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Abstract: - With the aim of energy management in a wireless sensor network established in a closed space container, 

this paper introduces a way to decrease the total power consumption due to measuring and transmitting data in a few 

desired sensor nodes (DSNs). The DSNs either will be turned to sleeping mode for reducing battery-consumption or 

even they may be inactive due to the energy depletion. We estimate temperature, relative humidity, and air flow as 

environmental parameters (EPs) instead of the direct measurement. A new technique of the model making and then 

assessment the validity of the proposed model using some experiments will be investigated. Introduced estimators use 

linear models between surrounding key sensor nodes (KSNs) and a DSN. These models can be extended for possible 

use in different applications such as EP-controllers in air conditioning systems as well as the estimator in fault 

recognition procedures. 
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1    Introduction 
One part of attractive applications of sensor networks in 

field of control systems is identification, modeling and 

control of temperature (T), relative humidity (H), and air 

flow (F) as the environmental parameters (EPs) in the 

air conditioned closed space containers. According with 

the present proposal, to achieve a model based energy 

management in a wireless sensor network; a simple and 

applicable model plays an indispensable role. We are 

looking for a way to estimate the EPs in some desired 

sensor nodes (DSNs) instead of the direct measurement. 

There are some white, grey, and black-box models of T 

for air-handling units have been addressed in [1], [2], 

[4], [5], [6]. The effect of air flow pattern on T is given 

by [7], [8]. Reference [3] is a brief review of numerical 

models of F in refrigerated food applications. Using (k-

ε) model and also a data-base mechanistic modeling 

technique, [5] outlines a methodology to achieve an 

accurate model of T in a closed space. All models are 

obtained between system input so-called inlet and a 

point in the corresponding space. With the mentioned 

models, the EPs in some DSNs can be changed due to 

variation in the inlet. Some models introduced in the 

mentioned papers, either linear or nonlinear, do not 

consider interconnections of the EPs. Furthermore, 

particular conditions and limit range of parameter 

variations of such models are necessary. Despite the 

high precision, complexity makes some of them 

impractical and the rest inaccurate in some applications. 

Nonlinear multivariable nature and interconnections 

between the variables of the EPs in addition to the 

presence of the load as an unpredictable, immeasurable 

disturbance, effects of flow dynamic, influence of 

surfaces and walls inside the container increase 

complexity of the model which we are looking for. 

Some types of acting disturbances in the container are 

opening the door, changing either direction or rate of F 

by some freights and thermo dynamical influences of the 

loads inside the container. When looking at the previous 

methods with the white-box models, we will see that in 

addition to encounter some complicate conditions while 

solving such model identification problem, disturbance 

may cause a big estimation error. Thus, our proposed 

technique considers the influence of disturbance on the 

EPs estimation using a grey-box model in a wireless 

sensor network. Furthermore, the proposed techniques 

are independent from the type of the ventilation. Our 

method acquires a minimum power consumption of the 

batteries in the DSNs. We include a brief introduction of 

a new grey-box hybrid model of the EPs between the 

inlet and a DSN in the present article. Then, we use 

advantages of a sensor network to achieve an 

independent multi input-single output (MISO) simple 

linear model. Obtained results will be supported with the 

real experiments. At the end, some practical rules to 

attain a near optimal EP-estimation will be introduced.  

 

 

2    Problem Formulation  
Fig. 1 shows a symbolic scheme of the container. There 

is a complicate time and place dependent multi variable 

model between the inlet and a spatial position. Coupling 



 

 

 

 

 

among the parameters of environment arises difficulties 

of doing independent experiments and the measurement 

results completely depend on the initial conditions. 

 

 
 

 

 

 

 

 

 

Fig. 1.  Container as an input-output model. 

 

     Any change in T or H and even F in the source (inlet) 

may change both T and H in all positions of the desired 

space. Measurements can be affected by disturbances 

and they might be different even in the same place. We 

will use an optimal combination of several models 

obtained from surrounding key sensor nodes (KSNs) and 

a DSN so that every non modeled disturbance is 

modeled as an implicit input change, not as a pure 

disturbance. The KSNs will be the system estimators. 

