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Summary. We analyse a dynamic variant of the vehicle routing problem with
soft time windows in which an average punctuality must be guaranteed (e.g.
lateness is allowed at some customer sites). The existing objective function
does not support both the aspiration for punctuality and least cost so that
additional efforts are necessary to achieve an acceptable punctuality level at
least possible costs. Within numerical experiments it is shown that static
penalties are not adequate in such a situation but that an adaptation of the
objective function before its application to the next problem instance supports
the search for high quality solutions of the problem.

1 Introduction

We consider a vehicle routing problem in which the adequate fulfilment
mode of consecutively arriving customer requests is to be selected. Ar-
riving requests are fulfilled using the cheap but not necessarily reliable
self-fulfilment mode (SF) or the more expensive but reliable subcon-
tracting mode (SC). We propose to adaptively adjust the weights of
the costs of the two fulfilment modes in a mono-criterion objective
function. Doing so, we refine the idea of Gutenschwager et al. [1] who
initially propose to adjust higher-ranked objective functions to the re-
cent decision situations while solving the next instance in a sequence
of optimisation models in online-fashion. This adaptive approach is
compared in numerical experiments with the typically used penalty
approach in which a static unchangeable value is used to depreciate
late visits at customer sites.

Section 2 introduces the investigated decision problem. Section 3
outlines the decision algorithms. The computational experiments are
reported in Section 4.
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2 Dynamic Decision Problem

We investigate the following generalisation of the vehicle routing prob-
lem with time windows.

Soft time windows. Lateness at a customer site is possible but
causes penalty costs. The portion pt of the requests completed or sched-
uled for completion in the interval [t−t−; t+t+] is observed. At least pt
of all requests of the interval around the current time t must be started
within the agreed time windows.

Subcontraction. Each request can be served by a vehicle from the
own fleet in the SF-mode or it can be subcontracted (SC-mode) to
a logistic service provider (LSP). In the former case, late arrivals at
customer sites cannot be prevented but in the latter case, an in-time
service is assured. A once subcontracted request cannot be re-integrated
into the routes of the own vehicles.

Uncertain demand. Only a subset of all requests is known to the
planning authority at the time when the decision concerning subcon-
tracting is made and the routes for the own vehicles are generated. The
planning authority decides about the fulfilment mode of a request as
soon as it becomes known.

Additional requests arriving at time ti trigger the update of the so
far followed transportation plan TPi−1 which contains the decision how
the waiting requests will be served. For the update of TPi−1 to TPi we
have introduced an optimisation model [2] whose solving identifies a
least costs refresh of the transportation plan. Each possible update is
evaluated by the resulting costs using the objective function (1).

C1(RP(Rinti )) + C2(RP(Rinti ))︸ ︷︷ ︸
self-fulfilment costs

+ C3(SC(Rexti ))︸ ︷︷ ︸
SC usage costs

→ min . (1)

The set Rinti contains all requests for which the self-fulfilment mode
has been selected and the set Rexti comprises all subcontracted requests
at time ti. With RP , we denote the least cost collection of paths for
the own vehicles and SC refers to the minimal-charge bundling of sub-
contracted requests. Then, C1(RP(Rinti )) denotes the travel costs of
the own vehicles, C2(RP(Rinti )) gives the penalty costs to be paid for
late customer site visits of own vehicles. Finally, C3(SC(Rexti )) gives
the costs of the subcontracted requests.

If both fulfilment modes would lead to the same costs for a given
request r, e.g. if
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α :=
C3(TP3(r))

C1(TP1(Rinti )) + C2(TP1(r))
≈ 1, (2)

then both fulfilment modes SF and SC will be used to the same extend
as long as the limited capacity of the own fleet is exhausted. As soon
as the capacity of the own fleet is exhausted then some requests are
shifted into the SC-mode. However, if α � 1 then the aspiration for
cost minimal modes prevent the usage of the SC mode. If C2 is not
stringent and severe enough, then the number of late severed requests
increases, so that pt falls down.

In the remainder of this article we investigate the dependencies bet-
ween the severeness of the penalisation of late requests and the selection
of the fulfilment mode. Thereby, we assume that α � 1, so that the
aspiration for least cost transportation plans does not support the se-
lection of the mode that leads to the highest percentage of punctually
served requests.

We use artificial test cases [2] constructed from the 100-customer
Solomon [3] instances {R103, R104, R107, R108} for an experimental
analysis of the aforementioned situation. In these scenarios, a demand
peak leads to a temporal exhaustion of the cheaper SF mode. We pro-
pose and test ideas to overrule the cost-based mode decision in order
to consider punctuality issues to a larger extend.

3 Algorithm Details

We use the Memetic Algorithm described e.g. in [2] to derive a new
transportation plan after additional requests have arrived. In such a
case, the execution of TPi−1 is interrupted and TPi−1 is replaced by
TPi.

A piece-wise linear penalty function h is deployed, which is 0 for
delays up to Tmax time units and which increases proportionally up to
a maximal penalty value Pmax (money units) for delays longer than
the threshold delay of 100 time units. Using this penalty calculation
the sum of penalty payments is C2(RP(Rinti )) :=

∑
r∈Rint h(delay(r)),

where delay(r) gives the distance to the latest allowed visiting time at
the customer site corresponding to request r.

