicles becomes less attractive than the subcontraction of
this request. In case that �a

t is reduced relatively to �b
t the attractivity

of self-fulfillment increases (because the refunding of the associated
cost grows). However, (9) does not represent the actually occurred
costs but this objective function allows the adaptation of the decision
preferences of the transport partner to the current punctuality. In
case that the punctuality is (too) low, the usage of themore profitable
subcontraction opportunities will support the re-increase of pt .

2.5. Test cases

The construction of artificial test cases from the Solomon in-
stances [19] is described in [24]. An incoming stream of successively
arriving requests is simulated in these scenarios and the additional
requests have to be served by self-fulfillment or subcontraction. De-
mand peaks interrupt balanced streams of incoming requests and
lead to significant changes in the decision situations.

The costs for self-fulfillment are normalized to one monetary
unit for each traveled distance unit. The amount of � monetary
units has to be paid to the LSP for each subcontracted distance unit.
Each subcontracted request r causes overall costs of Fr := C3(r) =
� · d(dep, �r ) monetary units calculated by multiplying the distance
d(dep, �r ) between the LSP depot dep and the customer site location
�r of r with �. Four different request streams are generated from
the Solomon instances {R103, R104, R107, R108} for different tariff
levels � ∈ {1,1.25,1.5,1.75,2,3}. Each test case simulates requests
from the demand released from t0 = 0 until Tmax = 5000. Additional
requests are released every �t = 100 time units.

3. Online planning in HARD- and PEN-configurations

This section reports the experimental setting and findings for the
HARD- and the PEN-configurations. In Section 3.1, we describe the
configuration of a hybrid search algorithm for solving the instances
TP0, TP1, . . . . Section 3.2 compares techniques for ensuring the con-
siderations of the constraints (2)--(7) during the solving of SP(ti).

Section 3.3 describes the experimental setup. The achieved results
are presented and discussed in Section 3.4.

3.1. Memetic Algorithm for the schedule generation

We use aMemetic Algorithm (MA) realizing a hybrid search strat-
egy consisting of a global genetic search space sampling and a local
2-opt improvement procedure for solving the scheduling model in-
stances SP(t0), SP(t1), . . . of the online decision problem introduced
in Section 2.4.

The genetic search uses a �+�-population model evolved by the
application of the PPSX-crossover-operator [23] and a mutation op-
erator that (a) arbitrarily switches fulfillment modes of requests, (b)
shifts requests between selected routes of own vehicles and (c) re-
verses the visiting order of randomly chosen subsequences of arbi-
trarily selected routes.

The construction of the initial population is generated using the
Push Forward Insertion Heuristic [19]. One half of the initial set of
solution proposals is generated by deploying the heuristic followed
by some random proposal modifications and the other half is gener-
ated purely at random without applying any biasing procedure. The
evolution process is stopped dynamically if the average fitness of the
evolved population does not improve for 10 generations.

Every time a new decision model instance SP(ti) has arrived, the
MA is re-started to solve the model of the recent instance. Computa-
tional experiments, in which parts of the final population of the last
instance solved are used to seed the initial population of the recent
instance, failed because this initial population leads to rapid conver-
gence on a bad level even if the crossover and mutation probability
are determined adaptively. An analysis of the population develop-
ment has shown that the significantly changed decision situation
requires the re-initialization of the genetic material so that the new
decision aspects are considered explicitly. For this reason, a com-
plete new initial population is formed using the seeding approach
described above.

3.2. Constraint handling techniques

Solutions of the models introduced in Section 2.4 are defined as
sets of decision variables, instantiated by a value taken from their
associated domains. Local search (improvement) algorithms first
generate an initial instantiation of the decision variables. Then they
apply one or more search operators and generate an offspring solu-
tion from one or more existing solutions. The sequence of generated
solutions is called the search trajectory and the algorithm generates
one (e.g. Tabu Search) or several trajectories in parallel (e.g. Genetic
Algorithms). It is necessary that the generated solutions comply
with the constraints (2)--(7) (feasibility). From a certain solution on,
all further solutions within the search trajectory have to comply
with the constraints specified in the model. Three different ap-
proaches enforcing the search trajectory to stay in the set of feasible
solutions are presented below.