When a disturbance acts on the system, it might excite a 

few sensor nodes. After initializing at least one of the 

estimators with a disturbance, parameters of several 

models are obtained using present noise corrupted data 

of the KSNs and the DSNs and also previous data from 

the DSNs. Those models are identified only between 

some couples of a DSN and the selected KSNs. 

According with Fig. 2 there will be a network with 

several nodes and branches, several KSNs (K1, …, Km) 

as input nodes and a few DSNs (S1 and S2) as output 

nodes. It is noted that in addition to characteristics like 

an ordinary sensor node (SN), KSNs have three major 

tasks: (i) they measure EPs in a defined period; (ii) they 

might evaluate measured values and do estimation of the 

EPs in a few DSNs in some clusters and update previous 

models, based on the new measurements (depending on 

using autonomous or non autonomous strategy, main 

computations can be done by main processor or KSNs); 

(iii) they deactivate the DSNs when all conditions are 

normal and there are no big changes in the EPs. The 

DSNs can be considered in sleep mode or even failed. 

The KSNs can be located everywhere in to the container, 

near the door, near to inlet or surrounding the DSNs, but 

if they are located in some key points, estimation 

mismatch error due to no considering unpredictable 

phenomenon would be avoidable because while 

identification based on the proposed method, most of 

uncertainties and disturbances are considered indirectly 

as the input change in the KSNs surrounding the DSNs. 

When speaking about a loaded closed space container, 

with a variation in the inlet or even any variation of the 

environment inside the container, signals measured by 

the DSNs and the KSNs will be different with those 

during a specific off-line identification stage. Several 

MIMO models will be established between the KSNs 

and a DSN (fig. 3).  

 

 

Fig. 2.  Proposed sensor network. 

 

 

Fig. 3.  Block diagram of a MISO model of the EPs. 

 

To reduce the estimation error a few questions should 

be answered: (i) How long the achieved models are 

valid? (ii) How many KSNs are adequate to do 

estimation? Whereas we would like to increase the 

accuracy of the estimations and decrease the total power 

consumption by the wireless sensor network, we are 

interested in turning more sensors to longer sleeping 

mode. Due to decrease the calculation, we would like to 

reduce the number of the KSNs contributed in the 

estimation. But, simulations show that the accuracy will 

be increased with increasing the number of these 

estimators. According with fig. 4, depending on the 

conditions of the EPs, different KSNs have different 

influences on a DSN. Considering an F direction as a 

simple example in a three dimensional space, K1 and K2 

can be considered more effective than K3. We will 

obtain a relationship between different KSNs to choose 

the best estimators. We will make a group of some 

effective KSNs with a definite priority. Although K3 is 

not among the impressive KSNs, it may have two 

properties: it has good correlation with related DSN. 

Then, it will improve the accuracy of the estimation. 

Otherwise, it won’t be among the prior estimators. 

 

 

Fig. 4.  Impression of the KSNs on a DSN. 
 

Because of chaotic nature of the F direction in the real 

applications and regard to the limitation in number of F 

sensors, predicting the direction and then verifying the 
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effective KSNs is impossible. Therefore, there will be a 

mismatch error due to considering non effective KSNs 

in the estimation process. It will be shown that using 

data of a KSN_DSN to make single input-single output 

(SISO) model cannot present surrounding influences 

completely. It can only show the EPs variations in a 

DSN from side of the mentioned KSN. Estimation using 

multi input-single output model (MISO) will cause 

better accuracy than that using SISO models. As a result, 

using more effective KSNs is better. Furthermore, 

whenever sensor failure is occurred in a KSN, other 

KSNs will be able to continue the estimation. There are 

also some KSNs which do not have any influences on 

the DSN. Far from the DSN, they could not help to 

increase the accuracy. 

