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Abstract 

This article is about the enhancement of myopic online decision ap-
proaches for considering longer term planning goals in the management of 
logistic processes in a dynamically varying environment. By means of a 
demand peak we simulate a severe disruption of the environment of a 
transport system and show that a pure myopic scheduling strategy is not 
able to ensure an acceptable service level in such a situation. As a remedy, 
we propose to adapt automatically the short term decision behaviour of the 
used decision making algorithm. We anticipate the instantiation of a rea-
sonable number of decision variables in a model pre-processing step in or-
der to break the rule of selecting the least cost but also low quality decision 
alternatives. Within several numerical experiments we prove the applica-
bility and suitability of our approach. 

1 Introduction 

The ability to respond immediately to a customer-reported technical 
failure becomes a more and more important competitive factor for produc-
ers and retailers of consumer as well as industrial technical devices. Wide 
spread service and maintenance networks are maintained in order to pro-
vide a reliable and efficient after-sales technical support. These networks 
are typically managed by a central dispatching unit that deploys service 
teams in the field and guide them to the sites of customer-reported failures. 

This article is about computer-executed planning for such a dispatching 
unit and addresses especially the planning support in situations in which 
the workload is so high that the service quality decreases significantly and 
leads to inflexible transport processes. To overcome such a situation se-
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mantic as well as syntactic adaptations of the underling formal decision 
model are necessary.  

We propose an extension of the commonly known and used myopic 
online planning approach by an adaptively controlled model pre-
processing procedure that reacts to quantitative as well as qualitative prob-
lem changes by carrying out anticipated instantiations of selected decision 
variables. The pre-processed model is then solved by an automatic re-
planning method. This hybrid approach reduces the need for a contextually 
re-parameterisation of the metaheuristic decision algorithm. Furthermore, 
the intensity of the application of the pre-processor adapts itself to the cur-
rently observed degree of the fulfilment of the intended system reliability. 

The main research questions for which we want to find initial answers in 
the remainder of this article are: 

1. What are the main pitfalls of pure myopic decision making for man-
aging logistic process in a dynamic environment? 

2. How can myopic and longer term superior planning objectives be 
combined in a way that allows an automatic consideration in short 
term deployment decisions? 

3. What are the impacts of breaking the rule of myopic cost minimiza-
tion? 

In Section 2 we introduce the investigated decision problem. Section 3 
is about numerical experiments with a pure myopic decision making strat-
egy. An adaptively parameterized model pre-processor is introduced in 
Section 4 and the numerical experiments carried out to assess this ap-
proach are presented and discussed in Section 5. We terminate with some 
summarizing remarks in Section 6. 

2 Dynamic Decision Problem 

This section is about the investigated dynamic decision problem. The prob-
lem is non-stochastic, e.g. requests are released randomly but we do not 
known the distribution of their arrival times. In Subsection 2.1 we survey 
the scientific literature related to the problem considered here. Subsection 
2.2 outlines the problem informally. The life cycle model of a request is 
presented in Subsection 2.3 and the myopic decision problem to be solved 
whenever at least one additional request arrives is stated in 2.4. Artificial 
test cases required for a numerical simulation of selected problem in-
stances are introduced in Subsection 2.5. 



On the Control of Decision Strategy Adaptations in Online Optimization      3 

2.1 Literatur 

Dynamic vehicle routing and scheduling problems are surveyed in [6]. [19] 
and [20] discuss the differences between vehicle routing and scheduling 
problems with deterministic and with probabilistic or incomplete planning 
data. 

Jensen [14] understands robust planning as the generation of plans that 
maintain their high or even optimal quality even if subsequent modifica-
tions are required. Flexible planning is defined by Jensen as the generation 
of plans whose quality does not significantly decrease after algorithmic re-
scheduling has been applied and alterations of the so far used plans have 
been made. 

A robust transport scheduling approach is proposed by Jaillet and Odoni 
in [13]. They construct optimal a-priori-routes. Such a route has a minimal 
expected length among all possible routes through the potential customer 
sites. However, this approach assumes that probability distributions about 
the future events are known. 

