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Abstract. This paper presents the development and implementation of energy-
efficient parameter adaptation for a grey-box model representing the tempera-
ture profile in spatial points of the interior of a refrigerated container with the 
aim to improving the logistics of perishable goods. A mixed linear / non-linear 
singe-input-single-output grey-box model was selected for accurate prediction 
of the temperature behavior of the loaded food products. The algorithms were 
specially modified to reduce the matrix dimensions, implemented in Matlab, 
and applied to experimental data for validation. Apart from being highly accu-
rate, the predictions comply with the desired figures of merit for the implemen-
tation in wireless sensor nodes, such as high robustness against quantization and 
environmental noise. The OSGi framework, which allows for easy update of 
software bundles, was selected as basis of the software implementation on the 
iMote2 as sensor network platform. Performance measurements have shown 
that this method provides a  fast and accurate prediction with high energy effi-
ciency. 

Keywords: System identification, temperature, organic heat, feedback-
hammerstein, OSGI, Java. 

Introduction 

Research has been done in the past to estimate the temperature profile inside refrige-
rated containers. Several options have been investigated: mathematical approaches as 
presented in [1], K-ε models as proposed in [2], and several numerical models as re-
viewed in [3]. With the exception of [4], in which the effect of the pallets is consi-
dered; usually the focus is put on the cold air flow as the main factor governing the 
temperature pattern inside a container and the effects due the cargo presence is sub es-
timated. 

Babazadeh [5] suggested an approach that  takes the effect of the cargo to the tem-
perature into account. He proposed the use of wireless sensor nodes (WSN) to meas-
ure the ambient parameters in the surroundings of a spatial point of interest and the 
use of system identification to estim77ate the parameters of a linear Multi-Input Sin-
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gle-Output (MISO) system and concluded that in order to have a good estimation, it is 
necessary to have a high number of training samples and many inputs to the system. 

In this paper an alternative Single-Input Single-Output (SISO) grey-box model is 
presented to predict the temperature inside the container under the presence of perish-
able goods with the aim of reducing the complexity and preserving the accuracy. The 
proposed model provides a meaningful description of the factors involved in the phys-
ical system including the effect of transporting living goods such as fruits and vegeta-
bles. The starting point is based on the physical relations; subsequently, a tuning pa-
rameter for the specific case of bananas is found by simulations.   

Model of  the system 

The factors affecting the temperature distribution inside a refrigerated container are il-
lustrated in Figure 1. The cold air flows from bottom to top through the gratings in the 
floor and through the spaces between the pallets, and eventually the air is drawn off 
the channel between the pallets and the container ceiling.  

A naive representation of the container can be done by a SISO linear dynamic sys-
tem in which the input is the air supply and the output is the spatial point of interest. 
However, in reality this is only a simple model of the main contributor to the tempera-
ture pattern, the air flow.  Several other factors affect the speed of the cooling down.  

To improve the accuracy of the model, other contributors are considered as well: 
first is the heat, produced by respiration of living goods such as fruits and vegetables; 
second is the thermal loss, affecting the correct cooling of the goods; finally, unpre-
dictable temperature variations due to highly changing external climatic conditions 
during transportation. 

 
 
 
 
 
 
 
 
 
 

Fig. 1. Factors affecting the temperature inside a refrigerated container. 

 
The linear SISO black-box model which represents the air flow is represented 
mathematically by  a linear dynamic system H, in the discrete domain, given by the 
Equation 1.           
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Where �� and �� are the orders of the system polynomials, �� … ��� , �� … ��� are the 
polynomial coefficients, and � is the delay operator in discrete domain. 

An attenuator, α ,models the isolation loses of the air supply temperature and is 
modeled to affect the input of the dynamic system.  The external climatic conditions 
are unknown in advance, therefore considered a statistical process. The output of the 
Moving Average (MA) process, which is in fact white noise (WN) filtered by the fil-
ter C represented in Equation 2 added to the output of the dynamic system, models 
them.  

������ � 1 � ����� �  … � �������                                   �2� 
 

To model the organic heat, it is necessary to use experimental data. Figure 2 [6] 
shows a family of curves for organic heat in the case of bananas. A proportional 
relationship between of the organic heat and the rippening state is observed.  

 
 
 
 
 

  

 
 
 
 
 
 

Fig. 2. : Heat Production of bananas. 

