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1 Introduction

The formation of efficient and reliable processes to be executed in modern complex and
highly volatile logistic systems requires computational support. An important prerequi-
site of computer based planning is the representation of the real world problem into a
formal decision model. Automatic decision algorithms are then able to derive suitable
solutions of such a model and one solution is selected to be executed as a process in the
real world system.

For decades, researchers have defined models assuming that the planning data do
not change (or that changes do not require any consideration) until the once proposed
solution is completely executed. Since two decades, different and independent efforts
have been made to deal with problems in which it is not possible to disregard changes
of the problem data between the creation of a process and its completion.

In this contribution, we investigate a decision problem from transportation logistics
that requires the update of a process under execution due to the appearance of additional
problem data. Furthermore, the process planning is compromised by an unpredictably
varying system load that leads to undesirable process disturbances. To overcome such
situations, we propose to adjust the decision model to the current situation instead of
solving the same generic problem in response to a major variation of the planning data.

Section 2 introduces the motivating decision problem. Section 3 describes a solver for
single static instances of this decision problem. Section 4 is dedicated to the description
of the online decision strategies to manage the variation of the problem data and Section 5
reports about the results of a comprehensive simulation study for assessing the proposed
models and algorithms.
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2 A Vehicle Scheduling Problem with Uncertain Demand

We present the investigated dynamic decision problem in this section. Initially, we
review the relevant scientific literature (Subsection 2.1). Then, we outline the problem
informally (Subsection 2.2) followed by a formalised description in terms of a decision
model (Subsection 2.3). In order to allow a comprehensive assessment of the developed
decision support algorithms, we propose a set of artificial but parameterisable test cases
of the problem at hand (Subsection 2.4).

2.1 Literature

General layouts of dispatching systems for transportation planning tasks are proposed1.
Real-time dispatching systems are studied in several contributions2. Surveys on ve-
hicle routing and scheduling problems with incomplete planning data exist3. Robust
planning is defined as the generation of plans that maintain their high or even optimal
quality after subsequent modifications4. Flexible planning refers to the generation of
plans whose quality does not significantly decrease after the execution of algorithmic
re-scheduling and alterations of the so far used plans5. Robust transport scheduling
approaches exploiting explicit probability distributions of expected future demand are
investigated by seberal researchers6. Flexible planning approaches typically solve online
decision problems. Krumke7 provides a survey of online vehicle routing and scheduling
problems. Fleischmann et al.8, Gutenschwager et al.9 as well as Savelsbergh and Sol10

tackle real-world applications in this research field. The adaptation of the underlying
formal optimisation model in order to map changes in the considered real world problem
follow two directions: the adaptation of the search space definition is proposed11 and
the impacts of different weights for objective function components are investigated12.

2.2 Informal Problem Description

The problem we are investigating in this contribution generalises the common vehicle
routing problem with time windows in three aspects.

Soft Time Windows. Lateness at a customer site is possible but causes penalty
costs. The compensation amount proportionally increases with the delay but is limited
to a certain extremely high maximal amount for each request. Although a particular

1Gayalis and Tatsiopoulos (2004)
2Ghiani et al. (2003); Fleischmann et al. (2004); Gutenschwager et al. (2004); Séguin et al. (1997)
3Gendreau and Potvin (1998); Psaraftis (1995)
4Jensen (2001)
5Jensen (2001)
6Bianchi et al. (2005); Jaillet (1988)
7Krumke (2001)
8Fleischmann et al. (2004)
9Gutenschwager et al. (2004)

10Savelsbergh and Sol (1998)
11Schönberger and Kopfer (2007)
12Gutenschwager et al. (2003)
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request may be late, ptarget percent of the ft requests completed in [t−t−; t] and expected
to be completed in [t; t + t+] must be in time. Let f̃t be the number of the requests
completed timely within the last t− time units and let f̂t be the number of punctually

scheduled requests within the next t+ time units, then pt := f̃t+f̂t
ft
≥ ptarget is postulated

and pt is taken as a measure for the reliability of the service.
Subcontracting. Each customer request is allowed to be subcontracted. Logistics

service providers (LSP) are paid for the fulfilment of selected requests. An LSP receives
a certain amount Fr for this service but ensures that the request r is fulfilled within the
specified time window. If a request has been subcontracted then this decision cannot be
revised.

Uncertain Demand. Only a subset of all requests is known to the planning authority
at the time when the subcontracting is chosen and the routes for the own vehicles
are generated. The planning authority decides about subcontracting or self-fulfilment
as soon as additional requests become known. The demand, expressed by incoming
requests, varies significantly and unpredictably over time.