Flexible planning approaches do not require any knowledge about future 
events. An existing plan is updated consecutively and reactively. Se-
quenced planning problem instances Pi are solved sequentially. Such a se-
quence of decision problems P1, P2,… is called an online planning problem 
according to [3] so that the solving approach is referred to as online plan-
ning. A survey of online vehicle routing and scheduling problems is pro-
vided by [15]. Theoretical results for online repairmen dispatching strate-
gies are found in [1] and [12]. 

Dispatching systems for transport planning tasks are proposed by Slater 
[24] as well as Gayialis and Tatsiopoulos [5]. Ghiani et al. [8], Gendreau et 
al. [7], Fleischmann et al. [4] and Gutenschwager et al. [10] investigate 
dispatching systems in which decisions have to be derived in real time 
without any delay. 

An application of operations research methods to a relocation problem 
in medical rescue service is reported by Brotcorne in [2]. 

2.2 Verbal Problem Outline 

Whenever a customer mentions an expected or real technical problem 
related to a product covered by an on-site service contract, she/he is ad-
vised to contact a call centre in order to report the problem. The contacted 
call centre agent records the information and compiles them within a cus-
tomer request r, containing all necessary technical and spatial information 
belonging to the customer and the failure-causing device. 



4      Jörn Schönberger and Herbert Kopfer 

As an initial response to the failure report the customer agrees an on-site 
visiting time window with the call centre agent. The calling customer is 
promised that a mobile service team will arrive at the corresponding loca-
tion and starts with the maintenance work within the determined time win-
dow. Since the contacted call-centre-agent typically does not know the 
complete list of reported errors an exact arrival time cannot be promised 
during the telephone call but the agreement about the time window allow 
the customer to organise that somebody will welcome the sent service 
team and it reduces the number of no-show-visits where customers are not 
at the site to meet the sent service team when it arrives. 

In order to be able to offer a reliable service level and an acceptable re-
sponse time, several call centre agents receive the calls in parallel. They 
put the received calls in a central queue of waiting requests. The task of the 
dispatcher of the group of field service teams is to decide about the way in 
which given customer demands are fulfiled by the field teams. Therefore, 
the dispatcher distributes customer site visits among the teams and deter-
mines the arrival time at the customer site. In order to keep the necessary 
operations costs as low as possible the dispatcher composes the requests 
into routes. Each service team is assigned to exactly one route and each 
route is assigned to exactly one team. The transportation plan contains all 
these routes and the routes are propagated to the service teams. A field 
team fulfils the tasks indicated in its associated route. 

In some situations, the broken down device requires an immediate inter-
vention (e.g. alarm systems, telephone systems in a company or medical 
devices in intensive care units within hospitals). Therefore, the agreed ser-
vice time window [er,lr] is close to the release time tr of r. In such a case, 
the routes of the field teams for the given day have to be revised immedi-
ately and the additional visits have to be inserted into the routes [11]. We 
investigate such a situation in this contribution. 

To satisfy the customer demands and to provide a reliable and sustain-
able service, the service providing company has to ensure 
• that a sufficiently high percentage of customer sides are averagely 

reached in time (global reliability) and 
• that each customer whose time window cannot be respected receives 

a compensation (local reliability). 
Both aspects of reliability have to be taken into account while generat-

ing and updating a new schedule. A high global reliability supports striv-
ing for a sufficiently high market share and competitive advantages. In 
case that the number of additional customer requests increases rapidly the 
overall schedule is revised and all service teams are updated. Such a situa-
tion follows an unexpected event for example if an alignment peak has 
damaged TV sets or telephone devices in a complete quarter. Under these 
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exceptional circumstances the available service teams cannot visit every 
customer site within the agreed time window. To stay in line with the 
company's punctuality policy and to offer a reliable service, the dispatcher 
can book external service teams from other companies. The decidable 
costs for the integration of external teams are quite high but often lower 
than the compensation payments to be transferred to out-of-time customers 
and the external service providers guarantee an in-time visit. However, the 
decision for externalization of a request cannot be revised in subsequent 
decision situations because the order given to an external service provider 
is obligatory. 

