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 
Abstract—A new algorithm for dynamic controlling of data 

measurement intervals in a networked sensing system (NSS) is 
presented in this paper. The method is developed on a wireless 
sensor network (WSN) for food quality supervision during the 
transportation process using containers. The artificial neural 
network (ANN) is used for data approximation due to its learning 
capability and high flexibility. At each instance, the measurement 
interval is changed dynamically depending on the stability of the 
environmental parameters in the container. The wireless sensor 
network is able to detect the possible unstable situations 
automatically with low energy consumption. Firstly, the 
performance of the dynamic control mechanism is tested in a 
simulation environment. Later, the developed algorithm is 
implemented to adjust the measurement intervals in a real 
transportation system. The new developed technique could be 
applied to decrease the power consumption in various 
applications of the networked sensing systems.  
 

Index Terms—artificial neural network, dynamic 
measurement interval, intelligent transportation, networked 
sensing system  

I. INTRODUCTION 

O transport any perishable and sensitive freight, it is 
necessary to monitor the environment in the transportation 

system online. Wireless sensor networks are appropriate tools 
to perform this logistical task due to their low energy 
consumption, high flexibility and robustness. The intelligent 
container, which is developed by CRC637 project in 
University of Bremen, combines the RFID technologies and 
wireless sensor networks for autonomous transportation 
purposes [1]. The WSN is used to monitor the environment  
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and make decentralized decisions according to the 
requirements of the transported freight. Normally, the WSN 
senses the environmental parameters, e.g. temperature and 
humidity, with a fixed sampling frequency. Although 
adjusting a high sampling rate is relatively safe but it could 
cause a lot of redundant data and high energy consumption to 
establish a stable transportation process. Basically, sensor 
nodes have extremely limited power resources (batteries). If 
the sensor nodes are able to adjust the stability of the 
environmental parameters and adapt the data measurement 
interval accordingly, the energy consumption can be reduced. 
In order to determine the interval for the next measurement, a 
predictor is needed to approximate the development trend of 
the sensor readings. The artificial neural network is chosen for 
this work due to its learning capability from the previous and 
current data values as well as the sensitivity to track the 
parameter changes. For continuous data training and 
approximation the training set and network architecture could 
be dynamically updated. In this work the developed algorithm 
is evaluated in both simulation environment and real 
application, i.e. a single-hop WSN in the container for the 
food transportation. 

II. RELATED WORKS 

Many works about the variable sampling interval were 
carried out. Irvine et al. altered the data sampling rate for low-
power Microsystems depending on the data approximation 
accuracy [2]. The Modified Adams Method was used as data 
predictor. If the prediction error exceeds the given tolerance 
(tol), the sampling step will be halved; also, when the 
prediction error is smaller than tol/2, the sampling rate will be 

doubled. Another method called variable sampling interval X  

chart (VSI X Chart) [3] was introduced by Reynolds et al. A 
target value and a signal region are given to be compared with 

the sample mean values X . A long sample interval will be 

taken, when X  is closer to the target value. If X  is close to 
the signal region, a more intensive sampling rate is used. Mark 
et al. introduced a Level-Crossing sampling approach [4]. This 
sampling method uses a number of threshold levels, which 
have the same amplitude step size. If the input signal crosses a 
level, a new sample will be taken. Many studies about 
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adaptive sample rate were based on the Level-Crossing 
approach [5, 6]. 

III. DYNAMIC MEASUREMENT INTERVAL ALGORITHM 

Fruit and vegetable transportation requires usually a 
relatively stable environmental condition. An upper and lower 
temperature boundary can be determined for different types of 
freight according to the quality loss model [7]. The algorithm 
of dynamic data measurement interval calculates the next 
sensing interval according to the difference between the 
current temperature reading and temperature boundaries and 
the predicted temperature variation (Fig. 1). Since the 
measurement interval control of the Humidity is the same as 
that of the temperature, this algorithm is valid for both 
environmental parameters; thus, this paper focuses on the 
temperature measurement interval. The two important parts of 
the algorithm will be introduced in the following two sections. 
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Fig. 1: Concept of the dynamic control of measurement intervals 

A. Data approximation with neural network 

ANN is capable of modeling complex functions which 
makes them favorite to solve the regression problems. The 
main advantages of using ANN compared to the other 
traditional statistical methods are nonlinearity and flexibility. 
Multilayer perceptron network (MLP) is usually taken into 
account for global approximation. In this paper, to predict data 
in the utilized sensor network, the optimized architecture and 
parameters are selected including two hidden layers (including 

 and ) with four neurons (Fig. 2) [8]. Each time, four 
sequential temperature increases of each sensor node generate 
the input pattern. The obtained output 