We refer to the above decision problem as the vehicle scheduling problem with time
windows and uncertain demand (VSPTWUD).

Let R(ti) be the collection of all requests known but not completed at time ti. A
transportation plan TPi describes how the known requests are fulfilled. The fulfilment
mode is indicated as well as the information how the own vehicles, forming the fleet
V, should behave in order to execute those requests that have not been subcontracted
(routes). Since additional requests are released at the (ex ante unknown) time ti, the so
far valid transportation plan TPi−1 (generated at time ti−1) becomes void and requires
an update to a new transportation plan TPi considering also the additional requests
released at time ti. This plan TPi is followed until at time ti+1 a new update becomes
necessary and TPi is replaced by TPi+1. Actually, a sequence TP0, TP1, TP2, . . . of
transportation plans is generated and each single transportation plan is executed until
the necessity for serving additional requests corrupts the plan execution.

The primary goal of the update of TPi−1 is to include the recently released requests
into the transport processes. Thereby, it is aimed at keeping the costs for the execution of
the additional requests as low as possible but, on the other hand, to provide a sufficiently
high reliability within the request fulfilment.

In order to ensure that the updated transportation plan is realizable, the following
conditions (a)-(e) have to be considered for the transportation plan update.

(a) Exactly one path is selected for each vehicle v ∈ V.

(b) Each request r ∈ R(ti) is fulfilled by a vehicle v ∈ V or it is subcontracted.

(c) A once subcontracted request cannot be contained in any of the selected paths.

(d) Once a request r has been assigned to state (S) it cannot be re-assigned to another
vehicle or LSP as determined in TPi−1.

(e) The punctuality of the transportation plan is at least ptarget.
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The costs for serving the additional requests should be as minimal as possible.

2.3 Problem Modelling

A single request r belongs consecutively to different states. Initially r is known but not
scheduled (F=fresh). Then, r is assigned to an own vehicle (I=internal fulfilment) or
subcontracted (E=external fulfilment). If the working at the corresponding customer site
has already been started but not yet been finished r is assigned to the state (S=service).

The set R+(ti) is composed of additional requests released at time ti. Requests
completed after the last transportation plan update at time ti−1 are stored in the set
RC(ti−1, ti). The new request stock R(ti) is determined by R(ti) := R(ti−1) ∪ R+(ti) \
RC(ti−1, ti).

A transportation plan revision at time ti starts with the state update for the requests
contained in R(ti). The state (F) is assigned to all recently added requests. Requests
contained in RC(ti), whose on-site execution has been started after ti−1 but not com-
pleted at time ti receive the state (S). After the update decisions have been made the
state of an (I)-labelled request is updated to (E) if it has been decided to be out-sourced.
Finally, all (F)-labels of subcontracted requests are replaced by (E)-labels or (I)-labels
depending on the selected fulfilment mode.

In order to update the so far followed transportation plan TPi−1 the fulfilment mode
for the requests contained in R(ti) have been determined and a path to be followed has
to be assigned to each of the vehicles of the own fleet V (representing the processes to
be followed by the vehicles).

Let M(r) denote the current state of request r ∈ R(ti). The set RX(ti) contains all
currently executed requests r with M(r) = X.

If request r has been contained in a path of an own vehicle in the so far valid trans-
portation plan TPi−1 then v(r) ∈ V denotes the corresponding vehicle. Otherwise, we
set v(r) = −1.

All vehicles start at time t0 = 0 at a designated depot D, fulfil their operations
according to the subsequently updated transportation plans and return to the depot at
the end of the considered time interval. The location of vehicle v at time ti is stored in svti
and a feasible path p = (p1, p2, . . . , pnp) for vehicle v holds for a) p1 = svti , b) pnp = D and
c) pi ∈ {svti , D}∪R(ti). All paths end in the depot D. If a vehicle is waiting at the depot
location, then the empty path D,D is feasible (and represents the non-consideration
of this vehicle in the planned operations). The insertion of additional customer site
visits defers the return to D but if the vehicles are idle (because no additional requests
require a service) then the vehicles should return to the depot and wait there for further
instructions.

All paths, which are feasible for vehicle v at time ti, are collected in the set Pv(ti)
and all paths feasible for at least one vehicle at time ti are consolidated in the set
P(ti) :=

⋃
v∈V Pv(ti).

