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This paper presents an aternative method to predict the termperature profile in a spetia point of the interior

of a refrigerated container with the aim of improving the logistics of perishable goods. A SISO gray-box
model in which the organic hea is represented by a non-linea feedbadk system and the cooling process
represented by a linea system is proposed. Parameter adaptation and prediction algorithms for the model
are modified to reduce the matrix dimensions, implementedin Matlab and applied to experimental data for
validation. Apart from being highly acarate, the predictions comply with the desired figures of merit for
the implementation in wirelesssensar nodes, such as high robustnessagainst quantization and enviromental
noise Simulation resuts concludes that if the cargo emits organic hed, the proposed model is faste and

more acairate than the linea models.

1 INTRODUCTION

Reseach has been dore in the pastto estimate the
temperature profile insde refrigerated contairers.
Sewral options have been invesigated
mathematical approaches as presetted in (Shaik,
2007), K-¢ models as proposed in (Rouaud, 2002,
ard several numerical models as reviewed in
(Smale,  2006. With the exception of
(Moureh2004), in which the effed of the palletsis
considered usually the focus is put on the cold air
flow as the main fador goveming the temperatue
patten inside a container and the effeds due the
cargo presereis sub estmated.

To take into accourt the effed of the cargoin the
temperature, in (Babazadeh 2009 it is proposed the
use of wireless sersor nodes (WSN) to measure the
ambient parametess in the surroundngs of a spatial
point of interestand the use of system identification
to estmate the parameters of a linea Multi-Inpu
Single-Output (MISO) system. It concluded that in
order to have agood estmation, it is necessary to

have a high number of training samples and many
inputs to the system.

In this paper an altemative Single-Inpu Single-
Output (SISO) grey-box model is presered to
predct the temperature inside the container under
the presence of perishade goods with the aim of
reducing the complexity ard preseving the
acuragy. The propossed model provides a
meaningful desciption of the fadorsinvolvedin the
physical system including the effed of transporting
living goods such as fruits and vegetaldles. The
starting point is based on the physical relations;
subsequertly, a tuning parameter for the spedfic
case of banarasis foundby simulations.

2 MODEL OF THE SYSTEM

The fadors affeding the temperature distribution
inside a refrigerated container are illustrated in
Figure 1. The cold air flows from bottom to top
through the gratings in the floor ard through the
spaes between the pallets, and eventualy it is



drawn off the channel between the pallets and the
container celing.

A naive represemation of the container can be
dore by a SISOlinea dynamic system in which the
input is the air suppy and the output is the spatial
point of interes. However, in redity it is only a
simple model of the main contributor to the
temperature patten, the air flow. Several other
fadors affed the speed of the cooling down.

To improve the accuracy of the model, other
contributors are considered aswell: first is the hed,
produced by respration of living goods such as
fruits and vegetabes, second is the themal loss
affeding the corred cooling of the goods; finally,
unpredctable temperature variations due to highly
charging extemal climatic condtions during
transportation.
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Figure 1: Fadors affeding the tenperature inside a
refrigerated container.
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The linea SISO black-box model represeting
the air flow is represemed mathematically by a
linea dynamic system H, which in the discrete
domain is givenby the Equation 1.

q'B(g™")

A @

H(g™) =

Where n, ard n, are the orders of the system
polynomials, by ...by,,a, ...a, are the polynomial
coefficients, and q is the delay operatar in discrete
domain.

An attenuator, o ,models the isolation loses of
the air suppy temperature and is modeled to affea
the input of the dynamic system. The extemal
climatic condtions are unknowvn in advance,
therebre considered a statisticd process The output
of the Moving Average (MA) process which is in
fad white noise (WN) filtered by the filter C
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represerted in Equation 2 added to the output of the
dynamic system, models them.

