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Abstract –In measurement systems, environmental 
conditions are measured based on predefined scenarios. 
Measured data are then processed in either a decentralized 
or centralized manner. In advanced systems (especially for 
distributed data processing), taking artificial intelligence 
features into consideration could improve measurement 
performance and reliability. It is assumed as autonomy in 
measurement system which leads to distributed “intelligent 
data measurement and processing”. In this paper, two 
different methodologies for “temperature prediction” are 
compared.  A discussion concerning the classification of 
recorded data is then presented. Both a mathematical 
approach, the so-called “least squares” approach, and a 
model-free approach, called back-propagation, are applied 
and compared for temperature approximation. After 
approximation, the predicted temperature values are 
compared with real temperature records for classification 
purposes. The “classification mechanism” includes signal 
processing features for improving performance. 
 

Keywords – Measurement system, artificial intelligence, 
temperature approximation and classification, evolutionary 
computation. 

I. INTRODUCTION 

Monitoring and control play very important roles in 
transportation systems, because the quality of products 
depends on changing environmental conditions such 
as temperature and humidity. Therefore, in 
measurement systems, environmental conditions are 
measured according to predefined criteria and then the 
measured data are processed in either a decentralized 
or centralized method. In centralized systems, 
measured data are sent for processing through a 
communication linkage. In distributed systems, 
depending on the applied mechanism, the measured 
data are processed or preprocessed at the measurement 
stage. 

 In advanced measurement systems, based on 
recent improvements in artificial intelligence, 
processing of and decision making about the measured 
data are applied locally.  This procedure is called 
“intelligent data processing”. One of main 
applications of distributed “intelligent data 
processing” is “autonomous fault detection and 
isolation” in measurement systems [1]-[3]. It is 
necessary to evaluate the reliability of a system during 

measurement [4], [5], and “artificial intelligence” 
features could increase the reliability of measurement 
systems, such as those intended for use in food 
transportation.  In order to process data, the data are 
first approximated.  For this purpose, there are various 
methodologies for regression (such as support vector 
machine) and data approximation, which both entail 
certain advantages and limitations [6], [7]. There are 
linear and nonlinear techniques to predict the next 
values of data for approximation purposes [8]. The 
“least squares” approach is based on minimizing the 
sum of the squared residuals.  The residual symbolizes 
the difference between the actual observed data and 
that of the model. The “least squares” approach is 
used for a “maximum-likelihood” estimation of the 
parameters [9]. A further solution employs 
knowledge-based data approximation techniques such 
as “artificial neural network” that is established 
through learning and evolutionary computation [10], 
[11]. 

 In this paper, two different approaches including 
“least squares” and “back-propagation” are applied 
and compared to the actual temperature records of a 
food trading company. Finally, the approximated data 
is used for data processing using a classification 
architecture.  This leads to evaluation of the reliability 
of recorded data.  The findings of this paper could be 
used for data approximation and classification for 
intelligent sensor fusion, intelligent measurement 
systems, and evolutionary monitoring and control of 
transportation system, which is described in this 
application.  

II. PROPOSED APPROACH 

 The “least squares” estimation is one of the most 
important statistical approaches, which uses either 
determined or over-determined linear or nonlinear 
equations according to the relationship between 
process events for both modeling and prediction. [6].  

The artificial neural network (ANN) is a 
knowledge-based approach with several applications 
[12]-[14].  There are two main ANN approaches for 
parameter approximation including “radial basis 
function” (RBF) and “multi-layer perceptron” (MLP) 
with “back-propagation” technique [15]. RBF is a 
local approximator which yields better accuracy for 
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local approximation purposes, while MLP is a better 
choice for global approximation [16]. Therefore, in 
this application, the MLP mechanism is used for 
temperature approximation. For this purpose, two 
individual mechanisms were designed to approximate 
data based on the “least squares” and “back-
propagation” algorithms.  

