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Summary. Autonomous logistic processes aim at coping with logistic dynamics
and complexity by local decision making to gain flexibility and robustness. This
paper discusses resource-bounded logistics decision making using software agents
and task decomposition. Simulations show the feasibility of dynamic vehicle routing
and quality monitoring on embedded systems for the transport of perishable goods.

1 Introduction

Within the last years logistics has become a key success factor in globally
distributed production because of its cross-sectional function. But enhanced
product life cycles, rapid changes in company structures and information flows
change the requirements for logistic processes. On the one hand the rising com-
plexity of inter-organizational structures and also a relative shortage of logistic
infrastructure lead to increasing utilization of the existing logistic processes.
On the other hand a specialization of the ways of transportation and the car-
riers, which are connected to the transported goods can be observed. These
factors combined with changing customer market conditions have considerable
effects on planning and controlling logistic processes in such a dynamic envi-
ronment. A possible approach to face these challenges is the dezentralization
of logistic control and coordination by entities with the ability for autonomous
decision making—in other words: autonomous logistic processes.

Especially the management of supply chains for agricultural products has
to cope with multiple dynamic factors. Increasing and varying consumer ex-
pectations meet hardly predictable harvest quality and amount, which in turn
puts high demands on supply chain management in the face of uncertainty
[1]. Large inventories within the chain are generally to be avoided.

The quality of perishable products like fruits, meat, fish, flowers and phar-
maceuticals is a dynamic factor by itself, depending on harvest / production
conditions, time and stress factors during transport and storage.
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In the future “quality oriented tracking and tracing system[s]” [1] will offer
new approaches to cool chain management. Stock rotation could be based on
current quality instead of fixed ‘sell by’ dates. Warehouse planning will be
organized by ‘First expires first out’ (FEFO) instead of ‘First in first out’ [2].
Cool chain management will not only reduce unnecessary buffers in inventory
but also in shelf life. The dynamic shelf life expresses the remaining time span
until the product quality falls below an acceptance limit. Individual items
with high reserves in shelf life will be sent exactly where they are needed, e.g.,
international deliveries or retail shops with lower turn over.

The main methodology used throughout our work is based on autonomous
logistic processes modelled by software agents. Timm [3] defines four levels of
autonomy and investigates the possibilities of their respective realization in
software agents. Whereas “strong regulation” is associated with classical soft-
ware engineering the autonomy on levels one and two, “operational autonomy”
and “tactical autonomy”, can be realized with known decision making meth-
ods especially the Belief – Desire – Intention (BDI) approach [4]. A concept
for realizing “strategic autonomy” within a software agent is sketched in [3].

In the context of resource-bounded computation another aspect has to be
added to the question of autonomy. An agent’s autonomy is limited by the
computational resources that are available for its deliberation. In other words,
while operational autonomy can be realized by a relatively simple model-
based reflex agent [5, chap. 2] tactical autonomy already needs planning and
deliberation skills for which current resource-bounded environments are not
suitable.

Therefore this paper will show the tradeoff between computational needs of
autonomous logistic processes on the one hand and capabilities of current em-
bedded systems on the other hand. Furthermore we show the current state of
a prototype implementation using off-the-shelf embedded hardware to demon-
strate the opportunities of intelligent local decision making for transportation
of perishable goods.

2 Autonomous Decision Making in Transport Logistics

Experiences regarding perishable goods show that loss of quality depends on
its location inside the container and on the environment in general [6], without
forgetting unexpected problems. Therefore a prediction of actual quality losses
in this dynamic environment is a hard problem. In order to enable real-time
reaction quality tracing must happen locally and individually in the container.

The intelligent container we have presented in [7] provides a tracing system
that consists of four components: wireless sensor network (WSN), RFID sys-
tem, CPU and communication system. The WSN provides information about
the environment, e.g., temperature and humidity. The RFID system is re-
sponsible for the identification of goods. The next step is the extension of this
tracing system towards an autonomous decision making system, thus goods
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will be able to change routing decisions of the carrier if necessary for their
goal achievement.

This monitoring and autonomous decision making system (MADMS)
should support the following requirements. The MADMS must trace the goods
in an autonomous way. It has to react to changes in the environment and the
goods’ shelf life. The MADMS should be able to communicate with a route
planner and must be able, considering these aspects, to make autonomous
decisions to adapt the route to the current shelf life state.

The MADMS can be modelled as a multiagent system, using the delib-
erative agent technology, i.e., the BDI architecture. The BDI architecture is
based on practical reasoning and consists of two processes: deliberation and
means-ends reasoning. A BDI agent has information about its environment,
its goals and ways to achieve them [8].