C@ N =14+cq "+ ..+cpq™ 2

To model the organic hed, it is necessary to use
experimental data. Figure 2 (Mercantila, 1989
shows afamily of curvesfor organc hea in the case
of baranas. A propational relationship between of
the organic hea and the rippening stateis observed

Equation 3 represetts the orgaric hea relation
with resged to the temperature. Pr,.;. is the hed
prodwction in Watts y is a constant which is fixed
for a certain type of fruit and rippening-statein 1/°C,
T is the fruit temperature in °C, ard g is a scding
fador which depers of the amourt of food and is
givenin kilograms.

_ T
Pfruit - ﬁey (3)
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Figure 2: Heat Production of bananas.

Finally, the block diagram to represen the inpu-
output relations of all the fadors is built. It is shown
in Figure 3. The air flow dynamics are represened
as a feal-forward block asit is the most important
contributor. The isolation losses affed the corred
cooling of the goods before the dynamic system ard
the noise effed has an additive effed on the output.

The contribution of the orgaric hea deperson
the cooling temperatue inside the container.
Simultanecudly, it hasa small additive effed in the
input of the linea dynamic system asthe air flows
through the pallets and is dlightly wamed It is
represetted by a static exporertial feedbadk. The
resuting block diagram, in which a linea dynamic
system has a nontlinea feedbadk correspnds to a
Feedadk-Hammerstein (FH) configuration (Guo,
2004.
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Figure 3:Model of the system

3 PARAMETER ADAPTATION
ALGORITHM

In (Guo, 2004 a Parameter Adaptation Algorithm
(PAA) was deweloped to idertify the parameter-set
of aFH system. It usesan intermedate variable 7(t)
ard converts the nontlinear system into a pseuwdo-
linea onre. Its principal advantage is that the
conventional reaursive matrix-based linea system
idertification algorithms as those presetted in
(Lardau, 2005 can be applied to estimate the
parameter matrix 6. The recursive form of those
algorithm is given by Equation 4. Where ¢(t) is the
predction error asdescibed in Equation 5, P(t+1)
is an adapation matrix to perform the minimization
of £ using Reaursive Least Squaresmethod, ard ¢(t)
is the observation matrix that contains the input and
the output data. A(t + 1) in Equation 6 is the so

cdled Forgetting Fador (FF).
- )-I+ (Pt + Do) e (1) @
£(t) = y() — () o(t-1) ®)
P(Hl):P(t)—P(txt:W) (6)
At+1) =4, * A) +1— 4, ©)

Guo considers the nortlineaity asa polynomial
of order | as shown in Equation 8; however, the
dimensions of the matricesin the algorithm would
be significantly too large to be applied in platforms
where power consumption is an importart figure of
merit.

1(y(®) = Th=o iy (®) ®)

To reduce the dimensions of the matrices, was
propcsed the use of the exporertial Equation in
Equation 3 instead. y is to be detemined ard it
remains constant, while B is a parameter to be
idertified asit depers on the anourt of fruit being
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trarsported The linea tem of the Equation 8 needs
to be extraded to be included in the polynomial
A*(q™Y) of the equivalent SISO psewdo-linea
system. Exparding it into a Taylor series and
reararging, the summation of the nonlinea
coefficients of the exporential function can be
cdculated using Equation 9. The nonlinea
coefficients and an offset are on the left hard of the
equation.

k 9

Ty P 412 07O —yy () ®)
The equivaent psewdo-linear system for an

exporertial nortlineaity is shown in Equation 10.

A (g Dy ()= byau(t) +b,Be??® —

bipy®) + Z50 + cq e

The resdting coeficients of the pdynomials
A*(q™Y) and B*(q™1) are given by Equation 11 ard
12.

@ = ax — (BY) by (11)
B'(q™") = b+ ..4 byq™ (12
And the intemmedate varabe is shown by

Equation 13.

¥(®) = byfau(®) + B @ —yy()] (13

The choice of the forgetting fador in the
algorithm is often critical. In theary, it must be one
that converges. On the other hard, if it is lessthan
one the algorithm becomes more sensitive and the
estmated parameter charges quickly making the
convergence faster A more complex solution is to
allow it to vary with time, lower than one at the
begnning but tendingto ore.