After approximation, the mechanisms are applied 
to the temperature records in trucks containing fresh 
food during transport by Rungis Express, a food 
trading company in Germany [17]. For this purpose, 
two trucks are used for food transport and each truck 
is divided into three compartments.  40 data loggers 
are attached to different positions (with a maximum 
error of ±0.5 °C) for recording temperature.  The 
cooling system, called the “reefer unit”, is used for 
ventilation purposes and changes the temperature 
inside each compartment during its on/off cycles. 
Every 2.5 minutes the temperature is recorded onto 
the data loggers.  

 

 
Three parameters are used for temperature 

approximation, including ambient temperature 
(parameter A), reefer temperature (parameter B), and 
wall temperature (parameter C). To record the reefer 
temperature, a data logger is positioned opposite the 
reefer unit. There is a data logger attached to the 
compartment to record the ambient temperature, 
which influences the temperature inside the 
compartment.  In addition, the temperature of the wall, 
which is influenced by both the ambient temperature 
and the changes inside the compartment, is recorded 
during transport.  

Each data logger in the compartment could be 
selected as the “under test data logger”. In Fig. 1, the 
position of the “under test data logger” (T ) is shown. 
Also, the position of the neighbor data logger ( N ) is 
shown, which is used to improve the classification 
mechanism.  

In this application, the “least squares” 
approximation relies on the last four equations that 
shows relationships between the aforementioned 

parameters and temperature of the “under test data 
logger”. 

In (1), current and previous values of parameters A, 
B, and C are recorded and used to find BA KK ,  

and CK  (approximation coefficients), which are 
calculated by solving the over-determined set. 
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By using the new values of parameters A, B, C, and 
the newly-obtained BA KK , , and CK  values, a new 

value of )1( +tT  is approximated. This procedure 
continues and the coefficients are calculated each time 
based on the last four equations.  This generates over-
determined sets each time. 
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Although more equations could be employed to 
generate over-determined equation sets, it has been 
verified that in this application, using more equations 
could decrease the performance of the approximation. 
In fact, it has been examined that in this application, 
using the last four equations has optimal performance 
over using three equations (which leads to determined 
equations) and also other over-determined sets based 
on more equations. Therefore, solving the over-
determined system according to the last four equations 
is considered for generating approximation 
coefficients. 

For the MLP network, two main layers (including 
input and output) are employed to spread the data. In 
addition, two hidden layers are considered, each 
including four neurons with a sigmoid activation 
function. The second hidden layer could improve data 
mapping performance between the input pattern and 
related targets. 
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In (3), jH1  is the weighted input of the j-th neuron 

in first hidden layer, ijw  refers to the weights between 
the i-th input and the j-th neuron in the first hidden 
layer, ix is the i-th input layer element, and n is the 
number of inputs in the input layer. After calculating 

jH1 , the output of each neuron is obtained according 
to (4). 
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)( 1 jHΦ is the output of each neuron in the first 
hidden layer and m is the number of neurons in the 
second layer. The “gradient descent” algorithm is used 
for training [18], [19].  

cccnew gradWW α−=                                       (5) 

In (5), newW  and cW  are respectively the new and 

current weight vectors, cgrad refers to the current 
gradient based on changes of the “training error”, and 

cα  is the training parameter.  
 

 
 
In Fig. 2, the applied mechanism for data 

approximation is shown, which could be used for 
either the “least squares” (LS) or “artificial neural 
network” (ANN) techniques.  After approximation, 
the approximated temperature is compared to the 
actual temperature records for classification according 
to defined data classes. 

III. RESULTS 

To compare the LS and ANN approximation 
techniques, a similar test period is used (270 minutes).  
The ANN mechanism includes two phases: the 
training phase (90 minutes) and the approximation 
phase (180 minutes), which together total 270 
minutes. However, the “least squares” approach could 
begin approximating data after obtaining just the first 
four temperature records. 