We consider one BDI agent that is responsible for the goods in a shipping
container. The agent’s desire is to deliver all goods without losses. The agent’s
beliefs are: the goods’ respective shelf-life, destination and delivery time as
well as information about the local environment provided by the WSN and
other information systems, e.g., the route planner. The intentions determine
the agent‘s planned actions to achieve its current goals.

A BDI agent is able to make autonomous decisions, for example if a truck
cannot connect with the route planner system and it does not have information
about the next destination. An embedded system has bounded resources, e.g.,
memory or CPU, compared to desktop PCs. The challenge is the further
development of a MADMS for embedded systems using the BDI architecture,
where the agents must deliberate with only scarce resources.

3 Implementation in Embedded Systems

Quality-oriented tracking and tracing (t&t) for chilled transport and storage
is primarily based on permanent temperature supervision. Literature reports
[9, 10, 11, 12] and preliminary tests [13] revealed spatial deviations of 5 ◦C
or more over the length of a container or temperature zone in trucks with
separated compartments. Simulations with shelf life models showed that these
temperature differences could lead to variances in the remaining quality of
more than 50 % at the end of transport [13]. In cool down to deep freezer
mode, deviations of up to 10 ◦C were still present after 5 hours.

Evaluation of sensor data by current t&t systems is centralized. But due
to limited communication bandwidth and the cost of mobile or satellite com-
munication it is not feasible to transfer the vast information created by spatial
temperature supervision to a remote server for evaluation. Therefore we shift
part of the logistic decision system into the means of transport. Equipped
with an embedded processing unit, the truck or container can act as an au-
tonomous entity. In section 4.1 we show by example how an embedded unit
can also handle parts of the route planning. As test platform we selected a
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credit card sized ARM XScale processor module with a clock rate of 400 MHz
and 32 MBytes SDRAM memory (www.dilnetpc.com).

3.1 Representation of Logistical Objects by Software Agents

In the context of our work the implementation paradigm for autonomous
processes is based on software agents. Agents communicate by asynchronous
messages independently of their current location to achieve their goals [14].
Currently the most common environment to test and implement agents is the
Java Agent DEvelopment framework (JADE) [15].

A special version of JADE, the Light Extensible Agent Platform (LEAP),
was developed for devices with limited computing power and memory, e.g.,
mobile phones [16]. The programming language Java is required by the agent
framework. Although Java is not a common language to operate microcon-
trollers, it offers useful advantages for our setting like platform independency
and the execution of dynamic code. New programming environments like the
Jamaica Virtual Machine (www.aicas.com) make it feasible to efficiently run
complex Java programs on embedded systems [17].

As example process we investigated the transfer of a software agent rep-
resenting the freight-specific supervision instructions. After the loading of a
freight item to a new means of transport is detected by a RFID reader, the
vehicle sends a request for the corresponding agent. After being transferred to
the vehicle the agent is re-started on the local platform provided by the truck
or container. Finally a confirmation message is sent to the previous location
of the freight.

By optimizations of the agent framework the execution time for the above
described process has been reduced from 15 to 6 seconds [18]. Major bottle-
necks were the translation of messages into the FIPA-ACL format and JADE
internal services.

3.2 Interpretation of Sensor Data and Quality Assessment

A wireless sensor system for spatial temperature supervision is provided by
the means of transport. The complexity of fruit ripening processes or quality
decay of other products can not be reduced to a simple temperature threshold
checking. Based on the Arrhenius law on reaction kinetics the freight super-
vision agent calculates the current loss in shelf per time unit, depending on
the measured temperature [7]. The feasibility of this concept for automated
quality evaluation by mobile freight agents was demonstrated by our reduced
scale prototype of an intelligent container [19].

4 Distributed Solution of Route Planning Problems

Planning for a logistic domain is a real-time problem with relaxed timing
constraints of hours or even days rather than seconds. Although deliberating
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can be done concurrently to acting it is constrained by onboard computational
resources, which may be very limited regarding computing power and memory
(see section 3).

Classical planning based on theorem proving dates back to the 1960’s. The
widely known STRIPS system was introduced in [20]. STRIPS-like planners
can cope with “fully observable, deterministic, finite, static, and discrete”
environments [21]. Even though numerous approaches exist that address one
or the other restriction, none of them can remove all of them.

Decision-theoretic approaches, especially Markov Decision Processes, add
the ability of handling uncertainty, observations, the concept of utility, and
also partial observability [22, 23]. Several approaches and systems have been
proposed and implemented to address the problem of timing constraints but
still include major shortcomings. A discussion of these approaches and a po-
tential solution for the logistics domain can be found in [24].