Types of Forgetting Factors
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Figure 4:Types d forgetting fadors.
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Table 1: Elements of the elements in the algorithm matrices.

Symbol Arrangement of the elementsinto the matrices
o(D) [~y(©®) - =yt —ng + D,ult = 1), —yy©), 5t = D...5(t=np), n(6) - en(t —nc + 1)) |
4O @ oy by, Bby, 02, P o e
1 ng P14, P01, b, b’ N
‘ppred (t) [_Ypred (t) = ypred (t —MNg + 1); u(m)' (enyTEd(t) - V.Vpred (t)), ypred (t - 1)- . -ypred (t_nb)) ]
s b by,
®T(m) aj ...an,, bia, by, 2/b1 . b,

Figure 4 illustratesthree different types of FF.
The first case is obtained by making 4,, ard A(t) in
Equation 7 equal to ore. It is cdled Deaeasing Gain
(DG). In the seoond case, the Constant Forgetting
Facta (CFF) A(t) is setto a value smaller than one
and 4, setto one. Finally, the Variable Forgetting
Facto (VFF) uses a value of 4, smaller than one
ard recalcuatesA(t) for eachiteration.

4 PREDICTION ALGORITHM

The predictions are made using the estmated
paraneters in the model. Figure 5 shows
experimental data sets from a container transporting
banaras. It can be observed how the air supdy is
kept constant after some days. For the prediction
algorithm, u(t) is setto the value of the lagt sampled
input temperature of the parameter adapation
process Similarly, the initial predcted output value
is set to the last aqyuired value of the output.
Equation 14 to 17 descibes the predction
algorithm. m is the number of iterations used for the
PAA.

Uprea(t) = u(m) (14)
Yprea(m) = y(m) (15)
YpreaO=0"(M) 0, (t-1) (16)

Fprea(t) = byi[au(m) + B(e?Vpred®
— ¥¥prea(®)] (17)

5 DETERMINATION OF vy

In considering a linea system, an exporential
discretetime decaying system like the one preserted
in Figure 5 can be descibed asof the order of one
with its unique pole on the red positive axis. The
closer the pole to one the higher the delay of the
system.

T(Celsius)

time [days]

Figure 5: Banana data sés.

To find a trustworthy y parameter that
charaderizes the respration hea of baranas. The
preserted Feedbadk-Hammerstein model of linea
order one ard the FH parameter adapation ard
predction algorithms are run using given
experimental data sets The Mean Squared Error
(MSE) of the predction over n samples, equivalent
to fifteen days, is stored for several values of y and
fixed number of training days. If the stored valuesof
the MSE are plotted, the locd minimums are
detemined by the observation of the MSE vs. y
curves. In Figure 6, it can be seen thatin the above
mertioned plot for five days of training and for the



dataset 1, a locd minimum exsts for a value y of
0.0587.

1 n
MSE= = Grear(® = Vrea @ (19
t=m

MSE of FH ARX PAA with respect to gamma

o 0.05 0.1 0.15
values of gamma.

Figure 6: Prediction accuracy vs. y

6 RESULTS

For validation of the model ard algorithms several
figures of merit are considered The accuracy and
the speal of convergerce are of paranmourt
importarce,  however, quantization and noise
robwstness are also highly desirdle for
implemertation in a WSN. Only the linea orders of
one and two are considered to avoid computation of
complex conjugate poles that would charaderize
oscillations.