3.2.1. Selection of an adequate solution representation and of suitable
operators

The first idea is to design a problem representation, which only
allows solution proposals that comply with all given constraints. If
all operators can only generate solutions within the given represen-
tation then all maintained and generated solutions stay compatible
with the associated constraints.

We use a direct problem route-based representation [23], which
ensures that no violations of the constraints (2)--(6) occur in the
maintained set of solutions.
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Fig. 2. Procedure REPAIR().

3.2.2. Repairing constraint violations
Local hill-climbers are incorporated into the superior memetic

search algorithm. They repair constraint violations by modifying the
generated offspring solutions and transform them to the nearest so-
lution that is feasible with respect to the constraints to be consid-
ered.

The application of the MA to the HARD-configuration requires the
call of a repair procedure for each generated offspring solution if the
percentage of in-time arrivals is smaller than ptarget. In this case the
procedure REPAIR() shown in Fig. 2 is executed for each offspring
solution.

In general (but not in the problem investigated here) it is unclear
in advance whether a repair procedure call can completely repair a
given solution using the given repair function. For this reason, the
repair attempt is a search process itself. Its goal is to identify the
nearest solution, which complies with the given constraints. The
computational effort for this (maybe unsuccessful) search is often
quite high.

3.2.3. Penalization of constraint violations
Solutions that propose late customer site arrivals are penalized by

depreciating their evaluation value. The penalization lowers the at-
tractivity of such an individual and decreases the individual's chance
of being used as source of an offspring solution. It is expected that,
on the long run, penalized individuals will not be used any more
so that at the end, only solutions without any constraint violations
form the search trajectories.

In order to generate preferentially solution proposals that main-
tain a very high punctuality rate we penalize each delayed customer
site arrival of a vehicle. Therefore, we deploy the piecewise-linear
penalty function introduced in Section 2.4 in the evaluation func-
tion (8). This MA realization is applied if the supply chain scenario
is PEN-configured.

3.3. Experimental setup

The HARD-configuration of the supply chain setting deploys the
decision model (1)--(7) and the MA incorporating the procedure
REPAIR(). Similarly, the PEN-configuration uses the decision model
(2)--(6), (8) and the MA incorporating the penalty fitness function to
derive new transportation plans.

In order to assess the performance of the two supply chain con-
figurations, we perform several simulation experiments using the
artificial test cases introduced in Section 2.5. The target punctuality
ptarget is set to 0.8.

An experiment (�, exp) is defined by the combination of the
tariff level � ∈ {1,1.25,1.5,1.75,2,3} and the assumed supply

chain configuration exp ∈ {PEN,HARD)}. We simulate each scenario
(�, exp, P,�) in three independent runs seeded by � ∈ {1,2,3}. From
the Solomon instances P ∈ P{R103, R104, R107, R108} we derive the
set P of consecutively released requests. Overall, we have defined
6×2=12 experiments leading to 12×4×3=144 simulated scenarios.

The punctuality recorded at time t within the scenario
(�, exp, P,�) is denoted as pt(�, exp, P,�). Let

pt(�, exp) := 1
12

3∑
�=1

∑
P∈P

pt(�, exp, P,�)

denote the average punctuality in experiment (�, exp) observed at
time t.

In order to study the impact of the demand peak on the punctu-
ality, we calculate the deviation of pt(�, exp, P,�) from the reference
value p1000(�, exp, P,�) for all times in the observation time interval
[1000,5000] by
pt(�, exp, P,�)/p1000(�, exp, P,�) − 1.