 1  2

nx~  is the predicted 

temperature increase for the next time interval. The network 
calculates the prediction error and updates itself using the 
backpropagation algorithm. This procedure continuously 
updates the input and target vectors to train and predict the 
temperature increase values nx~ . In the propagation process the 

output of the network ( nx~ ) is obtained by calculating the 

output of each neuron of the second hidden layer (1):  
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To train the network, a “gradient descent” algorithm is applied 
to minimize the prediction error. The error (cost function) is 
defined as the sum of the squares of the output errors of the 
output neuron in (2).  
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Whereas  denotes the desired output which is  in this 

application, 

D

nx
nx

~  refers to the actual output. The error function 

is minimized by updating the weights in the direction of 
decreasing the error function. Equation (3) shows that the 
error function is proportional to the negative gradients of the 
error function and weights (where η is the learning rate): 

   EWηΔW 33                       (3) 

The weights between the second hidden layer and the output 
layer are updated (     333 WWW   ). Similarly, the other 
weights are updated consequently [8]. 
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Fig. 2: Two layer sliding backpropagation architecture for data prediction 

B. Dynamic control of measurement interval 

Since the algorithm calculates the prediction value 1
~

nx of the 
temperature increase for every single step n, the time interval 

1 nt can be updated continuously depending on the current 
environmental status in the container with (4). 
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The positive prediction value of the temperature increase 
shows that the next temperature reading will increase towards 
the upper temperature boundary, thus the measurement 
interval is calculated using the difference between the current 
temperature and the upper boundary. In contrast, a negative 
prediction value means the temperature decrease and in that 
case the lower temperature boundary is used. If the 
temperature keeps constant, the maximum time interval maxt  
will be used, which is set to 20 min in this application. 
Equation (4) describes the algorithm to determine the 
measurement interval when the temperature varies within the 
desired range [Tlower, Tupper]. If the sensor readings exceed the 
required temperature range, the sensors will measure the 
parameter with the minimum interval , which is set to 2 mint



 

min in this paper. The time interval determined by (4) is the 
approximated time from the current temperature to one of the 
two mentioned boundaries. However, if the actual temperature 
increase is larger than the predicted value or the temperature 
increase rises in the period, it can cause the risk that the 
temperature exceeds the boundary within the calculated time 
interval. Therefore, a coefficient s (s  2) should be used to 
scale the interval in order to ensure a reliable temperature 
monitoring; however a huge s can cause high energy 
consumption. In this paper, s = 10 is used, i.e. when 10% of 
the temperature difference is arrived, the next sample will be 
taken into account. Therefore, (4) is modified as follows: 
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IV. SIMULATION RESULTS 

In this section the accuracy and the convergence time of the 
predictor to track the temperature changes using the ANN are 
tested. The performance of the applied approach to change the 
measurement interval is simulated.    

A. Input signal of the simulation 

Assuming that the optimal temperature in the container is 
0°C and the desired temperature range for the transportation is 
[-15.0, 15.0] °C. The test data of the algorithm consists of the 
optimal temperature and the following functions as 
temperature fluctuations (Fig. 3.): 

      
    







2220

325020

2

1

tsintsiny

tsintsint.siny
                  (6) 

B. Prediction of temperature change 

To test the accuracy of ANN mechanism to predict the 
temperature variation, the time interval is kept constant (1 
min). The ANN exhibits four input sets, i.e. the temperature 
increase approximation nx~  for time point n is calculated 
corresponding to the last four temperature increase records: 

 4321  nnnnn x,x,x,xfx ~ . The inputs of ANN have higher 
priority to decide the prediction output, but the memory about 
the previous environmental information kept in the weights 
between the hidden layers can provide useful references to 
make a better decision. The priority of the inputs is decided by 
the learning rate  . In Fig. 4(a) the predicted and the actual 
temperature variation curves are compared with each other 
and Fig. 4(b) shows the approximation errors Eapprox. Emax 
denotes the maximum prediction error in the differentiable 
area, i.e. dtdEapprox . The ANN shows a sufficient data 
prediction, whereby the maximal prediction error 

maxE 0.055°C/min. 
Since the initial weights of the MLP are determined 

randomly, the prediction error Eapprox can be extremely high in 
the first few prediction cycles. The time to reach the 

010.Eapprox  °C/min is considered as the initial phase. The 
length of initial phase depends on the learning rate  . 90.  

slows the convergent process down due to the oscillations and 
21.  leads to a high risk that the approximation does not 

converge at all. The maximal prediction error max and the 
length of the initial phase with different 

E
  values are 

compared to each other to choose the suitable   (Fig. 5). The 
results show that max  decreases if E   increases, while the 
convergence time of the initial phase reaches the minimum 
value (7 min) when 80. . Therefore, 8.0  is chosen as 
the optimal learning rate for this research. 