If the request r is served by path p then the parameter arp is set to 1, otherwise it is
set to 0.
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In order to evaluate the decisions about the fulfilment mode and the selected routes,
we calculate the costs associated to each path p. The travel costs associated with path
p are denoted as C1(p). We calculate the penalties associated with a path as follows.
At first, we determine the delay at each served customer site. A linear function maps
the delay to an amount of compensation payments that increases with growing delays.
As soon as the delay climbs over a given threshold, this amount is not further increased.
Finally, the calculated sum of penalty payments is stored in C 2(p). The costs for the
subcontracting of a certain request r are labelled as C 3(r).

We deploy two families of binary decision variables. Let xpv = 1 if and only if path
p ∈ Pv(t) is selected for vehicle v ∈ V and let yr = 1 if and only if request r ∈ R(ti) is
subcontracted.

The set partition model of the short-term decision problem instance SP (ti) to be
solved at time ti is given by (1)-(5). The selected solution of this model becomes the
updated transportation plan TPi.

∑

p∈P(ti)

∑

v∈V
(C1(p) + C2(p))xpv +

∑

r∈R(ti)

C3(r)yr → min (1)

∑

p∈Pv(ti)

xpv = 1 ∀v ∈ V (2a)

xpv = 0 ∀p /∈ Pv(ti), v ∈ V (2b)

yr +
∑

p∈P(ti)

∑

v∈V
arpxpv = 1 ∀r ∈ R(ti) (3)

yr = 1 ∀r ∈ RE(ti) (4)∑

p∈Pv(r)(ti)

arpxpv(r) = 1 ∀r ∈ RS(ti) (5)

The two restrictions (2a) and (2b) correspond to condition (a), (3) ensures the consid-
eration of (b), (4) refers to (c) and (5) guarantees that (d) is met. In order to support
the fulfilment of condition (e), we consider the penalty costs for late arrivals within the
objective function (1) as well as the travel and subcontracting costs. The NP-hardness
of this model is obvious since the Travelling Salesman Problem is a special case of this
model.

2.4 Construction of Artificial Test Cases

Two different kinds of routing scenarios with successively arriving requests are mentioned
in the scientific literature. The amount of additional demand remains unchanged over
time in a stable scenario13. Resources can be adapted on the longer term to enable the

13Lackner (2004); Mitrović-Minić et al. (2004); Pankratz (2002)
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fulfilment of the complete demand in time. In case that the amount of additional demand
varies significantly over a specific time interval, the dispatching unit has to manage
demand peaks that might violate capacity constraints. In such a peak scenario it is nearly
impossible to adapt the available resources in advance14. A parameterisation and/or
classification for scientific analysis purposes is hardly realizable for these instances, which
typically correspond to real world scenarios. For this reason, we have decided to define
a new set of artificial but parameterisable test cases.

We first generate a balanced stream of incoming customer demands over the com-
plete observation period [0;Tmax]. Therefore, n0 requests are drawn randomly from
the Solomon’s15 100-customer-vehicle routing problem with time windows instance P at
time trel = 0. Then, the request release time is updated to trel := trel + ∆t and for this
new release time, n0 customer requests are drawn from P at random again. However,
for each of the recently selected requests r, the release time is set to trel. The original
service time window [er; lr] of r is replaced by [trel + er; trel + lr]. Then, trel is increased
by ∆t again and additional requests are generated similarly as long as trel ≤ Tmax. A
second stream of demand is generated in order to achieve a peak of demand. Again, we
iteratively increase the release time trel by ∆t starting at trel = 0. As long as trel ≤ tpeakstart

is met no additional demand occurs. In case that trel ∈ [tpeakstart; t
peak
start + dpeak], n1 addi-

tional requests, drawn randomly from P , are selected to be released at trel. Again, the
original service time window is shifted by trel. No requests are specified anymore within
the second stream as soon as trel > tpeakstart + dpeak . Both streams are then overlaid so

that during the period [tpeakstart; t
peak
start + dpeak] a higher number of requests appears.

All vehicles specified within the instance P can be used. In order to determine a
competitive and comparable tariff for calculating the LSP fare Fr associated to a request
r, we desist from capacity constraints and set the capacity usage of each request to
zero. We multiply the Euclidian distance dr between the depot of the LSPs, situated
at location (65, 65), and the customer site associated to r with a normalising factor
νr. A subcontracting of r costs Fr := dr · νr monetary units. We consult the best-
known solution S(P ) of P found in the literature in order to calculate νr. The vehicle vr
serves r according to S(P ) and ldemanded denotes the sum of the Euclidian distances (the
demanded distances) between the depot and the customer sites of all requests served by
vr in this solution proposal. The normalising factor assigned to request r is now set to
νr := α · ldemanded

ltravelled
, where ltravelled denotes the route length of vehicle vr

16. Scenarios
with different tariff levels are generated by modifying the factor α. If α << 1 then
subcontracting is cheaper than the self fulfilment, in case that α ≈ 1 both fulfilment
modes have comparable costs but if α >> 1 then the self completion mode is cheaper.

