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Abstract - Considering latest improvements, there are 
different applications for data fusion techniques. In food 
transportation systems, measuring environmental 
conditions like temperature and humidity is necessary for 
monitoring and controlling quality of products. 
Application of data fusion on measured data increases 
reliability of food transportation system. This paper 
introduces application of data fusion on the measurement 
results from a trading food company in purpose of data 
approximation and classification. For this purpose, 
neural network is used for temperature approximation 
and approximated temperature is being processed for 
data fusion. Then according to defined fault/failure 
classes, the temperature records are classified.   This 
leads to increasing reliability of food monitoring system. 
 
Keywords: Data fusion, temperature approximation, 
neural network, data classification. 
 

1 Introduction 
 
There are numerous applications for data fusion in 
science and industry. One important application of data 
fusion is in measurement systems and sensor network 
which is so called “multi sensor data fusion” [1], [2]. 
There are two main groups of methodologies for data 
fusion in measurement systems including model based 
and model free approaches [3]. In model based 
approaches, first the whole process is modeled 
locally/generally and the obtained model is used for 
inferring information [4]. 
In second category instead of modeling whole process, 
data fusion will be knowledge based [5]. One of 
important techniques for model free data fusion is using 
neural network [6], [7]. It is used for data prediction 
and data approximation in different projects [8], [9]. 
Also by using probabilistic features, neural network is 
applicable in classification purposes [10]-[13]. 
Measuring and fusion of environmental conditions like 
temperature and humidity could increase reliability of 
transportation system [14]-[15]. For transporting food, 
these considerations will be important whereas 

controlling transportation conditions could affect on 
quality of food. For this purpose all environmental 
conditions should be checked continuously or 
periodically for reaching assurance on food quality 
which is influenced by changes of temperature, 
humidity, pressure and other conditions. Hence 
supervision of food has important role in guaranteeing 
quality of products during transportation.  
In this paper, application of data fusion technique for 
temperature fusion in food transportation system is 
introduced. Thus, the design of a neural network-based 
system for temperature approximation is described and 
an approach for classifying its output on the basis of 
faults and failure classes is outlined.  

2 Neural network design for data 
approximation in transportation 
system 

There are different methodologies for prediction and 
classification of data in any system [16], [17]. When the 
parametric changes in process depend on change of 
other parameters and establishing invariant situation is 
not possible or when it’s necessary to recover actual 
signal from existing noise, using parameter estimation 
methods could be sufficient. Hence first it should be 
verified whether the parameter is observable or not. The 
knowledge based techniques are established on learning 
of events and dynamics in process [18]. In this 
category, according to the last valid measurement 
results and using appropriate learning algorithm instead 
of modeling the process, predicting new values of 
desired parameters will be possible [19]. Although 
reminding this fact is necessary that learning procedure 
and the architecture of applied mechanism have 
important role in estimation accuracy [20].  
For neural network design, two main steps are 
considered; 

 Selection of learning algorithm: In supervised 
learning, desired target values are known and 
are given into the neural network by training; 
according to the training criteria, the weights 
between different layers of network will be 
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adjusted. During learning process, whole 
network will map inputs to desired targets 
based on the learning factors [21]. Basically 
there are two main approaches in the 
supervised learning including auto-associate 
and hetero-associate learning algorithms. In 
this research, auto-associative approach is used 
for mapping the input patterns including 
current/previous valid ambient temperature 
and some auxiliary values (which are 
introduced in this paper) into the related valid 
temperature records.  

 Network topology: Next step is decision 
making on network architecture for application 
of learning procedure. There are varieties of 
network architectures including feed forward 
and feedback topologies. In feed forward 
topology, there is not any cycle; therefore 
spreading path for data flow inside the network 
is completely forward. The most important 
benefit of using the feed forward topology is 
response speed instead of feeding the inputs. 
Also for training the feed forward topology, 
depending on applications, different 
algorithms could be used especially “back 
propagation” which is used in this research 
(Fig. 1).  

 

 
“Multi layer perceptron” (MLP) is a feed-forward 
neural network which has hidden layer(s) for spreading 
data. Using nonlinear function for each node in the 
hidden layer leads to better mapping between the input 
vectors and targets. Usually there are three main layers 
in MLP network including input, hidden and output 
layer [6].  
Basically MLP is known as global approximator, but 
“radial basis function” is used for local approximation 
purposes when the approximation is considered for 
limited data range [6]. Fig. 2 shows the applied MLP 
network for temperature approximation.  