 

 

3    Problem Solution (Hybrid Model)  
We start with a simple mathematical model to attain an 

estimation of the EPs in a desired place inside the 

container. We will apply then our view points to 

introduce a more precise nonlinear model. We use an 

argument to solve simplified problem. According with 

fig. 1, beginning with the linear transfer function matrix 

between input (inlet) and outputs (SNs), we will have 

several independent MIMO systems for inlet_SN. The 

arrays of matrix in (1) show the effects of variation in 

inlet on the SN in the domain of Z-transform. 

 

  

TSN i

HSN i

FSN i

 =  

GTi
−GHT i

0

−GTH i
GHi

0

0 0 GF i

 ∗  

Tinlet

Hinlet

Finlet

      (1) 

 

For the sake of simplicity we omitted the operator Z in 

the above relation. (TSN, HSN, and FSN) and (Tinlet, Hinlet, 

and Finlet) are the EPs in a SN and inlet respectively. In 

[11], insufficiency of (1) because of no considering 

nonlinearities has been proven. Omitting index (i) 

because of simplicity, we complete (1) using f and g as 

nonlinear interactions. NT, NH, and NF are measurement 

Gaussian noise in the SN. GT,F  and GH,F are transfer 

functions of T and H, influenced by F and GF is transfer 

function of F between inlet_SN. Following formulation 

is not a real super position. That is only an assumption. 

 

  
The influence of variation in F on linear part of the 

models is considered in the place of poles in linear 

transfer functions and we assign an exponential function 

for determining these influences so that their parameters 

will be determined while operation.  References [1], [5] 

suggest the first order dynamic model for the mentioned 

transfer functions. Then we use a general form in the 

below for the linear part of the hybrid model: 
 

GT,F = KT

 (Z − Zi)
mT
i=1

 (Z − Pj)
nT
j=1

 ,      GH,F = KH

 (Z − Zi)
mH
i=1

 (Z − Pj)
nH
j=1

 
 

(3) 

 

 

The poles and zeros (Pj and Zi) are functions of F so 

that higher F causes faster response of TH. According 

with [11] and with Z-1 as unit delay in domain of Z-

transform, to perform the nonlinear part we use some 

basic thermodynamic relations and we have: 
 

H = H0 ∗ 2
−(𝑇−𝑇0)

10.1   ,   T = T0 −
10.1

ln2
∗ ln

H

H0
 (4) 

 

Interconnections can be obtained in the following: 
 

∆T(t) = T0 −
10.1

ln 2
∗ ln

Z−1(GH ∗ Hin ) + NH(t)

Z−1(MH ∗ H0)
 (5) 

 

∆H t =  2
− Z−1(GT∗ Tin )+NT−Z−1(MT∗T0) 

10.1 − 1 ∗ 

Z−1(MH ∗ H0)+NH(t)  

(6) 

 
We can write above relations in the other forms: 

 

TSN (t) = Z−1(GT,F ∗ Tinlet ) + ∆T(t) (7) 

 

HSN (t) = Z−1(GH,F ∗ Hinlet ) + ∆H(t)  (8) 

 

∆T(t) = g .  + NT         ,        ∆H(t) = f .  + NH  (9) 

 

TSN (t) = Tlinear  from  Tinlet  
+ Tnonlinear  from  Hinlet  

  (10) 

 

HSN (t) = Hlinear (from  Hinlet ) + Hnonlinear (from  Tinlet )  (11) 

 

GT,F and GH,F are identifiable linear transfer functions 

and ∆T , ∆H  are nonlinear parts of T and H plus 

Gaussian white noise. We use (4) when obtaining 

nonlinear parts of (10) and (11). To simplify the problem 

we use the advantages of plurality of measuring points 

in our sensor networks. Disturbance might be applied to 

the input, system and or to the output, but in all cases it 

influences the outputs (KSNs). Now, assuming excited 

KSNs as input nodes, the input in defined MISO system 

will be changed and output nodes (DSNs) will be 

influenced of such new inputs. If the EPs in the KSNs 

and a DSN are close, we can have some approximate 

linear models written for KSN_DSN. We will see later 

some of the KSNs have this property more than the 

 

TSN i
(t)

HSN i
(t)

FSN i
(t)

 =  

Z−1(GT,F ∗ Tinlet ) + g(Hinlet ,Finlet ) + NT

f(Tinlet ,Finlet ) + Z−1(GH,F ∗ Hinlet ) + NH

Z−1(GF ∗ Finlet ) + NF

  (2) 



 

 

 

 

 

others and can be considered as the estimators so that we 

can assign identifiable linear models for KSN-DSN. 