First, the performance of the “least squares” 
algorithm is presented for temperature approximation 

using the auxiliary parameters (A, B, and C). For this 
purpose, after obtaining the first four temperature 
records, approximation coefficients ( BA KK , , 

and CK ) are calculated by recording and using the 
new values of the auxiliary parameters (A, B, and C). 
This procedure continues each time, and every 2.5 
minutes the last four equations are considered. 

 
 
Fig. 3 shows the auxiliary parameters for 

temperature approximation. In Fig. 4, actual records 
and approximated records are shown. 

 

 
In Fig. 5, the obtained approximated residual is 

shown, which is the calculated difference between the 
approximated and actual values. 

 
According to Fig. 5, although the approximation is 

for the most part accurate, sometimes the 
approximation differs significantly from the actual 
recorded value. In this figure, the maximum 
approximation residual is 1.057 °C and the minimum 
approximation residual is -0.6674 °C.  In some points, 
the approximation residual is very close to 
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approximation accuracy limits (such as -0.4485 °C 
and -0.4127 °C in Fig. 5). 

At this point, the performance of the “artificial 
neural network” mechanism for temperature 
approximation is discussed.  For this purpose, the 
network first starts a training phase.  Fig. 6 shows the 
process of training the network, in which input values 
are fed to the network. The training time depends on 
the evolution in the network for starting 
approximation. In this application, training the ANN 
approximation mechanism takes about 1.5 hour (0-90 
minutes in Fig. 3). This period contains the data range 
that is considered for the approximation. Afterwards, 
even during approximation, the training phase is 
improved.  This process is called “evolutionary 
training”. The values of the network parameters for 
training and approximation (including activation 
function, epoch, etc.) directly influence the accuracy. 

 

 
In Fig. 7 the performance of the training method is 

shown. In Fig. 8, the maximum training residual is 
0.3059 °C and the minimum value of training residual 
is -0.3756 °C.  

 

Subsequently, new values are used to start the 
approximation by the network (Fig. 9).   
Approximation could be compared to the actual 
records (Fig. 10, 11). For this purpose, the 
performance of the approximation mechanism is 
checked over 180 minutes (minutes 90-270 in Fig. 3).  

 

 
In Fig. 11, the maximum approximation residual is 

0.2338 °C and the minimum approximation residual is 
-0.3964 °C.  

 
These results show that using the “least squares” 

and “artificial neural network” approaches separately 
have distinct advantages and disadvantages. Although 
in both approaches there are different parameters 
which could directly influence the performance of the 
approximation, such as using different numbers of 
equations in LS and application of different training 
parameters and coefficients for ANN, in this paper 
optimal parameters have been selected which lead to 
the most accurate approximation.  
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artificial neural network 

0 30 60 90
-0.5

0

0.5

 

 

0 30 60 90

-0.5

0

0.5

Time (Minute)

T
em

p
er

at
u

re
 (

o
C

)

 

 

ANN Output

Actual Records

Fig. 7.  Comparison of actual and ANN output  

0 30 60 90
8

10
12
14

 

 

0 30 60 90
-5

0

5

T
em

p
er

at
u

re
 (

o
C

)

 

 

0 30 60 90
1

1.5
2

2.5

Time (Minute)

 

 

B

C

A

Fig. 6.  Training phase for temperature prediction using ANN 

0 30 60 90
-0.5

0

0.5

Time (Minute)

T
em

p
er

at
u

re
 (

o
C

)

 

 

Training Residual

Fig. 8.  Evaluation of training performance  

0 30 60 90 120 150 180
-1

0

1

 

 

0 30 60 90 120 150 180
-1

0

1

Time (Minute)

T
em

p
er

at
u

re
 (o

C
)

 

 

ANN Approximation

Actual Records

Fig. 10.  Difference between actual and predicted values 

Authorized licensed use limited to: STAATS U UNIBIBL BREMEN. Downloaded on April 28, 2009 at 10:45 from IEEE Xplore.  Restrictions apply.