To observe the speed of conwergerce ard the
acuracy of the predctions with respd to the
number of training days, parameter edimation ard a
predction in Matrix form are dore (SeeTable 1) for
a fixed number of training days. Subsequently, MSE
vs. Training days graphs are plotted Asaming a
quartization level of 0.2°C, a Matlab script was
written to ass$gn the nearest value of the
guartization grid to the input and the output datases.
The resuts of the predctions using the quartized
datasetsare overlapped with the results of non
quartized

Similarly, to detemine the noise robustness,
MSE versus the signal to noise ratio (SNR) is
plotted Seweral noise levels of white noise were
added to the output of the data set 1, ard the
resuting signals were applied to PAA and predction
algorithms with fixed number of training days.
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_ Psignal
SNR(dB)=10log(=22) (19)

Simulations were dore for two types of datasets.
First, the experimertal dataof banaraswere used to
include the presere of organic hea. Secadly, the
data sets correspndng to a cheese experiment,
which does not presemt orgaric hea, were
considered A summary of all simulation resuts is
preseredon Table 2.

6.1 FH vs. linear modelsin the presence
of organic heat

From the simulations it is observed in Figures7 ard
8 that if linea methods are applied to the banara
datasets the accuracy of the resdts for differert
sersor positions of are not sufficient. Quartization
robwstness is improved with the linea order of one
ard the spedad of convergenceis betterusing CFF. In
the bestof casesaccetabe predction accuracy can
only be adieved after more than five days of
training.

It is also observed in Figures 8 and 9 that FH
idertification algorithms are the bestto acieve fast
convergence speeds. In the best cases, less than 3
days of training is sufficiert to achieve good
predctions. However, the plots are macde for the data
from three days onwards to avoid the visualization
of the effedsin MSE due to the set point variations
in the reder supdy temperatue. Linea system
orders of one are in all cases better than order of
two, bath in the speed of convergerce and the
quartization robwstness. Decreasing Gain must be
optimal to preseve the accuracy and the
quartizaton robustness.

Order of one and DG

— Non-quantized
P1S — Quantized

3 4 5 6 7 8 9 10
Training Days
Order of one and CFF

Non-quantized
Quantized

3 4 5 6 7 8 9 10
Training Days

Figure7: ARX of order one in the presaeice of organic
hea.



Concerning the noise models, resudts of the
simulation of Feedadk-Hammerstein with MA
processare worse than when modeledas white noise
(WN). It affeds the accuracy ard the quantization
robustnes

Order of one and DG

1
Non-quantized
Quantized
» 0.5r
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3 4 5 6 7 8 9 10
Training Days
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Figure 8: FH of order one in the presence of organic hed.
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Figure 9: FH of order two in the presence of organic hed.

6.2 FH vs. linear modelsin the absence of
organic heat

In the case of cheese data set, the linear methods
accuracy resluts are betterthan that of the Feedadk-
Hammerstein as can be observed in Figure 10.
Modeling noise as white gives better quartization
robustness thanmodeling it as MA process

The use of forgetting fadors doesnat have a big
impad in the resuts of ARX predctions; however,
Constart Forgetting Facta is dlightly better for
ARMAX predctions. Linea orders do not affed
the simulated predctions, but an order of two is
seleded because it can model more aacurately if the
behavor of the system is not purely decaying.
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FigurelO: Comparison of FH and linea methods in the
absence of organic hed.
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Figurell: Comparison of linear methods with MA and
WN models.

6.3 Noise Robustness

The noise was added to validate FH ard linea
models, also for both of them the accuracy is
compared with and withou the MA model.
Maximum Signal-to-Noise Ratio to obtain a good
predction is observed to be around43 dB for all of
them with the exception of ARX which has a
maximum value of 47 Dedbelsas $iownin Tabe 2.

6.4 Prediction improvement

The descibed approach was originally developed
basel on an experiment in 2008 with records for 3
sersors (data set A). Two new data sets with 16
sersors each, which were reoorded in 2009
(Jedermam, 2010) in two separate containers (data
set B ard C), were used to cross validate the
approad.
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Table 2 Summary of simulation resuits.