The goal of the planning support to be developed is to establish a plan-
ning system that allows the generation and repeated update as well as ad-
aptation of flexible transportation plans for the field teams including deci-
sions about externalization of selected requests. The flexibility is important 
because the customer requests are received successively and their arrival 
times cannot be predicted or forecasted so that only a reactive transport 
plan revision is realizable. Furthermore, in order to maintain the flexibility 
of the transport plans even in situations with an extreme workload, it is al-
lowed to violate the agreed time windows but the corresponding customers 
are paid compensation. 

2.3 Online Request State Update 

In order to consider the successively arriving additional requests, we pro-
pose to update the existing transportation plan reactively after the addi-
tional requests become known. 

Let ti denote the i-th time when additional requests become available 
and let R+(ti) represent the set of additional requests, released at ti. After 
the last transportation plan update at time ti-1, several requests have been 
completed. These requests are stored in the set RC(ti-1,ti). Then the request 
stock R(ti) at time ti is determined by R(ti) := R(ti-1) + R+(ti) − RC(ti-1,ti). 

The life of a single request r consists of a sequence of states to which r 
belongs. Initially, when r enters the transportation system it is known but 
not yet scheduled (F). If r is assigned to an own vehicle for execution it is 
labelled by (I) or by (E) if r is assigned to an external service partner. A 
request whose completion work at the corresponding customer site has 
been started but not yet finished is labelled as (S). The final stage (C) of r 
indicates that r is completed. 

Every time a transportation plan update becomes necessary, the current 
states of known requests from R(ti) are updated. The state (F) is assigned 
to all new requests from R+(ti). For all requests contained in RC(ti-1,ti), their 
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state is updated from (I) or (E) to (C) and requests whose on-site execution 
have been started but not yet completed receive the new state (S) that re-
places their former state (I) or (E). Now, the scheduling algorithm is 
started that carries out the necessary transportation plan updates. From the 
updated transportation plan the information about the intended type of re-
quest execution of all requests labelled as (F) or (I) is taken. The state of 
an (I)-labelled requests is updated to (E) if it has been decided to out 
source this request. Otherwise, the state of this request remains unchanged. 
Finally, all (F)-labels of externalized requests are replaced by (E)-labels 
for subcontracted requests and (I)-labels replace the (F) labels for the re-
maining requests from R+(ti). 

2.4 Statement of the Scheduling Problem 

The decision whether a request should be assigned to an own team or 
given to an external partner cannot be solved uniquely for each request. A 
complex decision problem must be solved every time the currently valid 
transportation plan has to be updated, considering simultaneously all as-
signable requests, which are labelled by (I) or (F). It has to be decided for 
all these requests whether they are definitively subcontracted and given to 
a service partner for execution or if they should be assigned for the first 
time to one of the available own vehicles represented by the elements of 
set V(t). In order to find the minimal cost assignment, we propose the fol-
lowing optimization model. 

Let Ω(t) denote the set of all possible request sequences p=(p1,…,pn(p)) 
representing the order in which the contained customer requests, selected 
from R(t), are visited. Request r is contained in p if and only if the parame-
ter µ(r,p) is set to 1. The vehicle v that has been selected for request r in 
the last transportation plan is denoted as Ψ(r). If r is labelled as (I) then 
Ψ(r)∈V(t), otherwise Ψ(r)={}. 

We assume that each p∈Ω(t) holds for the following two properties: 
• The final entry pn(p) of p refers to the depot to which all vehicles re-

turn. 
• If the first entry p1 refers to a request labelled currently as (S) then the 

departing time from p1 cannot precede the finishing time of this re-
quest.  

The following two binary decision variable sets are used to code the 
necessary decisions. The variable up is set to 1 if and only if sequence 
p∈Ω(t) is selected for vehicle v∈V(t). Furthermore, yr is set to 1 if and 
only if request r∈R(t) is subcontracted. 
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We are looking then for instantiations of the above decision variables 
that minimizes the costs C({xpv},{yr}) but considering that 

1. Each vehicle is assigned to exactly one (maybe an empty) path 
from Ω(t). 

2. Each request is contained in at most one of the selected paths. 
3. A request r labelled by (S) cannot be assigned to another vehicle 

as Ψ(r). 
4. If request r is labelled by (E) then yr=1. 
5. If vehicle v is assigned to p then p1 must correspond to the cur-

rent location of vehicle v. 
We desist from giving the formal mathematical statement of the above 

five constraints since we do not need them in the remaining presentation. 
The objective function C({xpv},{yr}) calculates the costs associated to 

the instantiations of the two decision variable sets. It is the sum of the 
travel costs for the own deployed vehicles plus the sum for subcontraction 
fees and penalties to be paid for late arrivals at customer sites. Therefore, it 
denotes the costs for the associated transportation plan. 