 
For temperature approximation, two main layers 
including input and output layers are considered. Also 2 
hidden layers (respectively including 5 and 3 neurons 
with sigmoidal activation function) are considered for 
better mapping. 
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In formula (1), jnet  is the weighted input of j-th 

neuron in second layer, ijw  refers to weights between 

i-th input and j-th neuron in the second layer, ix is i-th 
input layer element and n is number of inputs in the 
input layer. After calculation of jnet , according to (2) 
the output of each neuron is calculated. 
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)( jnetΦ is output of each neuron and m is number of 
neurons in the second layer [6]. In similar way, all 
neurons between layers are connected together and data 
is spread into the network. For training, “gradient 
descent” algorithm is used. 

cccnew gradWW α−=                                            (3) 

In (3), newW  and cW  are respectively new and current 

weight vectors, cgrad refers to current gradient based 

on error changes and cα  is training parameter.  

3  Temperature approximation in food 
transportation system 
 
Data approximation mechanism is applied on real 
temperature records inside compartments containing 
fresh fish, vegetable and meat inside the trucks. All 
temperature values are recorded using data loggers in 

 

 
 

Fig. 2.  Architecture of MLP network 

 
 

      Fig. 1.  Neural network design for data fusion in food transportation 
system 
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trucks for transporting food by a trading food company 
(“Rungis Express”) [22]. The accuracy of each data 
logger is ± 0.5 °C and each truck is split in three 
compartments. About 40 data loggers are attached in 
different positions and each data logger could be 
selected as “under test data logger” for data fusion. 
Outside the compartment, two data loggers are 
considered and each time, average of recorded values 
by these two loggers is assumed as “ambient 
temperature” (Parameter A).  There is a cooling system 
which is known as “reefer unit” for cooling the 
compartment and ventilation purposes and one data 
logger records continuously the temperature of cooling 
system which is attached opposite to the cooling system 
(Parameter B). 

 
Fig. 3 shows the compartment and position of attached 
data loggers for recording temperature. Also position of 
the “under test data logger” is shown in this figure. 

 
First according to Fig. 4, two-dimensional input (2-D) 
is entered into the network (including A and B 
parameters respectively) every 2.5 minutes and actual 
records of the “under test data logger” are applied into 
the network as target for being mapped into the input. 
After training the network using “gradient descent” 
method, every 15 minutes performance of the training 

is checked by feeding last input samples. After about 
1.5 hour, the network is trained within desired 
temperature range for data approximation. This time 
period (1.5 hour) has been considered for reaching the 
temperature range which will be used during 
approximation phase.  

 
Fig. 5 shows two dimensional input including A and B 
parameters for training the network. 

 
Also according to Fig. 6, performance of training is 
checked against actual records which have been used as 
targets for training.  

 
Fig. 7 shows performance of training which is 
introduced as “training residual” (difference between 
actual temperature and the network output after 
training).  
After 1.5 hour, the network is ready to start 
approximation, by reaching desired training 
performance (-0.2801 °C is the minimum value and 
0.3532 °C is the maximum value which are in desired 
approximation boundary (±0.5 °C)) (Fig. 8). Then new 

 

Fig. 4.  Training the network using 2-D input 
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Fig. 7.  “Training residual” after mapping 2-D input to actual records 
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Fig. 6.  Network output after training and actual records as target for 

training 
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2-D input values are entered and the network output is 
calculated. 

 
Therefore after feeding the new values (during next 1.5 
hour), temperature approximation could start and it is 
compared with new actual records (Fig. 9). 

 
Fig. 10 shows the approximation residual which is 
between two limits (±0.5°C).  

 
Also according to Fig. 10, the value of minimum 
approximation residual is -0.4341 °C and the maximum 
value is 0.2729 °C. For improving performance of 
approximation mechanism, third parameter is used. 
Influence of temperature changes on the wall of 
compartment is assumed as “wall temperature” 
(Parameter C) which generates third dimension of input 
vector. For this purpose, similar 2-D input pattern in 
addition to third parameter are entered into the network; 
then it could be possible to compare the performance of 
both approximation architecture. Therefore according to 
Fig. 11, 3-D input pattern (A, B and C parameters) is 
used for training the approximation network for 1.5 
hour. 
 

 
According to Fig. 12 and 13, performance of training 
and the obtained training residual are shown. 

 

 
Fig. 14 shows new values of 3-D input for starting 
approximation and according to Fig 15, the 
approximated temperature is compared with the actual 
records. 
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Fig. 11.  3-D input for training the network 
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Fig. 13.  “Training residual” after mapping the 3-D input to actual records 
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Fig. 14.  Feeding new 3-D input for approximation 
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Fig. 12.  Network output after training and actual records as target 
for training 
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Fig. 10.  Approximation residual after training with 2-D input 
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Fig. 9.  Temperature approximation after feeding the 2-D input 
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Fig. 8.  Feeding new 2-D input for approximation 
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Also Fig. 16 shows that the minimum value of 
approximation residual is -0.2243 °C and the maximum 
value is 0.2673 °C. It means that by using the wall 
temperature as third dimension of input pattern, the 
accuracy of temperature approximation is improved 
(Fig. 10). 