 
Equation 3 represents the organic heat relation with respect to the temperature.  !"#$% 
is the heat production in Watts, & is a constant which is fixed for a certain type of fruit 
and rippening-state in 1/OC, ' is the fruit  temperature in OC, and ( is a scaling factor 
which depends of the amount of food and is given in kilograms. 
 

 !"#$% � ()*+                                                     �3� 

 

Finally, the block diagram to represent the input-output relations of all the factors is 
built. It is shown in Figure 3. The air flow dynamics are represented as a feed-forward 
block as it is the most important contributor. The isolation losses affect the correct 
cooling of the goods before the dynamic system and  the noise effect has an additive 
effect on the output.   
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      The contribution of the organic heat  depends on the cooling temperature inside 
the container. Simultaneously, it has a small additive effect in the input of the linear 
dynamic system as the air flows through the pallets and is slightly warmed. It is 
represented by a static exponential feedback. The resulting block diagram, in which a 
linear dynamic system has a non-linear feedback corresponds to a Feedback-
Hammerstein (FH) configuration [7]. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Model of the system 

Parameter adaptation algorithm 

In [7] a Parameter Adaptation Algorithm (PAA) was developed to identify the 
parameter-set of a FH system. It uses an intermediate variable 12�3� and converts the 
non-linear system into a pseudo-linear one. Its principal advantage is that the 
conventional recursive matrix-based linear system identification algorithms as those 
presented in [9] can be applied to estimate the parameter matrix ϴ. The recursive form 
of those algorithm is given by Equation 4. Where 5�3� is the prediction error as 
described in Equation 5,  P(t+1) is an adaptation matrix to perform the minimization 
of ε using Recursive Least Squares method, and φ�t� is the observation matrix that 
contains the input and the output data. λ�3 � 1� in Equation 6 is the so called 
Forgetting Factor (FF). 

 

Θ�t�1��Θ�t��P�t � 1�φ�t��+5�3�                                     �4� 
5�3� � 1�3� : Θ�3�+φ�t-1�                                          �5� 

P�t�1��=�%��=�%�>>?@ A�B�
C?ACDλ�BD��E

λ�%F��                                            �6� 
λ�3 � 1� � λH I λ�3� � 1 : λH                                            �7� 

 
Guo [7]considers the non-linearity as a polynomial of order l as shown in Equation 8; 
however, the dimensions of the matrices in the algorithm would be significantly too 
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large to be applied in platforms where power consumption is an important figure of 
merit.  

 

Ky�3�� � ∑ NOyPQORS �t�                                           �8� 
 

In order to reduce the dimensions of the matrices, it was proposed to use the exponen-
tial term in Equation 3 instead. γ is to be determined and it remains constant, while β 
is a parameter to be identified as it depends on the amount of fruit being transported. 
The linear term of the Equation 8 needs to be extracted to be included in the 
polynomial .I����� of the equivalent SISO pseudo-linear system. Expanding it into a 
Taylor series and rearranging, the summation of the non-linear coefficients of the 
exponential function can be calculated using Equation 9. The non-linear coefficients 
and an offset  are on the left hand of the equation. 

∑ �*/�%��U
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The equivalent pseudo-linear system for an exponential non-linearity is shown in 
Equation 10. 

.I�����y�t��  ��Z0�3� ���()*/�%� : ��(1�3� �  �I	
��
��

12�3� �  C�����)�3�      �10� 
 

The resulting coeficients of the polynomials .I����� and -I����� are given by 
Equation 11 and 12. 

 

�OI � �O : �(&��O                                                       �11� 
-I����� � �X��X � … � �������                                                               �12�    

 
And the  intermediate variable is shown by Equation 13. 

 

12�3� � ��]Z0�3� � (�)*/�%� : &1�3��^                               �13� 
  

The choice of the forgetting factor in the algorithm is often critical. In theory, it must 
be one that converges. On the other hand, if it is less than one the algorithm becomes 
more sensitive and the estimated parameter changes quickly making the convergence 
faster. A more complex solution is to allow it to vary with time, lower than one at the 
beginning but tending to one.  
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Fig.4. Types of forgetting factors. 