The largest past-peak deviation from the reference value is then
calculated by mint �1500{pt(�, exp, P,�)}/p1000(�, exp, P,�)−1. The
average of the largest observed deviation from the reference values
in the scenarios of the experiment (�, exp) is then given by

�(�, exp) := 1
12

3∑
�=1

∑
P∈P

(
mint �1500{pt(�, exp, P,�)}

p1000(�, exp, P,�)
− 1

)
.

Let Tbelow
�,exp denote the first time in which pt(�, exp) falls below ptarget

and Theal
�,exp := min{t ∈ [1000,5000] | � l ∈ [t,5000], pl < ptarget} re-

ferring to the time in which an HQ state is finally re-achieved by
pt(�, exp). We define

�(�, exp) := Theal
�,exp − Tbelow

�,exp

4000

as the percentage of LQ periods within the observation interval
[1000,5000].

Throughout the simulation time, we have recorded the percent-
age of subcontracted requests in qt(�, exp, P,�). These values have
been summarized in

qt(�, exp) := 1
12

∑
P∈P

3∑
�=1

qt(�, exp, P,�)

for each experiment (�, exp). Themaximally observed subcontraction
rate is defined by 	(�, exp), calculated by

	(�, exp) := max
t �1500

qt(�, exp).
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Fig. 3. Development of the punctuality pt (�, PEN).

Table 1
Maximal punctuality deviation �(�, exp) .

exp �

1 1.25 1.5 1.75 2 3

HARD (%) 3.6 −0.0 5.3 4.4 4.2 3.5
PEN (%) −1.0 −1.8 −7.8 −13.6 −22.0 −38.8

It indicates the exploitation of the subcontraction fulfillment
mode. Finally, we trace the costs C(�, exp, P,�) for the re-
quest fulfillment and calculate the deviation 
(�, PEN, P,�) :=
C(�, PEN, P,�)/C(�,HARD), P,�) − 1 of the costs from the reference
value observed in the HARD) experiment. The average deviation

(�, PEN) for this experiment (�, exp) is calculated.

3.4. Numerical assessment of HARD- and PEN-configurations

The HARD-configuration outperforms the PEN-configuration.
Clearly, by definition, it is �(�,HARD)) = 0 for all investigated tar-
iff levels �. In addition, the HARD-configuration is able to slightly
enlarge the punctuality compared to the referential value at time
t = 1000 (Table 1). The additional knapsack constraint allows the
memetic search to evaluate different separations of the request
portfolio into self-fulfilled and subcontracted requests. Since the
constraint (7) ensures that at least 80% of the requests are in time,
no penalty costs contradict the route composition.

The PEN-configuration can guarantee the 80% punctuality only
for comparable tariff levels (� = 1) as shown in Fig. 3. Just after the
demand peak is over (t�1800) the punctuality even increases be-
cause the routes of the own vehicles are compiled from a larger num-
ber of available requests. So, a higher number of matching requests
can be found. As soon as the tariff level � increases, subcontracting
becomes more and more unattractive. Its costs are higher than the
travel costs for the own vehicles plus penalty payments. The self-
fulfillment mode is preferred although it does not come up with an
in-time service. Actually, decreases of pt below 50% are observed for
� = 3. Consequently, the maximal decreasing rate of pt falls from
−1.0% (�=1) down to 28% (�=3) as it can be seen in Table 1. Due to
the parameter sensitivity of the punctuality pt(�, PEN) to tariff level
increases, the percentage �(�, PEN) of LQ-situations increases from
�(0, PEN)=0 up to �(3, PEN)=97.5% (Table 2). Therefore, a short-time

Table 2
Portion �(�, PEN) of low quality situations .

exp �

1 1.25 1.5 1.75 2 3

PEN (%) -- 60.0 70.0 97.5 82.5 97.5

Table 3
Maximal externalization rate 	(�, exp) .

exp �

1 1.25 1.5 1.75 2 3

HARD (%) 22.2 14.9 10.0 8.0 7.2 8.0
PEN (%) 21.4 15.5 10.0 5.8 5.1 4.1

demand peak has a long-lasting negative impact on the punctuality
of the service.