Each scenario is described by the 5-tuple (P, dpeak, n0, n1, α). In this investigation,
we use the four Solomon cases P ∈ {R103, R104, R107, R108} to generate request sets
with tariff levels α ∈ {1.0, 1.25, 1.5, 1.75, 2, 3}. Furthermore, it is n0 = 50, n1 = 100 and
∆t = 100 time units. The peak duration is fixed to dpeak = 200 time units starting at

14Gutenschwager et al. (2004); Hiller et al. (2006); Fleischmann et al. (2004)
15Solomon (1987)
16Schönberger (2005)
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tpeakstart = 1500 time units. Finally, the total observation period is Tmax = 5000 time units.

3 Memetic Algorithm Schedule Generation

We use a Memetic Algorithm (MA) realizing a hybrid search strategy consisting of
a global genetic search space sampling and a local 2-opt improvement procedure for
solving the scheduling model instances SP (t0), SP (t1), . . . of the online decision problem
introduced in 2.3

The genetic search uses a µ + λ-population model evolved by the application of the
PPSX-crossover-operator 17 and a mutation operator that a) moves arbitrarily selected
operations between LSPs and the own fleet routes, b) shifts requests between selected
routes of own vehicles and c) reverses the visiting order of randomly chosen subsequences
of arbitrarily selected routes.

The construction of the initial population is generated using the Push Forward Inser-
tion Heuristic18. One half of the initial set of solution proposals is generated by deploying
the heuristic followed by some random proposal modifications and the other half is gen-
erated purely at random without applying any biasing procedure. The evolution process
is stopped dynamically if the average fitness of the evolved population does not improve
for 10 generations.

Every time a new decision model instance SP (ti) is arriving the MA is re-started to
solve the model of the recent instance. Initial experiments, in which parts of the final
population of the last instance solved are used to seed the initial population of the recent
instance, failed because the recent population converges too rapidly on a too bad level
even if the crossover and mutation probability are determined adaptively. An analysis
of the population development has shown that the significantly varied decision situation
requires the re-initialisation of the genetic material so that the new decision aspects are
considered explicitly. For this reason, a complete new initial population is formed using
the seeding approach described above.

4 Online Optimisation Strategies

This section is about the description of decision strategies for the management of the
transportation plans in the evolving scenario. First, we describe a state-of-the-art re-
optimisation procedure that solves a sequence of the same generic decision model (Sub-
section 4.1). Second, we propose an extension of this approach in which the decision
model is adapted to the current system performance (Subsection 4.2).

4.1 Repeated Cost Minimisation

As soon as additional requests become known and the update of TPi−1 to TPi is neces-
sary, the generic decision model (1)-(5) is stated. Then, the MA is started to derive a

17Schönberger (2005)
18Solomon (1987)
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Figure 1: Development of the punctuality pt over time

solution of the current instance SP (ti)of this model.
Each of the | {R103, R104, R107, R108} | · | {1, 1.25, 1.5, 1.75, 2, 3} |=24 scenarios is

simulated using the aforementioned re-optimisation strategy. Three independent runs
are performed for each scenario. The averagely observed results are reported in the
remainder of this subsection. Here, the target punctuality is defined as ptarget = 0.8
represented by the continuous horizontal graph in Fig. 1. We set t+ = t− = 500 so that
the recent punctuality pt is calculated at time t with respect to the moving time window
[t − 500, t + 500]. A piece-wise linear penalty function is deployed, which is 0 for no
delays and which increases proportionally up to a maximal value of 25 money units for
delays longer than the threshold delay 100 time units.

The development of the punctuality pt during the experiments shown in Fig. 1 complies
with the reliability requirements only if fair tariffs (α = 1) are available. In this case, the
punctuality varies between 0.8 and 0.9 throughout the complete simulation experiment.
As soon as the subcontracting tariffs are enlarged, the penalisation of too late arrivals
within the objective function (1) is not sufficient any more and the punctuality sinks
below 65% (α = 2) and 50% (α = 3) respectively. Furthermore, if α = 2 then pt does
never climb again over ptarget and pt remains below 80% for the remaining observation
time.