Figure 4 illustrates three different types of FF. The first case is obtained by making 
λH, and λ�3� in Equation 7 equal to one. It is called Decreasing Gain (DG). In the 
second case, the Constant Forgetting Factor (CFF) λ�3� is set to a value smaller than 
one and λH set to one. Finally, the Variable Forgetting Factor (VFF) uses a value of 
λH smaller than one and recalculates λ�3� for each iteration.  

Prediction algorithm 

The predictions are made using the estimated parameters in the model. Figure 5 
shows experimental data sets from a container transporting bananas. It can be 
observed how the air supply  is kept constant after some days.  For the prediction 
algorithm, 0�3� is set to the value of the last sampled input temperature of the 
parameter adaptation process. Similarly, the initial predicted output value is set to the 
last acquired value of the output. Equation 14 to 17 describes the prediction 
algorithm. m is the number of iterations used for the PAA. 
 

0_"`a�3� � 0�b�                                                     �14� 
1_"`a�b� � 1�b�                                                     �15� 

1_"`a�3�� Θ+�m� φ_"`a  �t-1�                                    �16� 
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Table 1. : Elements of the elements in the algorithm matrices. 

Symbol Arrangement of the elements into the matrices 

φ�t� 
]:1�3� ··· : 1�3 : �� � 1�, 0�3 : 1�, �)*/�%�

: &1�3��, 12�3 : 1�. . . 12�3:���, 5��3�···5��3 : �i � 1� � j 

Θ
+�3� 

k
l
l
m
��I … ���

I , ��Z, (��, �X ��n … ��� ��o , �� … ���

p
q
q
r
 

φ_"`a(t) 
]:1_"`a�3� ··· : 1_"`a�3 : �� � 1�, 0�b�, �)*/defg�%�

: &1_"`a�3��, 12_"`a�3 : 1�. . . 12_"`a�3:���� ^ 

Θ
+�b� 

k
l
l
m
��I … ���

I , ��Z, (��, �X ��n … ��� ��o
p
q
q
r
 

Determination of  γ   

Considering the linear dynamic system H as the most important contributor to the 
temperature profile, an exponential discrete time decaying system like the one pre-
sented in Figure 5 can be described as of the order of one with its unique pole on the 
real positive axis. The closer the pole to one the higher the delay of the system.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Banana data sets. 

 
The selection of γ is a key factor in the precision of the algorithms. To find a 
trustworthy & parameter that characterizes the respiration heat of bananas. The 
presented Feedback-Hammerstein model of linear order one and the FH parameter 
adaptation and prediction algorithms are run using  given experimental data sets. The 

0 5 10 15
14

16

18

20

22

24

26

time  [days]

T
(C

el
si

us
)

 

 

supply

dataset 1

dataset 2

dataset 3



84      Palafox-Albarrán, J., Jedermann, R. and Lang, W. 

(C) Springer DOI: 10.1007/978-3-642-19539-6_5 
 
 

Mean Squared Error (MSE) of the prediction over n samples, equivalent to fifteen 
days, is stored for several values of γ and fixed number of training days. If the stored 
values of the MSE are plotted, the local minimums are determined by the observation 
of  the MSE vs. γ curves. In Figure 6, it can be seen  that in the above mentioned plot 
for five days of training and for the data set 1, a local minimum exists for a value γ of 
0.0587. 

 

tuv �  1
� w�1"`�Q�3� : 1_"`a�3��X                                       �18� 
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Fig. 6. Prediction accuracy vs. γ 

Results 

Several figures of merit are considered for validation of the model and algorithms.  
The accuracy and the speed of convergence are of paramount importance; however, 
quantization and noise robustness are also highly desirable for implementation in a 
WSN. Only the linear orders of one and two are considered to avoid computation of 
complex conjugate poles that would characterize oscillations. 

To observe the speed of convergence and the accuracy of the predictions with re-
spect to the number of training days, parameter estimation and a prediction in Matrix 
form are done (See Table 1) for a fixed number of training days. Subsequently, MSE 
vs. Training days graphs are plotted.  Assuming a quantization level of 0.2OC, a Mat-
lab script was written to assign the nearest value of the quantization grid to the input 
and the output datasets.  The results of the predictions using the quantized datasets are 
overlapped with the results of non-quantized. 

Similarly, to determine the noise robustness, MSE versus the signal to noise ratio 
(SNR) is plotted. Several noise levels of white noise were added to the output of the 
data set 1, and the resulting signals were applied to PAA and prediction algorithms 
with fixed number of training days.  
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Table 2. Table 3. Summary of simulation results.  