The maximal rate of subcontracted requests decreases with in-
creasing tariff level � (Table 3). For comparable freight tariffs (��1.5)
both configurations behave similarly with respect to the subcon-
traction of requests. The maximal externalization rate 	(�, exp) is
nearly the same in both cases for each ��1.5. However, if the tariff
levels climb further then 	(�,HARD)) remains stable at ≈ 8% while
	(�, PEN) falls further down to ≈ 4%.

The main reason for the bad performance of the PEN-
configuration is its non-observance of the reliable subcontracting
services if its costs are significantly higher than the sum of self-
fulfillment costs and penalty payments. For � = 1 the maximal
percentage of subcontracted requests is 	(1, PEN) = 21.4% but for
large tariff levels, this portion is significantly reduced down to
	(3, PEN) = 4.1% (Table 3).

The temporal increase of the number of additional requests enter-
ing the considered logistic system from 50 up to 150 for the duration
of 200 time units leads to a significant increase of waiting requests.
If the tariff level is quite high (� = 3) then the non-consideration of
the subcontracting services causes a blockage of the request fulfill-
ment. While in off-peak situations the average number of pending
requests is 70, this number escalates up to nearly 230 in the HARD-
configuration and even up to 300 in the PEN-configuration. In the
first mentioned configuration, the number of 70 waiting requests is
re-achieved at time 2000 but in the latter one the limit of nearly 70
waiting requests is reached not before time 3000.
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Overall, the PEN-configured supply chain setting is not able to
maintain the target punctuality if the tariff levels for request sub-
contraction are lifted. The penalization of delayed arrivals does not
ensure the target punctuality in situations with a non-comparable
tariff level. The search for least cost transportation plans ignores
the selection of request subcontraction if the sum of costs for self-
fulfillment and lateness is less than the freight charge to be paid to
the LSP. In previous simulation experiments [25] we have shown that
the punctuality in the PEN-configuration can be slightly increased
for � = 3 cases if the maximal penalty value is increased. However,
the observed additional process costs are much too high to justify
the slight reliability increase. Improved results are only considered
in singular experiments. The determination of an adequate penalty
value requires many tests and is therefore not appropriate to be ap-
plied in an online approach to a problem in which the scarceness of
resources varies significantly over time.

The application of both configurations leads to nearly the same
costs. There is no empirical evidence that one of the configura-
tions generally produces a larger amount of process realization
costs. We observe the following cumulated costs: 
(1, PEN) = −8.7%,

(1.25, PEN) = −5.5%, 
(1.5, PEN) = 0.1%, 
(1.75, PEN) = 4.9%,

(2, PEN)=5.0% and 
(3, PEN)=−1.0%. The decisions observed in the
PEN-configuration yield less costs than for the HARD-configuration
if � = 1, 1.25, 1.5 or 3. In the remaining cases, the HARD-configured
supply chain setting produces a sequence of solutions causing fewer
costs than the PEN-configured consortium.

4. Image modification approaches

PEN-configured as well as HARD-configured supply chain set-
tings produce transportation plans causing nearly the same costs.
Nevertheless, the two configurations show a noticeable difference in
the quality of the generated transportation plans if the tariff level �
climbs up. In this case a HARD-configuration performs significantly
better with respect to the reliability of request fulfillment. First,
the HARD-configuration produces less severe punctuality decreases
(Table 1). Second, the duration of LQ service periods is significantly
reduced compared to the PEN-configuration (Table 2). The conclu-
sion of these observations is that the performance of the HARD-
configured logistic system (with respect to the service goal) remains
unaffected by a tariff level variation but the reliability of the trans-
portation plans generated in the PEN-configured systems depends
on the tariff level height. The PEN-configuration is quite more sen-
sitive to variations of the problem to be tackled than the HARD-
configuration. Although the performance of the HARD-configuration
convinces with respect to efficiency as well as the service goal, its
application is not possible because the partners forming the supply
chain under consideration are not treated fair in case of demand
peaks.