Models of KSNs_DSN can be split into a set of SISO 

transfer functions and there will be a new multivariable 

matrix equation to solve. In the domain Z we will have: 

 

TDSN = GT ∗ TKSN    ,    HDSN = GH ∗ HKSN   (12) 

 

 
TDSN

HDSN
 =  

M(GTi ∗ UTi  ) 0
0 P(GHi ∗ UHi  )

   (13) 

 

(UTi, UHi), (GTi, GHi), and (TDSN, HDSN) are measured 

inputs, linear transfer functions of the KSN (Ki)_DSN 

and values of T and H in the DSN respectively. M(.) and 

P(.) are functions for combining effects of different 

KSNs on a DSN.  

 

 

4    Simulation 
As an example showed in fig. 5, we assume that there 

are two KSNs, one DSN and an inlet which provides F, 

T, and H. We are looking for the estimation of the EPs in 

S1. There are a few obstacles against the natural path of 

F and different initial conditions in the SNs because of 

either positions or corresponding measurement errors. 

With variations of T, H and F in inlet at different times, 

we can see the EPs in K1, K2, and S1 including different 

delays. The EPs in K1, K2, and S1 with the initial 

conditions in table 1 has been illustrated in fig. 6. As the 

first step in the estimation, while the KSNs and the DSN 

are active and measure the corresponding EPs, there are 

two MISO systems for T as well as H with inputs K1 

and K2 and output S1. All unknown parameters in these 

models should be determined using an identification 

technique. Actually, we can assume that KSNs are active 

and there is a failure on the DSN or it is in sleeping 

mode. Having new inputs we will have the new 

estimations in the DSNs using existing MISO models. 
 

  

Fig. 5.  A container with inlet, KSNs (K1, K2), and one DSN (S1). 

 

 
Table 1. INITIAL CONDITIONS AND DELAYS 

 T0(°C) Tdelay H0(%) Hdelay F0(m/s) Fdelay 

Inlet 10 --- 30 --- 15 --- 

K1 9 5 28.5 7 13.5 2 

K2 8.5 3 27 4 3 5 

S1 8 8 25.5 2 10 8 

 
Fig. 6.  Outputs when T,H and F in inlet change in different times 

with sample time: Ts= 90 s. 
 

(T0, H0, and F0) and (Tdelay, Hdelay, and Fdelay) are initial 

conditions and delay time of the EPs between inlet and 

SNs, respectively. According with [10], using ARMAX 

model identification method and input-output data; we 

will identify two sets of linear transfer functions of T 

and H both for K1_S1 and K2_S1: 

 

A Z ∗ y t = B Z ∗ u t − nk + C(Z) ∗ e(t) (14) 

 
Fig. 7.  (a) T, measured in inlet, K1 and K2; (b) estimation using inlet and 

K1with a disturbance at 25000 s with sample time:Ts= 150 s. 

 

Fig. 7 shows capability of the proffered method when 

there is a variation of T near to K1 as disturbance at the 

time 25000 s. We suppose that because of vicinity, it 

influences only on K1 and S1 not K2. To compare 

output estimation of the regular model achieved from 

inlet_S1 with our model using KSNs_S1, we have 

plotted both estimations in S1.  Despite of the model 

obtained from inlet_S1, suggested method detects its 

influence on S1. We do not use models with order more 

than three, whereas those models arises some difficulties 

in the application. 
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5    Estimation Based on Measurements 
This approach was applied to T, measured during field 

tests in cooperation with a German food retailer [11]. Up 

to 40 data loggers were mounted at the walls of the 

compartment for fish and meat. A 2-point control turned 

on the ventilation if T below the refrigeration unit rose 

above a given set point. As said before, models of T, H, 

and F can be independent if we use proper KSNs as 

estimators. Fig. 8 shows the measurement results in 

three SNs (700 points). The curve with the less variation 

is related to a node far from the inlet or behind a fruit 

box, reduces the F rate. The first part of the curves is 

related to loading and turning-on the ventilation system 

and the last part is related to its permanent turning-off, 

opening the door and unloading the freight. Although we 

could omit the first and last part of the data, we consider 

them to show capability of the proposed techniques. 