We have recorded the percentage σt of subcontracted requests within the experiments
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Figure 2: Development of the externalization portion σt

in the moving time window [t − t−; t + t+] in order to find out the reason(s) for the
poor performance of the cost-based re-optimisation strategy. As it can be depicted from
Fig. 2, subcontracting is only used to a larger extend if the subcontracting tariffs are
comparable with the self-fulfilment costs (α = 1). In such a case, σt climbs over 20% as
an immediate response to the increased demand just after t = 1500. If the subcontracting
tariffs are increased, no more than 5% of the current request portfolio are out-sourced
because the strive for a least cost new transportation plan detects that it is cheaper to
accept further penalty charges than to subcontract additional requests.

4.2 Situation-Based Adaptation of the Objective Function

Two states of the dynamic problem have to be distinguished depending on the cur-
rent service punctuality pt at a particular time t. In a high quality state (HQ) the
requirement for the least punctuality is fulfilled (pt ≥ ptarget). The minimisation of the
transportation plan costs is claimed and produces transportation plans of sufficient reli-
ability. In contrast, in a low quality state (LQ) the required punctuality is not attained
anymore (pt ≤ ptarget). Updating the transportation plan by considering primarily the
costs causes further punctuality decreases. Consequently, the model proposed in Sub-
section 2.3 is appropriate only for the transportation plan update in HQ states but in
LQ states this model is not adequate and requires an adjustment so that the primary
goal is to re-achieve the punctuality ptarget.
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The original online decision making framework 19 is neither capable to detect changes
in the considered problem that requires a new model nor is it equipped to implement
these model modifications. In order to overcome these deficiencies, we propose three
extensions of the online decision making framework.

Preparations. In order to decide, whether the system’s current performance corre-
sponds to an HQ or LQ state, we first specify the intended system development starting
from the current time ti. Therefore, we select N indicators that map the performance of
the considered logistic system at a time t into the N -tuple (i1(t), . . . , iN (t)) of real values
(the system’s state at time t). Let Imu denote the set of possible values forthe indicator
iu : t 7→ iu(t). Furthermore, the set F(t) ⊆ Im1 × . . . × ImN exactly contains all those
system states that are desired. The set D(ti) := [ti;∞[×F(ti) contains all feasible future
system states. It is called the System Development Corridor at time ti.

The system development corridor for the problem introduced in Section 2 is defined as
follows. We use the only indicator pt mapping the current punctuality into a real value,
Im1 := [ptarget; 1] and set F(t) := [ptarget + 0.05; 1]. The corridor D(ti) is then given
by D(ti) := [ti;∞[×[ptarget + 0.05; 1]. Since the system development corridor is already
left before pt reaches ptarget, there is time to establish countermeasures that lead to a
re-increase of pt.

Adjustment Intensity Determination. A transportation plan update becomes
necessary at time ti. At first, the current system performance x(ti) := (i1(ti), . . . , iN (ti))
is determined by reading the current values of the indicators. Then, it is checked whether
(ti, x(ti)) belongs to D(ti) (HQ state). Therefore, the continuous real-valued function
h is evaluated (modification intensity h(ti, x(ti),D(ti)). This function is 0 as long as
(ti, x(ti)) ∈ D(ti) but increases monotonously if (ti, x(ti)) moves away from D(ti).

We use the piece-wise linear function h in this contribution that is 0 as long as pt ≥
ptarget + 0.05 (HQ state), h(pt) = 1if pt ≤ ptarget − 0.05 (LQ state) and which decreases
monotonously from 1 down to 0 if pt increases from 0.75 up to 0.85 (transition state).

Model Adjustment Instantiations. The function H maps the modification inten-
sity h(ti, x(ti),D(ti)) to a set of modifications that transforms the so far used decision
model SP (ti−1) into the updated decision model SP (ti). If h(ti, x(ti),D(ti)) = 0 then
H(SP (ti−1), h(ti, x(ti),D(ti))) := ∅ (no model modifications are necessary if the system
development corridor is not left). Finally, the just defined modifications are established
and the new decision model SP (ti) is solved.

The model SP (ti) to be solved at time ti is then given by the constraint set (2a)-(5)
together with the objective function defined by (6).

∑

p∈P(ti)

∑

v∈V
f(ti) · (C1(p) + C2(p))xpv +

∑

r∈R(ti)

C3(r)yr → min (6)

The coefficient f(ti) is adjusted for every decision model SP (ti). It is defined by

19Krumke (2001)
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f(ti) =

{
1, i = 0
1 + α · h(ti, x(ti),D(ti)) i ≥ 1

Thus, in this context, we use the function h that determines the current value of
f(ti). If the current punctuality pti is larger than ptarget + 0.05 than f(ti) is 1 and the
generic model as introduced in Section 2 is used for the transportation plan update.
In case that pti ≤ ptarget − 0.05 it is f(ti) = 1 + α and subcontracting a request is
identified by the solver via the objective function to be cheaper than the self-fulfilment
with respect to the currently used objective function (6). The intention of varying the
relative weight of the costs of the two fulfilment modes is to make the subcontracting
mode more attractive by lifting the costs of the self fulfillment mode. Therefore, it is
necessary to enlarge both costs drivers (travel costs and penalties) associated with the
selfulfilment of a requests. Consequently, the MA will prefer those transportation plans
that come along with a higher number of subcontracted requests. Initial experiments
have shown that a sole adaptation of the penalty function leads to reasonable results
only in some special situations.