The situation is quite different with respect to the PEN-
configuration, where the negative impacts of a workload peak are
shared among the partners of the supply chain. However, the penal-
ization schememust fit to the current system state and performance.
In the investigated problem at hand, as soon as the search space is
modified, then the evaluation scheme requires an adaptation, which
turns out to be a re-definition of the used formal optimization
model. This section describes approaches for a model-based re-
scheduling, which automatically and explicitly maps the variation
of the problem severeness into the used formal decision model. This
mechanism is called image modification [26] because it affects the
representation of the real world problem. Actually, it manipulates
the formal decision model for the current decision problem instance.
Here, we refine the idea of Gutenschwager [15] and automatically
define a new objective function for each new problem instance.

4.1. Static, dynamic and adaptive modeling rules

To meet the least punctuality requirement, the PEN- and the
HARD-configuration deploy different mechanisms for enforcing the
search algorithm (imitating the rational search behavior of the trans-
port partner) to select transportation plans in which at least ptarget

percent of all requests are served in time. As soon as the new model
TPi is built (by updating the so far used model TPi−1), these fea-
tures are considered explicitly: determining the maximal penalty
value (PEN-configuration) or specifying the constraint (7) exploited
in the HARD-configuration. The determination of the correspond-
ing parameters is done in advance before the first instance is stated
independently from the current time and from the current system
performance or current system workload. Such a rule for defining
components of the optimization model for the next decision instance
is called a static rule. The PEN-configuration as well as the HARD-
configuration represent realizations of static model definition rules.

Since static rules are defined a priori, it cannot be guaranteed
that they remain suitable after a significant change of the decision
problem. In this investigation, the PEN-configuration works well as
long as the system load remains on its initial level. In such a situa-
tion, the used penalty value is large enough to depreciate tardy vis-
its so that detours or even subcontracting are preferred. However,
if the system load increases during and after the demand peak, the
pre-determined penalty value is now too low to enforce the sub-
contraction of late requests. The penalty and the travel costs have
to get a higher impact than the subcontracting costs in order to let
the subcontracting mode become the preferred completion mode so
that additional requests are subcontracted (and served in time).

A rule that distinguishes several temporal phases and which acts
differently in these phases is called a dynamic model definition rule, if
the intervals to be distinguished as well as the modeling tasks to be
carried out, are known at time t0. We cannot apply any dynamic rule
to the problem investigated in this contribution because we do not
know the intervals in advance, in which the system load is too high.

Instead of determining a priori how a modeling rule will behave
and evolve, it is more promising to decide reactively how to param-
eterize a decision model in response to a change of the performance
of the controlled system. This adaptation allows the consideration
of latest and recent problem variations for the definition of the next
model instance. Model definition rules that exploit contextual data
are referred to as adaptive model definition rules.

The original online decision making framework [9] is neither ca-
pable to detect changes in the considered problem requiring an ad-
justment nor is it equipped to implement the necessary model mod-
ifications. In order to overcome these deficiencies, we propose and
test an extension of the online decision making framework.

4.2. Algorithmic model adaptation

The adaptation of a formal decisionmodel to a changed real world
problem setting initially requires the recognition of the problem
variation. In order to prepare an automatic detection of an HQ or LQ
period, we first specify the intended system development starting
from the current time ti. Therefore, we select N indicators that map
the performance of the considered logistic system at a time t into
the N-tuple (i1(t), . . . , iN(t)) of real values (the system's state at time
t). Let Imu denote the set of possible values for the indicator iu :
t 	→ iu(t). Furthermore, the set F(t) ⊆ Im1 × · · · × ImN is defined
to contain exactly all those system states that fulfill the HQ period
property. The set D(ti) := [ti; ∞)×F(ti) contains all future states of
the system that have a punctuality pt �ptarget. It is called the system
development corridor at time ti.