2.5 Artificial Test Cases 

In order to evaluate different dispatching approaches and to control the 
severeness of the observed scenario, we have derived a set of artificial test 
instances. Each instance is defined by a special instantiation of a set of pa-
rameters. Different scenarios can be modelled by adjusting these parame-
ters. 

Two different kinds of dynamic routing scenarios are referred in the sci-
entific literature. In the first scenario type, the number of demands that are 
released during a specific time interval remains unchanged. It is possible to 
adapt the available resources in such a situation so that all additional de-
mands can be served in time. For this reason, such a scenario is called a 
balanced scenario. In case that the number of additionally released de-
mands during a specific time interval varies, the scenario is denoted as a 
peak scenario. Here, it is hardly possible to adapt the available resources 
in advance. 

Pankratz [18], Lackner [16] as well as Mitrović-Minić et al. [17] pro-
pose artificial benchmark instances for evaluating different dispatching 
strategies. In all these instances the number of additional requests for a 
given time interval remains equal as described for the balanced scenarios. 

Gutenschwager et al. [10] and Sandvoss [22] use real world data sets for 
their experiments in which the intensity of incoming demands varies over 
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time. Such instances represent examples of a peak scenario. Neither a pa-
rameterization nor a classification of these instances is possible. 

To simulate peak scenarios we first generate a balanced stream of in-
coming customer demands over the complete observation time period. A 
second stream is generated for a part of the observation period. Both 
streams are than overlaid so that during the period in which the second 
stream is alive, the balanced stream is interrupted and a higher number of 
requests must be scheduled. 

The balanced stream of incoming demands for the observation period 
[0,Tmax] is generated by successively drawing requests from the Solomon 
instance P [25]. At time trel=0, n0 demands are drawn randomly from P. 
Then, the release time is updated by trel:= trel +∆t. For this new release time, 
n demands are drawn from P at random. For each selected demand r, its re-
lease time is set to trel. The original service time window [er,lr] of r is re-
placed by [trel+er, trel+lr]. Additional demands are generated as long as 
trel≤Tmax. 

The second stream of demands is generated to simulate a peak of de-
mands. For the first generated release time 0, ∆t ,2∆t ,…, n1∆t no demands 
are released. For the next n2 release times (n1+1)∆t,…,(n1+n2) ∆t ∆m de-
mands are specified as described above. For the remaining release times, 
no additional demands are given. 

All vehicles specified in P can be used. 
Consequently, each scenario is described by the triple (P, dpeak, ∆m). In 

this investigation, we use the four Solomon cases R103, R104, R107 and 
R108 to generate request sets. The peak duration has been set to dpeak=200 
time units and the peak high is fixed at ∆m=100 additional request. 

3 Online Optimization Approach 

For solving the instances of the online decision problem introduced in 2.4 
we use a Memetic Algorithm realizing a hybrid search strategy consisting 
of a genetic search and a local 2-opt improvement procedure. The genetic 
search is realized by a µ+λ-population model [21] evolved by the applica-
tion of the PPSX-crossover-operator [23] and a mutation operator that re-
places arbitrarily selected operations between routes, moves operations 
within selected routed as well as inversing the visiting order of subse-
quences of selected routes.  

The initial population is generated using the Push-Forward-Insertion-
Heuristic proposed by Solomon [25]. One half of the initial set of solution 
proposals is generated by using the heuristic followed by some random 
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proposal modifications and the other half is generated purely at random 
without applying any biasing procedure. 

The evolution process is stopped dynamically if the average fitness of 
the evolved population does not improve for 10 generations. 