The function H used to implement the model adjustments is realised by the update of
the weighting coefficient from f(ti−1) to f(ti). Since the re-definition of the coefficient
affects the search trajectory heading of the solving algorithm, we call this approach the
Search Direction Adaptation (SDAD) strategy. The approach without model adaptation
proposed in Subsection 4.1 is referred to as NONE (intervention) strategy.

5 Computational Experiments

In this section, we report about the results of the numerical simulation experiments.
Subsection 5.1 describes the setup of the experiments. In Subsection 5.2, the observed
results are shown and an interpretation is given.

5.1 Layout of the Experimental Field

Again, the target punctuality is set to ptarget = 0.8 to be achieved in the moving time
window [t− 500, t + 500] in order to compare NONE and SDAD results directly.

Each of the |{R103, R104, R107, R108}| × |{1, 1.25, 1.5, 1.75, 2, 3}|= 4·6 = 24 scenarios
is simulated three times leading overall to 72 simulation experiments that have been
performed. Here, we report the average results observed for each scenario.

For analysing the impacts of the objective function adaptation with respect to the

tariff level α, we first calculate pt’s maximal decrease δ(α) :=
mint≥1500{pt(α)}

p1000(α) after the
demand peak’s start.

Let T belowα denote the first time in which ptarget is not achieved and T healα refers to the

time in which a reliable state is finally re-achieved. We define π(α) := Thealα −T belowα
4000 as

the percentage of low quality states within the observation interval [1000, 5000].
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Furthermore, we have recorded the number of waiting requests QLt(α). We define
φ(α) := maxt≥1500{QLt(α)} to be the maximal observed number of known but not
fulfilled requests.

Beside the above effects on the generated processes, we have recorded the associated
costs. Let Cα(t) denote the cumulated overall costs realized up to time t. In order to
quantify the impacts of tariff level enlargements, we calculate the relative growth of costs
c(α) := Cα(5000)

C1(5000) . Similarly, we calculate the relative growth of the travel costs (cINT (α)),

of the subcontracting costs (cEXT (α)) as well as of the penalty costs (cPEN (α)).
The contribution of the travel costs to the overall costs is defined as mINT (α) :=

CINTα (5000)
Cα(5000) (the portion mEXT (α) of the subcontracting costs as well as the portion

mPEN(α) of the penalties are determined similarly).
In all case, we report the costs associated with the processes (travel costs, penalties

and subcontracting fees) and not the objective function values, which are only used to
guide the search algorithm through the search space.

5.2 Presentation and Interpretation of Numerical Results

The averagely observed values for the adaptation factor f(t) recorded in experiments
with different tariff levels α, are represented in Fig. 3. However, the qualitative de-
velopment of ft throughout the simulation remains unaffected for different α-values.
Initially, f(t) waits and remains unchanged as long as t < 1700 (stand-by phase).
Next, an intervention becomes necessary and f(t) increases until it reaches its maxi-
mal value at t = 2400 (intervention phase). This phase is followed by a descending
phase (2400 ≤ t ≤ 2500). After the demand peak impacts have been managed, f(t)
oscillates nervously around its initial value (2500 < t ≤ 4200) before it re-enters a stable
waiting phase (t > 4200). The observed results prove that the proposed control function
h(·) generates a proper response to the changes of the system’s input independently from
the tariff level α.

If the difference between the costs for the two fulfilment modes increases (represented
by ascending α-values) then the level of f(t) increases as well from 1 (α = 1) up to ≈ 2
(α = 3). Additionally, the maximal values achieved at the end of the intervention phase
grow up as long as the tariff level α is enlarged.