The system development corridor for the problem introduced in
Section 2 is defined as follows. We use the only indicator pt , Im1 :=
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Fig. 4. Basic re-planning procedure with decision model adaptation.

[ptarget;1] and set F(t) := [ptarget;1]. The corridor D(ti) is then
given by D(ti) := [ti; ∞) × [ptarget;1]. The gray shaded area in Fig. 3
represents this system development corridor.

Countermeasures maintaining a sufficiently high punctuality
should be established before the system's performance leaves the
system development corridor. In order to be able to start the neces-
sary actions as early as possible, we define the core C(ti) ⊆ D(ti) of
the system development corridor asC(ti) := [ti; ∞)×[ptarget+0.1;1].
The core C(ti) serves as a reference that is used to decide whether
model adaptations are required or not. The dark grey shaded area in
Fig. 3 represents the core C(ti) of the system development corridor
D(ti).

The intensity of the model adaptation is determined by measur-
ing the distance of the current system state from the core of the
system development corridor. If this distance is zero then no model
modifications are required. If the distance is small, then slight modi-
fications of the formal problem representation (model) are to be es-
tablished but if the distance is large then a significant re-definition
of the so far used model is necessary. A function h mapping a system
state to the (real) value expressing the model modification severity,
is called the intensity function.

We propose the following function h as intensity function. It is
defined according to the core C(ti) of the system development cor-
ridor D(ti) and is 0 as long as pt �ptarget +0.1 (HQ period, (t, p(t)) ∈
C(t)), h(pt) = 1 if pt �ptarget − 0.1 (LQ period, (t, pt) /∈D(t)) and it
decreases linearly from 1 down to 0 if pt increases from ptarget −0.1
up to ptarget + 0.1 (transition phase).

The implementation function H describes the model modifications
to be implemented depending on the current time t, the system
performance at this time and the intervention intensity expressed
by the current intensity function value.

Fig. 4 shows the online decision making framework extended by
the model adaptation feature exploiting the intensity function as
well as the implementation function. At first, the iteration counter i
is initialized (1) and the current time ti is fetched (2). Then, the ini-
tial decision model M0 is formulated (3) and solved afterwards (4).
The solution of M0 is the transportation plan TP0 whose execution
starts immediately. Whenever an update of the transportation plan
becomes necessary, a new model is stated, adapted and solved after-
wards. The loop consisting of the instructions (5)--(12) in the basic
algorithm represents this iteration. The so far existing transportation
plan TPi is executed as long as no update is necessary (5). In case
that a plan revision is started the iteration counter i is increased by
1 (6), the current time ti is saved (7) and the current system perfor-
mance is checked by determining the system's current punctuality
pti

(8). Next, h(pti
) delivers the model adaptation intensity (9). Then,

the new model instance Mi is derived from the last used instance
Mi−1 by instantiating ("⊕'') the necessary modifications given by the
implementation function H (10). Now, the recent model is solved
and the new transportation plan TPi becomes the process to be fol-

lowed (11). Finally, it is checked whether the update procedure can
be stopped (12) because the simulation time is over. In this case, the
algorithm terminates (13). Otherwise, the algorithm waits for the
next update by jumping to instruction (5).

4.3. Situation-based adaptation of the objective function

This subsection is about the definition of an implementation func-
tion H1, which modifies the so far used objective function by adapt-
ing at the re-planning time ti the so far used accounting scheme

(�a
ti−1

,�b
ti−1

) to the new scheme (�a
ti
,�b

ti
) used for re-weighting the

costs of the two fulfillment modes. In an LQ period, the re-weighting
of the costs associated with the two modes is promising if the sub-
contraction costs are lowered relatively to the self-fulfillment costs.
As soon as the least punctuality ptarget is achieved again, the equal
weighting for the costs of the two fulfillment modes becomes ade-
quate again.