 
Fig. 8.  Actual T inside the container in three points (Ts= 150 s). 

 
Fig. 9.  Estimation using K1 and K2 (separately) compare with actual 

measurements with sampling time: Ts= 150 s. 

 

ARMAX method was chosen after studying different 

methods and some practical points were obtained to pick 

the best estimators out. As the first step, covariance 

matrix (C) of the measured values of K1, K2, Km, with 

S1 should be determined and to compare the covariance 

of the different signals, they should be normalized (NC) 

as shown in the following for K1 and S1 as an example: 

 

Covarianc  K1, S1 = C =  
8.4600 4.6996
4.6996 6.5285

          (15) 

 

NC K1, S1 =
Cij

 Cii ∗ Cjj
=  

1 0.6324
0.6324 1

     (16) 

 

Table 2. Normalized Covariance in Different Situation 

models 
NC compare with S1 

Order (1) Order (3) 

Estimation using K1 0.5005 0.6324 

Estimation using K2 0.5189 0.7638 

K1 0.7707 

Average of K1 and K2 0.8086 

K2 0.8324 

MISO Estimation using K1, K2  0.5714 0.8387 

 

Table 2 shows that different estimations in S1 using 

different KSNs have different correlations with the 

actual measurements. Figure 9 and table 2 illustrate that 

K2_S1 has more correlation than K1_S1 both in 

measurement and estimations of S1. Estimation using 

SISO model of K2_S1 is better than it by K1_S1. The 

obtained results show that higher order models cause 

better estimation (higher covariance). Therefore, using 

K2 is prior to using K1. Because of the time consuming 

processes and causing over fitting problems the model 

orders more than three are not suitable in this 

application. Although K1_S1 has less covariance than 

K2_S1, covariance of MISO system using both K1 and 

K2 is more than each of them lonely and then MISO 

estimation using K1 and K2 to estimate S1 is more 

accurate than SISO models.  

 
Fig. 11.  MISO Estimation using K1 and K2 and average of them  

 

Increasing the number of estimators will increase 

covariance of the response. Another important result is 

that using average method has less covariance than both 

proper KSN (K2) and MISO estimation using K1, K2. It 

is better than estimation using only one KSN.  
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6    Estimation Procedure and Flowchart 
Fig. 12 represents the flowchart of estimating including 

direct relationship with the fault diagnosis and routing. 

To use either one or more KSNs provided that there are 

no additional conditions, one should follow following 

steps: (1) Large number of data of primary group of 

estimators (KSNs) and related DSN, enough to 

estimation is necessary (in our case 600 samples of K1, 

K2, and S1. (2) Covariance matrix for KSNs_DSN 

should be computed.  (3) After sorting the normalized 

covariance the best estimators are those with bigger NC. 

(4) Picking up the number of the estimators for each 

DSN depends on the number of all KSNs and the DSNs 

and capability of the processor and required accuracy. 

 

 
Fig. 12.  Flowchart for proposed estimation technique. 

 

 

7    Conclusion 
This paper evaluated some important factors affected on 

near optimal modeling of the EPs in a constant volume 

closed space container. A simplified multivariable 

model using surrounding sensor nodes to estimate the 

EPs in some DSNs was introduced and comparing of the 

experiments and simulations illustrated high capability 

of the recommended techniques. Developing additional 

approaches to choose the best KSNs to reduce mismatch 

error and implementing such approaches could be a part 

of the future works. Other interesting task may be done 

to find the required minimum number of the KSNs to 

attain the best estimations. A comparison between the 

proposed method and the existing battery management 

techniques might be the other interesting activity. 
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