To study the impacts of the different strategies NONE and SDAD on the punctuality
in case that the tariff level α is varied, we compare the relative minimal punctuality
level δ(α) averagely observed in the performed experiments (Tab. 1). In general, the
punctuality indicator δ(α) reduces with increasing tariffs level α independently from the
application of SDAD. This is mainly caused by the declining attractiveness of the reliable
subcontracting mode if α is enlarged. However, the observed results clearly indicate that
a context-based model adjustment supports the preservation of a high punctuality level.
In the NONE-experiment the relative minimal punctuality level δ(α) decreases from
98.8% (α = 1) down to 61.8% (α = 3). If the SDAD-strategy is applied then δ(α)
remains above 93% for all analysed tariff levels α. It falls from 99% (α = 1) down
to 94.3% (α = 3). The observed results allow the conclusion that the search function
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Figure 3: Averaged adaptation factors f(t) observed during the simulation

adaptation is appropriate to maintain a high punctuality rate independently from the
currently valid tariff level.

The results compiled in Tab. 1 show the severeness of the demand peak. In addition,
Tab. 2 shows the percentage π(α) of the relevant part [1000, 5000] of the observation
interval in which the intended target punctuality ptarget = 0.8 is not finally re-achieved
(Tab. 2). If no model adaptation is carried out then the length of the LQ state increases
from π(1) = 0% up to π(3) = 97.5%. In case that SDAD is applied, LQ-states are
completely prevented for α ≤ 1.5 and for larger tariff levels only small percentages are
observed (π(1.75) = 5%, π(2) = 2.5%) except for the highest tariff level (π(3) = 50%).
We learn from this observation that SDAD is able to reduce the duration of LQ-states

Table 1: Maximal punctuality decrease δ(α)

α

1 1.25 1.5 1.75 2 3

NONE 98.8% 97.9% 92.4% 86.8% 78.4% 61.8%
SDAD 99.0% 95.8% 94.5% 95.5% 93.0% 94.3%
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Table 2: Percentage of LQ-states π(α)

α

1 1.25 1.5 1.75 2 3

NONE – 60.0% 70.0% 97.5% 82.5% 97.5%
SDAD – – – 5.0% 2.5% 50.0%

Table 3: Maximal percentage of subcontracted requests σ(α)

α

1 1.25 1.5 1.75 2 3

NONE 21.4% 15.6% 10.0% 5.8% 5.1% 4.0%
SDAD 23.0% 18.5% 19.2% 17.4% 15.0% 14.5%

significantly.
The impacts of the decision model adaptation on the fulfilment mode selection are

summarised in the values presented in Tab. 3. Without any model adjustment, the
highest observed subcontracting percentage decreases with increasing tariff level α from
σ(1) = 21.4% down to σ(3) = 4.0% which is a reduction by more than 80%. The applica-
tion of SDAD leads to significantly different results. At first, the observed externalisation
rate is higher for every tariff level α and, secondly, the loss of σ(α) after increasing α
from 1 up to 3 is only ≈37%. We conclude that the adaptation of the objective function
makes subcontracting more attractive by re-weighting the decision relevant costs.

The application of SDAD leads to a reduced number v(t) of averagely deployed own
vehicles v ∈ Vt (Fig. 4) if the tariff level is quite incomparable (α = 3). If no model
adaptation is applied (NONE-experiment) then averagely 10 vehicles from the own fleet
are scheduled as long as no demand peak occurs. The application of SDAD leads to
a reduced number of 8 deployed vehicles in off-peak times. Furthermore, the maximal
number of deployed own vehicles in the NONE experiment is 25, but only 22 vehicles are
simultaneously scheduled if SDAD is applied. Both strategies NONE and SDAD lead to
an immediate increase of deployed vehicles in response to the demand peak starting at
time 1500. However, this number declines only slowly in the NONE experiment while
in the SDAD experiment it reduces to the off-peak average quite faster.

The significantly higher percentage of subcontracted requests leads to a reduction of
the length φ(α) of the queue built by those requests that already have been released
and scheduled but not yet been completed (Tab. 4). Generally, φ(α) increases if the
tariff level α is raised. In the NONE experiment φ(1) = 195.0 and the queue length
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Figure 4: Deployed vehicles v(t) from the own fleet (α = 3)

increases up to φ(3) = 292.3. If SDAD is applied then φ(3) = 226.6 which means that
SDAD supports the reduction of the number of waiting requests independently from the
subcontracting tariffs.

The application of the SDAD strategy results in significantly improved transportation
processes with respect to the punctuality. Since SDAD overrules the minimisation of
costs, additional expenditures occur. The additional costs are shown in Tab. 5. In the
NONE-experiment, a relative increase of costs of c(3) = 42.8% is observed. The cost
increase observed in the SDAD-experiment is more severe than in the NONE experiment
independently from the tariff level α. In conclusion, we state that additional costs are a
significant drawback for the higher process reliability.

Table 4: Maximal number of waiting requests φ(α) (numbers in pcs.)