For evaluation purposes in this paper the planning problem is reduced to
a simple route planning algorithm which is guaranteed to find the optimal
solution at the cost of hyperexponential computation time.

4.1 Distributed Planning by Truck Agents

In order to illustrate how distributed problem solving could shift part of the
route planning into the local processing platform of the vehicle we use the
following example:

A truck is loaded with a number of perishable products that should be delivered
to multiple customers in different destinations. The products have different initial
shelf lives, which are reduced by journey times. The task is to optimize the route in
a way that product losses are avoided due to zero shelf life at delivery. The sum of
the remaining shelf lives at time of delivery should be maximized. In an extended
scenario unexpected shelf life losses by temperature changes force re-planning of
the route. A solution for this problem has to consider two sources of information:
First the current shelf life state of the loaded products; these data are directly
available inside the vehicle. And secondly information about travel distances and
traffic situation. These data would be provided by a remote traffic data base.

The above example describes a special case of a Traveling Salesman Prob-
lem. To solve this kind of problem we apply a heuristic approach by splitting
the route search between remote traffic data base and local vehicle. This dis-
tributed problem solving results in increased robustness and autonomy. A re-
mote Route Planning Agent (RPA) searches for routes with low total driving
time to the delivery sites that have not been visited so far.

The proposals are fetched by the Local Vehicle Agent (LVA), which selects
one of the possible routes based on an evaluation of the achievable grade of goal
fulfilment, given as the sum of remaining shelf lives at delivery and avoidance
of zero shelf life. After arriving at the next customer the LVA requests new
route proposals, if the current grade of goal fulfilment is not satisfactory or
unexpected quality losses make re-planning necessary.
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By this approach the delivery service can quickly react to sudden changes
in freight quality. Even if the RPA could not be reached due to communication
failure, the vehicle can continue its planning based on the proposals that are
already known.

As an additional win this approach also secures information about shelf
life and especially about quality problems as internal state because the actual
decision parameters remain local to the vehicle.

4.2 Experimental Evaluation

An important requirement regarding the RPA is that the route proposals must
be substantially different from each other. If, e.g., only a list of the routes with
shortest driving distance is provided, these routes often resample each other
and deprive the LVA of the freedom it needs to find optimal paths in terms
of shelf life.

The following approach was tested as example: For each step with N cus-
tomers still to be visited, the LVA requests a proposal for a short, but not
necessarily the shortest round trip. The truck could drive from its current
position to one of the N destinations as starting point for the round trip and
continue in clockwise or counter clockwise direction. The resulting 2 ∗ N op-
tions are evaluated according to their grade of goal achievement. After arriving
at the first customer the procedure is repeated by sending a new request to
the RPA. This approach was compared to a full optimization by a software
simulation. For a fixed map of twelve destinations, freight items with a shelf
life set by random values had to be delivered to the customers.

In two thirds of the simulation runs, the systems finds a route that delivers
as much items before expiration as theoretical possible (see Table 1 - row A).
The higher flexibility of the system and lower planning effort entails a small
reduction of the remaining shelf life at delivery to 92% in average of the
possible value. To avoid package losses for the remaining third (see Table 1 -
row B) of experiments, further improvements of the local planning process are
necessary. Such a system should detect cases in which the described simple
heuristic is not sufficient and switch to a more costly strategy, e.g., requesting
additional route proposals.

Table 1. Summary of 600 simulation runs. The points give a measure for the re-
maining shelf life at delivery. Late deliveries with zero shelf life were punished with
-1000 points (row B)

Runs Local planning Optimal Ratio

A (no losses) 402 252,73 points 272,02 points 92,62% ± 7,37
B (with losses) 198 -813,64 points 218,93 points —
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5 Conclusion

In this paper we have shown that it is indeed possible to create autonomous
logistic decision making systems based on state-of-the-art deliberation meth-
ods of distributed artificial intelligence. By skilled division of planning tasks,
as shown by our software simulations, it is feasible to implement decision
instances onto off-the-shelf embedded hardware. These autonomous systems
are capable of on-line monitoring of certain parameters that a logistic service
provider would not want to reveal to third parties and base decision on these
data by considering information collected from third party providers.

The solution we propose is autonomous on a level we consider clearly
above operational. Whether it is jusitified to claim tactical autonomy has to
be shown by further experiments and refinement of the approach. To increase
their capabilities the implementation of the JADE agent platform should be
extended to a deliberation on a BDI basis.
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