 
 

Simulations were done for two types of data sets. First, the experimental data of ba-
nanas were used to include the presence of organic heat. Secondly, the data sets cor-
responding to a cheese experiment, which does not present organic heat, were consi-
dered. A summary of all simulation results is presented on Table 2. 

FH vs. linear models in the presence of organic heat 

From the simulations it is observed in Figures 7(a) and 7(b) that if linear methods are 
applied to the banana datasets, the accuracy of the results for different sensor 
positions of are not sufficient. Quantization robustness is improved with the linear 
order of one and the speed of convergence is better using CFF. Even in the best of 
cases acceptable prediction accuracy can only be achieved after more than five days 
of training.   

 
                (a)                                       (b)                                           (c) 
 
             Fig. 7. ARX of order one  in the presence of organic heat. 
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It is also observed in Figures 7(b) and 7(c) that FH identification algorithms are the 
best to achieve fast convergence speeds. In the best cases, less than 3 days of training 
is sufficient to achieve good predictions. However, the plots are made for the data 
from three days onwards to avoid the visualization of the effects in MSE due to the 
set point variations in the reefer supply temperature. Linear system orders of one are 
in all cases better than order of two, both in the speed of convergence and the quanti-
zation robustness.  Decreasing Gain must be optimal to preserve the accuracy and the 
quantization robustness.   

Concerning the noise models, results of the simulation of Feedback-Hammerstein 
with MA process are worse than when modeled as white noise (WN). It affects the 
accuracy and the quantization robustness 

FH vs. linear models in the absence of organic heat 

In the case of cheese data set, the linear methods accuracy results are better than that 
of the Feedback-Hammerstein as can be observed in Figure 8. Modeling noise as 
white gives better quantization robustness than modeling it as MA process.  

The use of forgetting factors does not have a big impact in the results of ARX 
predictions; however, Constant Forgetting Factor is slightly better for ARMAX 
predictions.  Linear orders do not affect the simulated predictions, but an order of two 
is selected because it can model more accurately if the behavior of the system is not 
purely decaying. 

 
                              (a)                                                                      (b) 

Fig.8. Comparison of FH and linear methods in the absence of organic heat. 

 Noise Robustness 

The noise was added to validate FH and linear models; also for both of them the 
accuracy is compared with and without the MA model.  Maximum Signal-to-Noise 
Ratio to obtain a good prediction is observed to be around 43 dB for all of them with 
the exception of ARX which has a maximum value of 47 Decibels as shown in Table 
2.  
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Fig. 9. Noise Robustness for FH method 

Prediction improvement 

The described approach was originally developed based on an experiment in 2008 
with records for 3 sensors (data set A). Two new data sets with 16 sensors each, 
which were recorded in 2009 [9] in two separate containers (data set B and C), were 
used to cross validate the approach.  

FH algorithm of linear order of one was applied to all data sets; neither quantiza-
tion nor forgetting factor is used. For the initial parameter settings, the pole and zero 
of the feed-forward linear system was set to 0.9 and 0.0; β was set to 2.   

The previously obtained value of γ equal to 0.0587 is used to predict the tempera-
ture inside the containers for many spatial positions. The results are compared to the 
predictions for the datasets shown in Figure 5 and resumed in Table3. A good average 
is observed for the three containers; however, in some positions the predictions are 
not as accurate as is observed in the Maximum column.     

A second approach is to select γ according to the position of the pallets inside the 
container. The method to find γ, described previously, is applied to all the new con-
tainer datasets. 

It is observed that an improvement in the accuracy of the predictions can be made 
if two different values of γ are selected: one for pallets close to the door-end, and one 
for pallets close to the reefer supply. In Table 3(b) it is resumed the prediction results 
if values of  0.0525 and 0.055 are set respectively. 