We define the weight �b
ti

of the subcontraction costs to be 1
and do not vary this value anymore. In an HQ period, the weight
�a

ti
:= H1(ti, pti

) of the self-fulfillment mode is also 1. The tariff level
� means, that, in average, one additionally subcontracted request
produces costs that are � times larger than the additional costs in the
self-fulfillment mode. If the weight H1(ti, pti

) of the self-fulfillment
costs is larger than � then the subcontractingmodewill preferentially
be selected by the profit-oriented transport partner.

We propose the following procedure to determine the weight
H1. As soon as the punctuality pt1 reaches ptarget + 0.1 (and tends
to leave the core C(ti) of the system development corridor D(ti))
the weight H1(ti, pti

) is systematically increased if pti
is significantly

less than ptarget, and at the end it reaches H1(ti, pti
) = 1 + �. Again,

we exploit the piecewise-linear intensity function h introduced in
Section 4.2 to determine the right intervention degree h(pti

).
If we define the real-valued function H1(ti, pti

) as described in
Eq. (10) then H1(ti, pti

) = 1 in HQ periods. H1 increases strictly if pti
decreases. If an LQ period is finally reached, then H1(ti, pti

) is close
to or even equals 1 + �. We use the function H1 as implementation
function for adapting the objective function (9).

H1(ti, pti
) =

{
1, i = 0
1 + � · h(pti

), i�1
(10)

5. Computational experiments

The SDAD-configuration prevents long-lasting phases of poor
punctuality of the logistic system even if the tariff level for sub-
contraction is very high (� = 3). As shown in Fig. 5, it keeps the
maximal number of waiting requests as low as observed for the
HARD-configuration. Furthermore, the time required to dismantle
the enlarged queue of waiting requests is the same for SDAD- and
HARD-configurations.

In order to analyze the impacts of the objective function
adaptation (realized by the adaptation of the accounting scheme
(H1(ti, pti

),1)), we compare the results �(�, exp) achieved by vary-
ing exp for a given tariff level �. Table 4 shows a comparison of
the maximal punctuality deviations �(�, exp). Similar to the re-
sults observed for the HARD- as well as for the PEN-configurations,
�(�, SDAD) decreases with increasing tariff level �. Both the PEN-
and the SDAD-configured systems perform similarly as long as
��1.25 but if � further increases then the SDAD-configuration leads
to significantly moderated punctuality collapses (�(3, SDAD) = −5.6
and �(3, PEN) = −38.8). The results using the SDAD-configuration
are closer to those using the HARD-configuration than to those
achieved with the PEN-configuration.

The percentage of LQ periods increases as soon as the tariff level
is lifted independently from the applied configuration (Table 5 ). If
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Fig. 5. Arriving and waiting requests (� = 3).
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Fig. 6. Development of the punctuality pt (3, exp) and �(t, pt ).

Table 4
Punctuality decrease �(�, exp) .

exp �

1 1.25 1.5 1.75 2 3

HARD (%) 3.6 0.0 5.3 4.4 4.2 3.5
PEN (%) −1.0 −1.8 −7.8 −13.6 −22.0 −38.8
SDAD (%) −0.9 −4.0 −5.4 −4.4 −6.9 −5.6

Table 5
Percentage of LQ-states �(�, exp) .

exp �

1 1.25 1.5 1.75 2 3

PEN (%) -- 63.9 80.6 91.7 94.4 97.2
SDAD (%) -- -- 2.7 5.6 5.6 16.7

a fixed charge is used to penalize tardy arrivals (PEN) then a slight
LSP charge lifting leads to situations in which the least desired punc-
tuality is not achieved (�(�, exp) >0). The application of a model

adaptation defers the occurrence to higher tariff levels. The SDAD-
configuration is able to prevent LQ periods up to a tariff level of 1.25
and the duration of the observed LQ periods for further increased
tariff levels is quite short (2.7--16.7%).