Every time a new decision problem instance has been stated the Me-
metic Search Algorithm is re-started. Initial experiments, in which parts of 
the final population of the last instance solved are used to seed the initial 
population of the recent instance, failed because the recent population con-
verges too rapidly even if the crossover and mutation probability are de-
termined adaptively. For this reason, a complete new initial population is 
formed using the seeding approach described above.  

This re-start approach has been evaluated within a simulation experi-
ment. Within this experiment, we set the costs as follows: The travel costs 
for an own vehicle (self-fulfilment-mode) are set to one money unit (MU) 
for each travelled length unit and a too late arrival at a customer site is pe-
nalized by 25 MU. For each subcontracted request r the fees to be paid are 
calculated in two steps. First, the tariff distance d(r) is calculated as the 
Euclidian distance between the depot location (as defined in the considered 
Solomon instance) and the customer site location. The tariff to be paid is 
then determined as 1,1⋅d(r), which means that the costs for each subcon-
tracted distance unit are 10 percent higher than the costs for travelling the 
distance with an own vehicle as done in the self fulfilment mode. The ex-
ternally given target punctuality ptarget is set to 80%. 

The scenarios introduced in 2.5 have been simulated in three independ-
ent runs each and the achieved punctuality has been recorded. After the 
runs, the averagely observed punctuality has been calculated for all re-
planning times. The resulting curve is shown in Fig. 1. The horizontal axis 
shows the on-going time and the vertical axis represents the averagely ob-
served punctuality, in the remainder referred to as pt. 

Immediately after the demand peak is over and the requests released 
during the peak are executed (starting with time point 1800) the averagely 
observed punctuality collapses and reduces from over 80% down to less 
than 45% at time 2600. After this time the punctuality re-increases slowly 
but hardly reaches the intended value of 80% again within the observation 
time interval. 

The presented results show that the punctuality rate cannot be kept on an 
acceptable level after the demand peak. Even the penalization of too-late-
visits cannot prevent the significant and long lasting reduction in the ser-
vice quality. Although subcontraction can help to reduce the number of 
time window violations, this fact is not recognized by the myopic schedul-
ing algorithm. 
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4 An Adaptive Online Optimization Approach 

This section is about the definition and integration of a model pre-
processing procedure that supports keeping the punctuality level on an ac-
ceptable level even during and after phases in which the incoming demand 
is significantly increased. Subsection 4.1 is about the definition of the pro-
cedure, Subsection 4.2 describes the control of the pre-processing and 
Subsection 4.3 describes its integration into the existing online optimiza-
tion framework. 

4.1 Model Pre-Processing 

From the numerical results reported at the end of Section 3 we conclude 
that the pure myopic re-solving of the same type of optimization model in-
stances is unable to cope with the challenges caused by the environmental 
shift. The subcontraction is not used before all available own vehicles are 
deployed because externalizing a request is more costly than serving it 
with an own vehicle and often the penalties to be paid are lower than the 
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Fig. 1: Average punctuality values pt 
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additional costs for request subcontraction. Consequently, subcontraction 
is not used for reducing the length of the queue of waiting requests if the 
punctuality decreases. This is caused by the blindness of the pure online 
approach for detecting quantitative as well as qualitative changes during 
the transition from one problem instance to the next one. If at a particular 
time a new problem instance is stated then only the available data is col-
lected for defining the new model assuming that the model or model type 
is still appropriate for the new situation. No data analysis is carried out in 
order to compare the new situation with the situation when the last model 
was stated that fitted appropriately to the existing environment. 

In order to enable the online decision approach to cope better with the 
changing number of released requests we propose a simple data analysis 
tool that detects early a decrease in the punctuality rate and that enforces 
an obligatory subcontraction by deciding about the subcontraction before 
the current model instance is given to the scheduling algorithm for solving. 
The decisions made in the pre-processing step cannot be revised in the op-
timization run invoked afterwards, so that the formal decision model given 
to the scheduling routine is manipulated. In the considered case, the deci-
sion model is an optimization model so that the manipulation can only af-
fect the objective function associated to the model, the set of constraints or 
the domains of allowed values for the decision variables. 