Accurac . . .
Best d Best Nur(;b-er Convergence | Quantization Cglfllga I Efgr' T?gg;rn
Forgetting | Linear elmatrn; speed Robustness dataset
Factor order ements
ARX CFF 2 3 Bad Good 47dB Good
ARMAX CFF 2 3+n, Bad Bad 43dB
FH and WN DG 1 3 Good Good 43dB
model Bad
a
FH and MA DG 1 341 Good Bad 43dB
model ¢

FH ARX Prediction Error vs SNR

No quantized
quantized

MSE

: . B :
10 20 30 40 50 60 70
Signal to Noise Ratio(dB)

Figure 12: Noise Robustressfor FH method

FH algorithm of linea order of one was applied
to all data sets; neither quantization nor forgetting
fador is used For the initial parameter settings, the
pole ard zero of the feed-forward linea system was
setto 0.9 and 0.0; B was set to 2.

The previously obtained value of y equal to
0.0587is used to predct the temperature inside the
containers for mary spatial positions. The restlts are
compared to the predctions for the datases shown
in Figure 5 and resumedin Tade 3. A goodawerage
is observed for the three containers; however, in
some pasitions the predctions are not asaccurateas
is observedin the Maximum column.

Table 3 MSE predictionresuts for aunique value of y

A second approach is to select y according to the
pasition of the pallets inside the container. The
method to find vy, described previously, is applied to
all the new container datasets

It is observed that an improvemert in the
acuracgy of the predctions can be made if two
different values of y are selected: one for pallets
close to the doar-erd, and one for palletsclose to the
redersuppy. In Tade 4 it is resumed the predction
resuts if values of 0.0525 armd 0.055 are set
resgedively.

Table 4: MSE prediction resuts for values of y according
to the position inside the container

Container/Result | Maximum | Minimum | Average
Dataset A 0.1893 0.0173 0.0778
Data set B 0.4767 0.0279 0.0946
Data set C 0.5747 0.0201 0.1743

Container/Result | Maximum | Minimum | Average
Dataset A 0.1893 0.0173 0.0778
Data set B 1.4558 0.0550 0.4130
Dataset C 0.8888 0.0101 0.2798

7 CONCLUSIONS

A model to represen the fadors affeding the
temperatwe insde a refrigerated container
trarsporting perishade goods was proposed It
models the effed of organic hea using a static non-
linea feadbadk system, the refrigeration by a linea
dynamic feed-forward system, ard the disturbances
by stochastc processes. This complex model can
provide an accurate desciption of the fadors
involvedin the physical system.

The seleded idertification method was adaped
spedfically to reduce the dimensions of the
matrices. The nonlinear exporertial function is
used instead of a polynomial to preseve the
simplicity of the parameter adapation and the
predction algorithms. The disadvartage of the




simplification is that depering on the kind of fruits
to be tramsported, it is required to tune the algorithm
by a corred seledion of y which has to be known in
advarce. An improvement can be observed in the
accuracy of the predictions if y is set according to
the position of the pallets inside the contairer.

From the simulation reallts it is concluded that
the FH idenrtification algorithm is efficient whenthe
cargo emits organic hed. The method of FH of order
1 is optimal to achieve all figuresof merit. It makes
accuratepredctions only after threedays of training
and maintains low dimersions of matrices

However, if the linea method is applied to the
banara datases, a comparable accuracy can only be
adhieved after more than five days of training. Also,
it is concluded that when the goods to trarsport are
freeof organc hed, such asin the cese of cheese, it
is preferabe to use alinea systeminstead
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LIST OF ABBREVIATIONS

ARMAX Auto Regressve Moving Average
with Extemal inpu.

ARX Auto Regresive with Extemal input.

CFF Constart Forgetting Facto

dB Dedbel

DG Deaeasing Gain

FF Forgetting Fador

FH Feedadk Hammerstein

MA Moving Average

MISO Multi-Inpu Singe-Output

MSE Mean Squared Error

PAA Parameter Adaptation Algorithm

SISO Single-Inpu Single-Output

SNR Signal to Noise Ratio

WN White Noise

WSN WirelessSersor Node