 

4   Data classification in transportation 
system 
 
Next step is “data classification” which is included in 
data fusion mechanism. For this purpose according to 
approximation residual ( T∆ ) and pre-defined 
fault/failure classes, the temperature records of the 
“under test data logger” are classified (Fig. 17). 
 

 
 

NetworkActual TTT −=∆                                              (4) 

In (4), ActualT  is actual records of the under test data 

logger and NetworkT is the approximated temperature. 
For data classification, 4 classes are defined including: 

 Class (1): The approximation residual is in 
desired range ( 5.05.0 +<∆<− T ) and 
there is not any fault/failure (Fig. 15 and 16). 

 Class (2): The approximation residual is not 
accurate enough for judgment 
( 5.15.0 <∆< T ). In this case, 
correlation between the approximated 
temperature and actual records is assessed. 

21

)2,1()2,1(
AA

AACovAACorr
σσ

=                       (5) 

For this purpose covariance of the approximated 
temperature (A1) and actual record (A2) is 
calculated and then is divided to standard deviation 
of each signal; it shows correlation factor between 
two signals. In class (2), when the correlation 
factor is more than 0.5, it is classified as subclass 
(2.1) which means the temperature records are 
reliable; otherwise it is classified as subclass (2.2) 
and it is evaluated like class (3)/class (4). 
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Fig. 16.  Approximation residual after training with 3-D input 

 
Fig. 17.  Data classification mechanism 
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Fig. 19.  Temperature approximation after feeding the input (Class (2)) 

 

0 1 2 3 4 5
8

10

12

Time (Hour)

T
em

p
er

at
u

re
 (

o
C

)

 

 

0 1 2 3 4 5

-5
0
5

Time (Hour)

 

 

0 1 2 3 4 5
-5
0

5

Time (Hour)

 

 

A

B

C

Fig. 18.  Feeding 3-D input for approximation (Class (2)) 
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Fig. 15.  Temperature approximation after feeding the 3-D input 
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According to Fig. 18 and 19, the 3-D input is fed into 
the network and the approximated and actual records 
are compared and situation of class (2) occurs where 
the approximation residual is in unknown area  
( 5.15.0 <∆< T )(Fig. 20).  
Although the approximation residual is not in desired 
area but correlation factor is 0.748. It’s more than 0.5 
and the record is classified in class 2.1. 

 
 Class (3): The values in class (3) could be 

classified in three subclasses including door 
opening, sealing problem and data logger 
defection. Sometimes there is a reason for 
penetrating ambient air into the compartment. 
Actual record ( ActualT ) changes toward the 

ambient temperature ( ambT ) and situation of 
the data logger next to the door of 
compartment is checked for finding the reason 
(whether the door is open incidentally or there 
is sealing problem in compartment). Also it is 
possible to detect probable deviation in 
performance of data logger. 

Fig. 21 shows an example in class (3), where the 
logger record increases toward the ambient 
temperature. Also amplitude of residual in this 
class is shown in Fig. 22. 

 

 

 
 Class (4): The logger record doesn’t change 

and the approximated temperature is 
completely equal to approximation residual. It 
means that according to changes in values of 
the input parameters, the temperature record of 
data logger is expected to change continuously 
but lack of battery charge causes significant 
change in approximation residual. 

When the logger doesn’t have battery charge it doesn’t 
show any value (an example is shown in Fig. 24) and 
according to Fig. 25 approximation residual changes 
dramatically, therefore this is included in class (4). 
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Fig. 22.  Approximation residual (Class (3)) 
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Fig. 21.  Temperature approximation (Class (3)) 
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Fig. 24.  Temperature approximation results (Class (4)) 
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Fig. 20.  Approximation residual (Class (2)) 
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Fig. 23.  Feeding 3-D input for approximation (Class (4)) 
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Table (1) describes the applied procedure for data 
classification based on predefined fault/failure classes. 
Therefore after temperature approximation, according 
to applied algorithm, all temperature records are 
classified.    
 

 

5 Conclusion 
New algorithm for data fusion is introduced and applied 
on real temperature records from a trading food company. 
Data fusion algorithm is established on application of 
neural network for data approximation. For this purpose, 
multi layer perceptron is used for temperature 
approximation. Also by using an auxiliary parameter, 
improvements in temperature approximation is outlined. 
Finally according to defined fault/failure classes, 
temperature classification algorithm is applied. 
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