Since neither the modification of the objective function nor the adapta-
tion of the constraint set can be controlled adequately, the pre-processing 
procedure targets the adaptation of decision variable domains. The basic 
idea for the pre-processing is to determine a percentage of requests that is 
surely outsourced by shrinking the domain Sr={0,1} of selected binary de-
cision variables yr representing the decision about subcontraction or inter-
nal fulfilment by own vehicles down to Sr={1}. Since all subcontracted re-
quests are surely served within the agreed time interval, they can be served 
as early as possible and do not lead to an increase of requests served after 
the agreed time windows are closed. 

4.2 Pre-Processing Control 

In case that the punctuality rate is decreasing and runs into danger to fall 
below the target value ptarget, the model pre-processor selects some requests 
which are definitively subcontracted. Answers have to be found for the fol-
lowing two questions: 
1. How many requests should be selected in the pre-processing step for 

subcontraction? 
2. Which requests should be selected for subcontraction? 
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In order to determine an adequate number of requests to be subcon-
tracted by the pre-processor, we map the currently observed punctuality pt 
to a value γ(pt) between 0 and γMAX representing the percentage of the next 
released additional requests for which the subcontraction is decided in the 
pre-processing step. As long as pt lies significantly above the target value 
ptarget, no enforced subcontraction is necessary, this means as long as pt ≥ 
ptarget+α the percentage γ(pt) should be 0. If the current punctuality has 
fallen significantly below ptarget, all additionally released requests should be 
subcontracted, so that γ(pt) should be γMAX as long as pt ≤ ptarget-β. In case 
that pt increases between ptarget-β and ptarget+α the percentage γ(pt) of surely 
subcontracted requests decreases from γMAX down to 0. In case that pt de-
creases between the two mentioned values γ(pt) should increase from 0 up 
to γMAX. To achieve this, we use the following piecewise linear function 
G(y) defined by 
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as shown by an example in Fig. 2 where γMAX=0.6, ptarget=0.5, β=α=0.1 is 
assumed. 

In order to determine the requests that are subcontracted within the pre-
processing, we first calculate the number N of additionally released re-
quests at the next time when requests arrive. Then, G(y)N of these re-
quests are selected randomly to be outsourced (the function · calculates 
the next larger integer value of a given fractional value). 

4.3 Pre-Processing Integration in Online Optimization 

In order to apply the model pre-processing within the online optimization 
approach introduced in Section 3, the percentage of requests selected for 
externalization in the pre-processing step is re-calculated every time a new 
call of the scheduling algorithm becomes necessary. Let t-∆t denote the 
time at which additional N requests become known. The so far followed 
schedule determined at time t requires a revision in order to consider the 
additional requests. Immediately after the requests are defined, the so far 
valid punctuality pt is mapped to the percentage G(pt) of requests that will 
be outsourced as the result of the model pre-processing. Then the number 
G(pt)N of requests to be sourced out is calculated and the corresponding 
requests are drawn randomly from the just released N additional ones. Af-
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ter that, the scheduling algorithm is re-started for updating the existing 
schedule. The decisions made in the pre-processing step cannot be revised 
within the execution of the scheduling procedure. 

5 Assessment of the Pre-Processing Procedure 

In order to evaluate the impacts of the proposed model pre-processing we 
have carried out several numerical experiments that are reported in this 
section. Subsection 5.1 is about the setup of the performed experiments 
whereas Subsection 5.2 presents the main achieved results. 

5.1 Experimental Setup 

We have used the same dynamic environment as described in Section 3. 
Again, the target punctuality ptarget is defined to be 0.80. We set α=β=0.05. 
Therefore, an intervention within the pre-processing step starts if pt falls 
below 0.85 and reaches its maximal intensity γMAX if pt falls further below 
0.75. The maximal intensity γMAX has been varied in the experiments. In 
addition to the case γMAX=0.0 (carried out in Section 3), we have tested the  
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intensities 0.20, 0.40, 0.60, 0.80 and 1.00 so that we can analyse the im-
pacts of an increasing intervention intensity. 

As described in Section 3, the penalty value to be paid for a too-late ar-
rival is set to 25 monetary units. 