 
Fig. 3. The input signal for the simulation of the dynamic time interval 
algorithm. (a) Fluctuation signal y1 = 20 (sin(0.5t)+sin(t)+ sin(2t))/3 (b) 
Fluctuation signal y2=-20 (sin(t)+ sin(2t))/2. (c) the simulation input data  
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Fig. 4. Simulation results of predictor with neural networks. (a) Actual and 
predicted temperature increase of the simulation (b) Prediction error Eapprox.   
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Fig. 5. Maximum error Emax and the convergence time of the initial phase with 
different learning rate   

C. Dynamic measurement intervals  

In this section the dynamic control algorithm of the 
measurement intervals is tested. The temperature input signal 
and the correspondent measurement intervals are shown in 
Fig. 6(a). The trend of temperature development and the 



 

temperature boundaries are adjusted autonomously. The 
algorithm can accelerate the temperature measurement 
accordingly, once an unexpected temperature oscillation is 
detected, even though the sensor readings are still within the 
desired range. The temperature increase records with deduced 
measurements are given in Fig. 6(b). Compared with the 
original records (Fig. 4(a)), the most important information 
about the temperature changes are detected, although nearly 
87% of the measurements are reduced. 
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Fig. 6. (a) Dynamic intervals according to the temperature changes. (b) 
Recorded temperature increase with dynamic intervals. 

V. IMPLEMENTATION RESULTS 

The developed algorithm is implemented in a WSN which 
consists of TelosB sensor nodes containing a temperature and 
humidity sensor SHT 11. The practical experiments are 
performed in a TEU (Twenty-foot equivalent unit) container.  

A. Test environment 

Seven TelosB sensor nodes are located in different positions 
inside the empty container. Arbitrary set points between are 
used to set the reefer unit temperature inside the driver cabin 
to establish the practical transportation conditions. Six sensor 
nodes are divided in three pairs to record the temperature 
inside the container; each pair consists of a node with a 
constant interval and a node with dynamic control features. 
Another sensor node attached on the wall acts as the data sink 
to collect the temperature data from all sensor nodes and 
forward them to an indicator in the driver cabin. The ambient 
temperature is 18°C. In order to test the plausibility of this 
algorithm, an extreme condition is used in this work, i.e. the 
temperature range of [-10.0, +10.0] °C, which is much larger 
than the temperature deviation in a real transportation. 

B.  Test results 

The temperature records from one pair of sensor nodes for 
822 min are shown in Fig. 7 as an example. The temperature 
curves are divided in two main phases. Phase 1: where the 
temperature exceeds the upper boundary +10 °C and is 
measured intensively with the minimum time interval mint ; 
Phase 2: the temperature enters the recommended temperature 
range and is measured dynamically.  

The test results from three sensor nodes pairs show that the 
temperature measurement with dynamic algorithm reduces 

more than 84% samplings although the most important 
information about the temperature changes is recorded. 
Especially in phase 2 the dynamic algorithm shows greater 
advantage than the static measurement. When the temperature 
stays in the desired conditions, only less than 8% of the 
samplings are taken into account. Every sensor node in the 
WSN can make decentralized decision about its own sampling 
rate according to the surrounding environmental condition. 
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Fig. 7. Temperature records inside the truck with static and dynamic 
controlling of the measurement intervals 

VI. CONCLUSION 

In this paper a novel algorithm was introduced to control 
the sampling intervals autonomously in a WSN. The applied 
algorithm consists of two main steps including data variation 
prediction and dynamic control of measurement intervals. A 
new application of sliding backpropagation algorithm was 
presented to predict data increase in WSN. The dynamic 
control mechanism could adapt the sampling rate according to 
the current environmental state and the desired temperature 
range. A temperature variation prediction accuracy of 
0.05°C/min and a short convergence time of 7 prediction 
cycles can be reached using the ANN. Compared to the static 
mechanism the dynamic mechanism can reduce the samples 
up to 94% in the practical implementation.  
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