The previously introduced penalty function h is deployed with dif-
ferent parameter settings. We perform simulations with the maxi-
mal penalty values Pmax ∈ {50, 75, 100, 125} and the tolerance ranges
Tmax ∈ {0, 25, 50, 75}. A parameterisation of the penalty function is
denoted by P (Pmax, Tmax).
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Alternatively, we deploy an adaptation mechanism that re-weights
the costs of the two fulfilment modes in the objective function in de-
pendence from the currently observed punctuality pt. The idea of this
approach is to artificially lower the costs of the SC mode (compared to
the SF mode) if pt is low in order to make the usage of the SC mode
more attractive.

f(ti) ·
[
C1(RP(Rinti )) + C2(RP(Rinti ))

]
+ C3(SC(Rexti ))→ min (3)

The coefficient f(ti) is adjusted before the update of TPi−1 to TPi
starts. It is f(t0) = 1 and f(ti) = 1 +α ·Ω(ti, pti) for i ≥ 1. We use the
piece-wise linear function Ω which is 0 if the current punctuality pti
is larger than ptarget + 0.05 and which equals 1 if pti ≤ ptarget − 0.05.
In the latter case, it is f(ti) = 1 + α and subcontracting a request is
identified by the solver via the objective function to be cheaper than
the self-fulfilment with respect to the currently used objective function
(3). For pt-values between ptarget − 0.05 and ptarget + 0.05 the function
Ω decreases proportionally from 1 down to 0. Since the re-definition
of the coefficient affects the search trajectory heading of the solving
algorithm, we call this approach Search Direction Adaptation (SDAD).

4 Numerical Experiments

Experimental Setup. We analyse two scenarios. In scenario I, SF
and SC have the same prices (α = 1) but in scenario II SC is quite
more expensive than SF (α = 3).

A single simulation run (P, ω, ε, α) is determined by the request set
P ∈ {R103, R104, R107, R108}, the algorithm seeding ω ∈ {1, 2, 3}, the
applied strategy ε ∈ {SDAD}∪{PEN(a, b) | a ∈ {50, 75, 100, 125}, b ∈
{0, 25, 50, 75}} and α ∈ {1, 3}. Thus, 4 · 3 · 17 · 2 = 406 simulation runs
have been executed.

Throughout the simulations we observed the maximal punctuality
decrease (in percent) δ(ε, α) after the demand peak and the cumulated
overall costs C(ε, α).

The results observed for the PEN(·, ·)-experiments in scenario I are
presented in Fig. 1. The left isoline-plot shows the observed maximal
punctuality decreases δ(α, ε). In Aδ1(−0.6) maximal punctuality vari-
ations between −0.6% and 0 (light grey shaded area) are observed.
Punctuality variations between -1% and -0.6% appear in Aδ1(−1). De-
creases of pt between 1% and 1.4% take place in Aδ1(−1.4)
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The right isoline plot compiles the average of the cumulated costs
C(·, ·) occurred during the simulation runs within the PEN(·, ·)-experi-
ments. Additional costs of less than 5% (AC1 (0)) are observed for small
penalties and high tolerance values (light grey shaded) areas. A cost
increase of more than 15% is realized if Tmax ≤ 25 and Pmax ≥ 75.

The application of SDAD leads to a maximal punctuality decrease
of 1% at nearly the same costs (dark grey shaded areas in the two
plots). We conclude, that if α = 1 (same costs for SF and SC) then the
static parameter setting (50, 75) of h performs sufficient with respect to
a sufficiently high service quality as well as service cost minimisation.
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Fig. 1. Scenario I (α = 1): punctuality decrease (left) and costs (right)

Quite different results are observed in scenario II (Fig. 2). The ser-
vice quality optimal parameter setting is Pmax = 125 and Tmax = 25
with a maximal punctuality reduction of 2.9% at costs of 72284,10
(light grey shaded area in the left plot in Fig. 2). This setting causes
additional costs of more than 15% (cf. right plot in Fig. 2). On the other
hand, the cost optimal parameter setting (Pmax = 50, Tmax = 75, (light
grey shaded area in the right plot in Fig. 2) results in a punctuality
collapse of around 20%. It is therefore not possible to find a parameter
setting for h that satisfies both goals costs minimisation and punctu-
ality preservation to the maximal extend at the same time.

For both reasonable tradeoff parameter settings (100,50) and (75,50)
we observe a significantly higher punctuality decrease (compared to the
punctuality preserving setting) or quite enlarged costs (compared to the
cost optimal setting).
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Fig. 2. Scenario II (α = 3): Punctuality decrease (left) and costs (right)

In contrast, SDAD performs very well. It comes along with an ac-
ceptable punctuality decrease of only 5.7% which is better than the
performance of the two trade-off proposals (dark gray shaded areas in
Fig. 2). The costs resulting from the application of SDAD are only
63888,7 which is a significant reduction of the costs compared to the
two proposed trade-off parameter settings.

5 Conclusions and Outlook

We have shown that the adaptive definition of an objective function
supports the achievement of a good trade-off between service quality
and service costs in a volatile environment. Further research activities
are dedicated the identification of the right key indicators to be used
to derive the right adaptation decisions.
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