Each of the four scenarios R103, R104, R107 and R108 defined in Sub-
section 2.5 are simulated three times in order to achieve average results 
from the randomized memetic algorithm scheduler, so that 4×3=12 simula-
tions are executed for each γMAX-value. Since we fixed γMAX to six different 
values 72 simulation runs are carried out overall. 

5.2 Presentation and Discussion of Numerical Results 

We have recorded the number of queued requests within the executed 
numerical experiments for different maximal interventional values γMAX. 
For each γMAX-value, the development of the averagely observed queue 
length Q(γMAX,t) is shown in Fig. 3. Before the demand peak starts, an av-
erage queue-length of values between 80 and 100 waiting requests is re-
ported. Immediately after the demand peak starts at time t=1500, the val-
ues of Q(γMAX,t) explode and increase up to 270-300 requests at time 
t=2000. Afterwards, the queue-length becomes smaller and smaller with 
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Fig. 3: Number Q(γMAX,t) of averagely queued requests 
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ongoing time. Finally, they stabilise on the initially observed values be-
tween 80 and 100 waiting requests. 

In order to analyse the impacts of the significant increase of waiting re-
quests, we have observed the three parameters V(γMAX,t) representing the 
average number of routed own vehicles, p(γMAX,t) showing the achieved 
average punctuality as well as the average ratio R(γMAX,t) giving the aver-
age percentage of requests served by own vehicles. The development of 
V(γMAX,t) is shown in Fig. 4 As a first reaction after the detection of the in-
creasing values of Q(γMAX,t), additional own vehicles, which has not been 
used so far, are deployed for serving the additional requests. During the 
demand peak from time 1500 until time 1700, V(γMAX,t) increases very 
quickly from 10 up to the maximal available number of vehicles, which is 
25. After the demand peak (starting from time 2500), the number V(γMAX,t) 
of routed vehicles reduces. For the larger values of γMAX=0.6, 0.8, 1.0, it 
falls down below 5 and afterwards remains constantly between 5 and 10. 
For smaller maximal intervention intensities γMAX=0.0, 0.2, 0.4 the addi-
tionally used vehicles are successively taken out of service. 

The averagely observed punctuality values p(γMAX,t) are compiled in 
Fig. 5. Independently of the value of γMAX the punctuality can be saved on 
a nearly unchanged level above the target level 0.80 for the demand peak 
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Fig. 4: Number V(γMAX,t) of averagely deployed own vehicles 
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time. After time t=1700, a significant and rapid decrease of p(γMAX,t) is 
shown. The minimally observed value for p(γMAX,t) as well as length of the 
interval in which p(γMAX,t) remains below the target punctuality ptarget 
strictly depend on γMAX. The most severe decrease is observed for 
γMAX=0.0 and is 0.45. The target value remains unreached throughout the 
remaining observation period. If γMAX is increased the minimal value of 
p(γMAX,t) also increases. For γMAX=1.0 the punctuality falls only down to 
0.70. Furthermore, the target value ptarget=0.8 is re-achieved at time 2700 
and does not fall below the target value again. The duration of the period, 
in which the punctuality lies below the target value decreases with increas-
ing γMAX. 

In Fig. 6 the percentage R(γMAX,t) of requests completed by own vehi-
cles is presented. Again, the figure of the curve of R(γMAX,t) depends upon 
the value of γMAX. Clearly, for γMAX=0.0, R(0.0,t) remains unchanged just 
below 1.00 (now intervention is performed during the observation period). 
For γMAX-values larger 0, R(γMAX,t) decreases immediately after the de-
mand peak has started. As larger γMAX is as quicker is the decrease of 
R(γMAX,t) and the minimal observed value of R(γMAX,t) decreases with in-
creasing γMAX-value. However, after the minimal value has reached, the 
percentage of internally served requests does not increase significantly any 
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Fig. 5: Average punctuality values p(γMAX,t) 
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more and remains on a level quite distinct from the initially observed value 
just below 1.00. 

In order to understand the aforementioned results, we study the inter-
vention intensities G(γMAX,t), that have been recorded during the performed 
numerical experiments. Fig. 7 shows that independent from the value of 
γMAX, each curve has two peaks immediately following each other. Each 
peak represents an interval during which the intervention intensities are 
significantly increased and the obligatory LSP-incorporation is enforced. 