The LS approach begins approximation shortly 
after obtaining the first four records, and it continues 
approximating. The accuracy of the approximation 
depends on the relationship between the last four 
records; therefore, the accuracy could change 
depending on the last four records, and sometimes the 
approximation accuracy exceeds the maximum 
approximation error. However, the ANN 
approximation technique is established on learning 
according to an applied training algorithm and a 
defined architecture. It takes time to be capable of 
approximation, but after reaching a desired 
performance by means of evolutionary computation, 
the network begins approximation and its accuracy is 
better than the LS approximation technique. Thus, the 
main advantage of using LS approximation is that 
early approximation is possible in comparison with 
using ANN, although afterwards, based on evolution 
caused by training in ANN, the approximation 
accuracy is significantly better than the LS technique. 
By combining the LS approximation technique with 
the ANN technique, both advantages are obtained. In 
fact, the LS approximation could first be applied and 
upon reaching approximation capability in the neural 
network (based on approximation range), the 
temperature could be approximated using the LS 
technique. Subsequently, the ANN architecture will 
continue temperature approximation. 

For classification, first the approximated 
temperature is compared with the actual value, and an 
approximation residual ( TΔ ) is generated. 

NetworkActual TTT −=Δ                                       (6) 

In (6), ActualT  shows the actual records of the 

“under test data logger” and NetworkT  is the 

approximated temperature. If TΔ <0.5 (°C), the 
actual value and approximation have a normal 
difference and the actual records are reliable. If 
0.5< TΔ <1.5 (°C), the classification mechanism 
could evaluate whether this difference comes from 
fault/failure in the system (such as from a battery 
problem or data logger defection) or from a weakness 
in approximation. This occasionally occurs when the 
LS technique is used for approximation.  

 

The value of 1.5 °C is derived from the sum of the 
data logger accuracy (±0.5 °C), the training accuracy 
(±0.5 °C), and the approximation accuracy (±0.5 °C), 
which is in the range of ±1.5 °C. To evaluate this case, 
the value of one of the neighbor data loggers could be 
used for decision making (Fig. 12).  

),( NTCorrD =                                              (7)    

In (7), ),( NTCorr is the correlation factor 
between the temperature of the “under test data 
logger” (T ) and the records of the neighbor logger 
( N ).  D  is the absolute value of the correlation 
factor. 

If 0.5< TΔ <1.5 (°C) and the value of D is more 
than 0.5, the correlation factor between the actual 
records and the values of the neighbor logger is 
significant and the records are classified in class (1).If 
0.5< TΔ <1.5 (°C) and the value of D  is less than 
0.5, the correlation factor between the actual records 
and values of the neighbor logger is very small, and 
the records are classified in class (2).  

 
If 1.5(°C) < TΔ , the difference between the actual 

value and approximation is significant and the 
temperature records are not reliable based on the 
occurrence of a fault/failure, which is called “class 
(3)” in this application (Table 1). 

IV. CONCLUSION 

In this paper, two methods are applied and 
compared for temperature approximation of a real 
food transportation system including the “least 
squares” and “artificial neural network” approaches.  
The back-propagation algorithm is applied using the 
“multi layer perceptron” (MLP) architecture and the 
“least squares” is established based on a coefficient 
calculation of the last four temperature equations for 
approximating next values of temperature (over-
determined system). In addition, by applying the 
classification algorithm, the reliability of the 
temperature records is evaluated.   

Table 1.  Data classification table 

Class Specification Records 
0 TΔ <0.5 (°C) Reliable

1 0.5(°C) < TΔ <1.5(°C) 

0.5< D  

Reliable

2 0.5(°C) < TΔ <1.5(°C) 

D <0.5 

Non-
reliable 

3 1.5(°C) < TΔ  Non-
reliable 
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