 
 
 

10 20 30 40 50 60 70
0

5

10

15

20

25

Signal to Noise Ratio(dB)

M
S

E

FH ARX Prediction Error vs SNR 

 

 

Non-quantized

Quantized



88      Palafox-Albarrán, J., Jedermann, R. and Lang, W. 

(C) Springer DOI: 10.1007/978-3-642-19539-6_5 
 
 

Table 3. MSE prediction results 

 

 
MSE prediction results for a unique 

value of γ 

MSE prediction results for values 
of γ according to the position in-

side the container 

Container/Result Maxi-
mum 

Mini-
mum 

Average Maxi-
mum 

Mini-
mum 

Average 

Data set A 0.1893 0.0173 0.0778 0.1893 0.0173 0.0778 

Data set B 1.4558 0.0550 0.4130 0.4767 0.0279 0.0946 

Data set C 0.8888 0.0101 0.2798 0.5747 0.0201 0.1743 

Software bundle implementation and energy consumption 
measurements 

In a container scenario, energy consumption turns out to be the most limiting factor, 
and therefore, a priority consideration. Furthermore, the system should be able to in-
stall the tuned algorithm according to spatial positions and/or update it according to 
the new knowledge obtained from experimental results.    

The chosen hardware platform is Imote2 [11]. At the core of it is a PXA271 Intel 
processor, integrated with volatile and non-volatile memory, a power management IC 
to go to deep-sleep mode, a transceiver, and an antenna. Furthermore, it allows stack 
ability of additional modules to interconnect additional devices, such as, temperature 
sensor cards.  

Linux operating system is installed, and on it the Java based OSGi [12] framework 
(formerly Open Source Gateway Initiative) to enable features such as dynamic soft-
ware updates. OSGi can update and install the so-called software bundles during run-
time without interrupting the execution of the remainder of the system.   

For the evaluation of power consumption of the iMote2 the supply current was 
measured over a 1 Ohm resistor in series with the power supply wire, with a test 
probe connected in parallel to it. Additional hardware modules were detached one by 
one to measure their individual power consumption. Imote is programmed to run infi-
nitely with the Feedback-Hammerstein training algorithm and the radio is powered at 
the end of each iteration to observe the last period of training. Regarding the predic-
tion algorithm, it is considered that the iMote2 would only perform the training 
process locally and send the obtained parameters to a remote server. The server calcu-
lates the model prediction. But because the server has only very relaxed energy-
constraints compared to the iMote2, an energy analysis is not required. 

The amount of Work consumed by the algorithms is calculated by equation 20.  
 

� �  I 3                                                             �20� 

 

The required CPU time for the algorithm to perform one parameter adaptation itera-
tion was measured. Measurements showed that each iteration takes aproximately 5 ms 
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and consumes 0.9 mJ [13]; according to simulations, it is possible to predict the tem-
perature after 3 days with a sampling rate of one hour that equals to 72 iterations the  
equivalent of  only 64.8 mJ.  

 
 
 
 
 
 
 
 
 
 

Fig. 10. Program flow diagram to measure FH training time 

Conclusions 

A model to represent the factors affecting the temperature inside a refrigerated 
container transporting perishable goods was proposed. It models the effect of organic 
heat using a static non-linear feedback system, the refrigeration by a linear dynamic 
feed-forward system, and the disturbances by stochastic processes. This complex 
model can provide an accurate description of the factors involved in the physical 
system.   

The selected identification method was adapted specifically to reduce the 
dimensions of the matrices. The non-linear exponential function is used instead of a 
polynomial to preserve the simplicity of the parameter adaptation and the prediction 
algorithms. The disadvantage of the simplification is  that depending on the kind of 
fruits to be transported, it is required to tune the algorithm by a correct selection of γ 
which has to be known in advance. An improvement can be observed in the accuracy 
of the predictions if γ is set according to the position of the pallets inside the contain-
er. 

Results concludes that the FH identification algorithm is efficient when the cargo 
emits organic heat. The method of FH of order 1 is optimal to achieve all figures of 
merit. It makes accurate predictions only after three days of training and maintains 
low dimensions of matrices.  

However, if the linear method is applied to the banana datasets, a comparable 
accuracy can only be achieved after more than five days of training.  Also, results 
graphs evidence that when the goods to transport are free of organic heat, such as in 
the case of cheese, it is preferable to use a linear system instead.  

 Three days of Feedback-Hammerstein training, which is the minimum to achieve a 
good prediction, requires in total 64.8 mJ of energy on an iMote2 platform using Li-
nux as Operating System and OSGi as software framework. The latter one allows dy-
namic software updates and tuning of the algorithm according to the spatial position 
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of a mote in a container or the installation of a linear parameter adaptation algorithm 
if the cargo does not produce organic heat.  
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