The first peak is observed immediately after the demand peak has 
started. It lasts from time 1500 until 1700. After this time first peak is over 
and the intensities fall back down to values between 0.10 and 0.15. Just af-
ter these values have been reached, the second peak of the γ-values is initi-
ated at time 1800. It lasts until 2500. From this time on, the γ-values fall 
back down to values below 0.30 for the remaining observation interval un-
til time 5000 is reached. Just after the demand peak leads to a decrease in 
the observed punctuality, the scheduler reacts and deploys more vehicles. 
However, not enough vehicles are available to serve all additional requests 
so that the punctuality further decreases which leads to an increase in the 
intervention intensity according to the intervention control introduced in 
Section 4. The first peak of the G(γMAX,t) curves expresses the initial inter-
vention. This overruling of the cost-based deployment heals the punctual-
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Fig. 6:  Averaged percentages R(γMAX,t) of requests completed by own vehicles 
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ity decrease as long as the queue length is not too large (at the beginning of 
the demand peak). As soon as the number of queued requests increases fur-
ther, the punctuality P(γMAX,t) cannot be supported anymore by enlarging 
the vehicles because their number is limited. For this reason the punctual-
ity falls further which triggers now a significant increase in the interven-
tion intensity expressed in the second peak of the G(γMAX,t)-curves. 

As it can be seen from the experimental results presented above that the 
autonomous control by adaptively determining the degree of obligatory re-
quest intervention supports striving for ensuring the service reliability even 
in situations with unexpected events, e.g. demand peaks. However, since 
the costs for the externalization of a requests are larger than the costs for 
serving this request with an own vehicle, the interventions for ensuring the 
punctuality causes additional costs as it can be depicted from Fig. 8. Dur-
ing the experiments, we have recorded successively the costs that were re-
alized by letting the own vehicles run, paying external service partner for 
serving outsourced requests and paying penalties to customers for late ar-
rivals. The averaged costs observed for each maximal intervention level 
γMAX are denoted as C(γMAX,t). The qualitative figure of the curves in Fig. 8 
is independent from γMAX. With the introduction of the interventions the 
cumulated costs increases overproportionally. After the intervention peaks 
are over, the costs further increases linearly. At the end, the total costs 
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Fig. 7: Averaged intervention intensities G(γMAX,t) 
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C(γMAX,5000) grow if γMAX is increased, so that the most intensified inter-
ventions causes the highest additional costs. 

6 Conclusions 

We have studied the impacts of considering longer term reliability infor-
mation in the short term plan update for the management of a transport 
system in dynamic environments. By increasing the weight of this type of 
information in the plan update decision making we achieve a higher reli-
ability level compared with a pure myopic strategy. 

With respect to the findings from the numerical experiments we are now 
prepared to formulate initial answers to the questions asked in the intro-
duction of this article. 

In pure myopic decision making the disregard of longer term goals in 
the particular decision problem instances leads to a complete failure with 
respect to the achievement of the longer term goals. These goals are not 
addressed at all. 

The myopic goals(s), however, should be considered as the major goal 
to be followed in updating the existing transportation plan. A model pre-
processing that fixes selected decision variables a way which helps to fulfil 
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Fig. 8: Averaged cumulated costs C(γMAX,t) 
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the longer term goals seems to be an adequate tool to integrate both short 
and longer term goals in the automatic decision making. The autonomous 
and self-adaptive adjustment of the decision variable domains seems to be 
adequate. 

The realized cumulated costs are higher as soon as the consideration of 
the fulfilment of longer term goals is carried out in solving the instances of 
the online decision problem. However, the solution quality concerning the 
reliability issues is significantly improved compared to a pure myopic cost 
minimization. The additional amount of cumulated costs in the scenario 
with the model pre-processing can be understood as the costs for the addi-
tional consideration of the longer term goals. 

We will continue with our research and investigate further the idea of 
autonomous model-adaptation in online planning approaches. Our next ef-
forts will be spent to investigate ideas to reduce the additional costs related 
to the overruling of the minimal cost optimization strategies in solving the 
short term re-planning instances. 
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