α

1 1.25 1.5 1.75 2 3

NONE 195.0 208.9 221.8 238.3 248.4 292.3
SDAD 191.9 199.1 210.9 217.0 218.8 226.6
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Table 5: Increase c(α) of the overall costs (in percent)

α

1 1.25 1.5 1.75 2 3

NONE 0.0 7.7% 13.3% 21.4% 27.0% 42.5%
SDAD 0.0 11.1% 16.9% 26.3% 32.2% 53.9%

Table 6: Cost increase

α

1 1.25 1.5 1.75 2 3

NONE cINT (α) 0.0 69.8% 119.3% 150.1% 168.3% 207.4%
cEXT (α) 0.0 -39.8% -66.7% -76,7% -81.6% -91.3%
cPEN(α) 0.0 80.9% 122.8% 168.5% 202.9% 356.0%

SDAD cINT (α) 0.0 40.1% 71.6% 86.0% 114.5% 144.0%
cEXT (α) 0.0 -1.8% -7.4% -0.2% -3.9% 13.6%
cPEN(α) 0.0 47.6% 82.8% 100.4% 120.2% 174.4%

In order to get a deeper understanding of the monetary impacts of the SDAD ap-
plication, we analyse the amount of the three kinds of costs: travel costs of the own
fleet (INT), subcontracting costs (EXT) and penalties for too-late arrivals (PEN). The
development of these three cost drivers are presented in Tab. 6. We have observed dif-
ferent impacts of the tariff level increase. In the NONE-experiment the travel costs are
triplicated (plus cINT (3) = 207.4% monetary units) but in the SDAD-experiment the
travel costs are raised only by 144.0%. The neglect of any model adaptation leads to a
nearly complete disappearance of subcontracting costs as a response to a tariff increase
(cEXT (3) = −91.3%) but in the SDAD-experiment the amount of externalisation costs
remains nearly stable. A qualitatively as well as quantitatively different cost develop-
ment is observed for the penalty costs. In the NONE-experiment, the compensation
costs explode and a triplication of the tariff level α leads to an increase by the factor 4.5
(the amount is more than quadruplicated). Contrary to this observation, the triplication
of the tariff level in the SDAD-experiment results in less than triplicated penalty costs
(factor 2.74).

We finally analyse the contributions of the three cost drivers to the total costs (Tab. 7)
and compare the percentage of travel costs, subcontracting costs and penalty costs.
For quite fair states (α = 1), subcontracting is the most important cost driver with
mEXT (1) = 57.1% observed in the NONE-experiment and mEXT (1) = 69.6% of the
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Table 7: Split of Costs

α

1 1.25 1.5 1.75 2 3

NONE mINT (α) 39.2% 61.8% 75.8% 80.7% 82.8% 84.5%
mEXT (α) 57.1% 31.9% 16.8% 11.0% 8.3% 3.5%
mPEN(α) 3.8% 6.3% 7.4% 8.3% 8.9% 12.0%

SDAD mINT (α) 28.2% 35.6% 41.4% 41.5% 45.8% 44.7%
mEXT (α) 69.6% 61.6% 55.2% 55.0% 50.6% 51.4%
mPEN(α) 2.2% 2.9% 3.4% 3.4% 3.6% 3.9%

total costs observed in the SDAD-experiment. The second important driver is the travel
costs with mINT (1) = 39.2% of the total costs (NONE) and mINT (1) = 28.2% (SDAD)
respectively. Penalty costs do not contribute more than 3.8% to the total costs.

After the tariff lifting, the contributions of the cost drivers are different and differ
with respect to the applied strategy. If the NONE-strategy is used then travel costs
become the most important cost driver (84.2%), followed by the penalty costs (12.0%)
and the subcontracting costs (3.5%). Here, the tariff lifting has lead to a nearly complete
disregard of the subcontracting mode. The application of the SDAD-strategy results in
quite different meanings: Both fulfilment modes share nearly the same part of more than
97% of the overall costs and penalties contribute only 3.9% to the overall costs. Here,
the re-weighting of the two fulfilment modes has kept the subcontracting as a valuable
alternative to the self-execution.

6 Conclusions

We have proposed and assessed an extension of the online decision making approach
that allows an automatic situational adjustment of the formal problem representation.
Here, we have adapted the objective function of the underlying optimisation model. This
modification affects the search direction of the repeatedly used solving process in order
to emphasise the search for reliable transport processes by overruling the cost criteria if
necessary. The general applicability as well as the effects on reliability and costs have
been quantified. Future research will address the comparison of the generic approaches
to modify the search direction with the modification of the search space variation as well
as the combination of the two approaches.
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