Fig. 6 shows the punctuality development for a scenario with
�=3. It can be seen, that, in the SDAD-configuration, the adaptation
of the objective function leads to an attraction of the punctuality
pt to the system development corridor (grey shaded area). As soon
as the punctuality runs out of the core of this corridor (dark grey
shaded area) countermeasures are taken that immediately lead the
punctuality back into the corridor.

Let �(ti, pti
) := (H1(ti, pt1 )−1)/� represent the applied percentage

of the maximal possible weight. Fig. 6 shows that the highest values
for the percentage are applied as soon as the punctuality pt runs out
of the system development corridor. If the punctuality has recovered
and re-entered the system development corridor then the applied
percentage re-decreases.

The application of the static model definition rules in the HARD-
as well as in the PEN-configuration leads to a significant sensitivity
of the number of subcontracted requests in response to a tariff level
lifting (Tables 1 and 3). The comparison of the results for the dif-
ferent configurations, presented in Table 6, shows that the adaptive
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Table 6
Number of subcontracted requests 	(�, exp) .

exp �

1 1.25 1.5 1.75 2 3

HARD (%) 22.2 14.9 10.0 8.0 7.2 8.0
PEN (%) 21.4 15.5 10.0 5.8 5.1 4.1
SDAD (%) 23.8 18.5 19.2 17.4 15.0 14.5

Table 7
Relative increase C ′(�, exp) of the overall costs .

exp �

1 1.25 1.5 1.75 2 3

PEN (%) −8.7 −5.5 0.1 4.9 5.0 −1.0
SDAD (%) −3.1 6.1 9.6 15.9 16.0 13.5

rule exploited in the SDAD-configuration is able to shift a significant
larger portion of requests into the subcontraction fulfillment mode
than the static rules are able to do.

To analyze the cost impacts of a configuration change, we cal-
culate the relative growth C ′(�, exp) := 
(�, exp)(5000)/
(�,HARD))

(5000) − 1 of the overall costs with respect to the reference
values taken from the HARD-configuration simulation results.
The C ′(�, exp)-values compiled in Table 7 show that the SDAD-
configuration leads to additional costs compared to the HARD-
configuration if the tariff level is larger than 1. Furthermore,
the SDAD-configuration produces higher costs than the PEN-
configuration does. Here, the over-weighting of the punctuality in
the adapted objective function leads to additional costs because the
selection of the cost minimal request fulfillment mode is compro-
mised by the enforced preference for those modes that lead to the
least number of late requests.

6. Conclusions and future research

We have investigated the automatic decision support for a dy-
namic decision problem. From the observed results we conclude that
it is necessary to adapt the used formal decision model if the deci-
sion making situation has changed and if the used decision logic is
not suitable anymore to fulfill the superior supply chain wide plan-
ning goals. This is observed in the �>1-cases where the punctu-
ality in workload peak situations cannot be maintained using the
static PEN-configuration. We have shown that the adaptation of the
search direction by adjusting the deployed objective function is able
to achieve a better integration of the two competing goals "cost
minimization'' and "service quality maximization''. If settings like
outlined in the HARD-configuration are not possible due to organi-
zational aspects then the adaptation of the objective function makes
the used decision support software system more resistant against
impacts from varying problem data than a static penalization is able
to do. In detail, the duration of LQ periods of the considered logistic
system is significantly reduced if the decision model is adapted to
the current system performance.

The adaptation of the objective function by emphasizing the
degree of service quality turns the search away from cost minimal

solutions of the decision problem instance. Future research efforts
will be dedicated to refinements of the generic idea to adapt the
search direction. Special efforts are required in order to reduce the
additional costs caused by the intensified consideration of service
quality goals. Additionally, it has to be analyzed whether other neg-
ative impacts like repeatedly deferred requests require additional
methodological treatment. Although such impacts are not observed
in the experiments investigated in this contribution, mechanisms to
prevent the unlimited deferment have to be developed.
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