LDIW, February 2008, University of Bremen

R. Jedermann and W. Lang

Intelligent parcel or intelligent vehicle? System layers to implement embedded intelligence

Institute for Microsensors, -Actors and –Systems Microsystems Center Bremen University of Bremen

Outline

- Background of embedded intelligence
 - Autonomous cooperation
 - Hardware layers

SFB 637 Autonomous cooperation logistic processes

- Communication as limiting factor
- Case studies and examples
 - The intelligent container
 - Local route planning
 - Intelligent RFID

SFB 637 Autonomous cooperation logistic processes

The aim of embedded intelligence

Autonomous control

- Decentralized decision making
- Split (logistical) planning tasks into parallel processes
- Ideal case: each object represented by its own software entity / Software agent
- Object = parcel, vehicle or a single order
- Advantages: Robustness, Flexibility for system dynamics
- Agent physically linked to object
 - Object / parcel has own computation unit
- Agent represents object
 - Agents runs remote on server platform to act 'in behalf' of the object

3

Universität Bremen

Degree of decision freedom

Decision scope	Description
None	 Executes decisions of central planning instance
Evaluation of local sensor information	 Observes its environment Decides whether measured deviations form a risk for the good quality
Adaptive route planning	 Change transport route swap vehicle by own decision
Maximum decision freedom	 Changes its destination, according to new orders or changed quality state

Universität Bremen

Implementation levels

SFB 637 Autonomous cooperation logistic processes

Location	Current application	Future applications	Computa -tion power	Basic costs	Extra costs
Server networks	Objects re- presentation by Global database	Multi agent system based vehicle routing	100%	> 1000 €	-
Means of transport	Telemetric supervision, GPS	Intelligent Container	~2 %	< 1000 €	~ 100 €
Active com- munication devices	Active tags attached to containers	Spatial supervision by wireless sensors networks	~0.1 %	> 10 €	~1€
(semi-) passive RFID tags	Identification Temperature logging	Intelligent RFID	<< 0.1 %	>1€	~1€

Limiting factors of Communication

Passive RFID:

SFB 637 Autonomous cooperation logistic processes

- Access only offline during gate passage
- Limited range (~3 m)
- Active wireless sensor:
 - Permanent online access and higher range
 - But volume limited by energy budget

Where to place the data processing?

How is information transferred?

Source → Processing → Sink
 Length of the information path

SFB 637 Autonomous cooperation logistic processes

Universität Bremen

Length of the information path

- Keep it as short as possible
 - Does the shift of intelligence to another system layer shortens or extends the communication path?
- Processing close to origin of information
 - Sensor supervision ~ 10 kByte
 - Route decision ~ 100 Byte
- Thinking is cheaper than communication
 - (1 mJ < 16.5 mJ for wireless sensors)
 - If intelligence reduces communication it enables networked objects

Shelf life modelling

Local Route planning

SFB 637 Autonomous cooperation logistic processes

- Alternative to the intelligent parcel
- Example: Truck autonomously adapts a round trip to deliver sensitive parcels to multiple costumers
- Truck does not check all possible round trips (Travelling salesman) only local view
- Embedded objects have only limited access to information, no bird view
- How good is planning under this restriction?

Universität Bremen

10

Approach for intelligent truck

- Privacy: Vehicle does not send quality data to the outside world
- Reduced information: Vehicle receives only a limited number of route suggestions
 - Provided by external traffic information server
- Truck evaluates the suggestions on the bases of the internal quality information
 - Change the route to deliver packages with low remaining shelf life first
 - Maximize the number of packages in proper quality state at point of time of delivery

13 Universität Bremen

Experimental evaluation

- Distributed heuristic solution
 - Software simulation
 - Comparison with optimal solution
- Process repeated in each town
- Unit: Travel distance in hours

Performance of different planning strategies

- Vehicles start with optimal route, but disturbance and replanning after 2 packages
- $N_0 = 20$ packages to deliver
- 500 software experiments

SFB 637 Autonomous cooperation logistic processes

Method	Delivered Packages	Driving time	Improvement
Full re-planning	16.41	76.81 hours	100 %
Local vehicle planning	15.66	76.82 hours	64.5 %
Repeated vehicle planning	15.75	75.80 hours	68.6 %
Unchanged route	14.30	74.68 hours	0 %

The idea of intelligent RFID

 Sensor data pre-processing by semipassive RFID tags

15

Required hardware resources

Is it feasible to squeeze a shelf life model into a micro-chip?

Type of Resource	Calculation of Arrhenius equations	
Processing time	1.02 ms	
Program memory	868 bytes	
RAM memory	58 bytes	
Energy	6 µJoule	

Available energy

- Very small additional recourses compared to circuit of data logger
- Shelf life model can run by paper thin batteries
- Finished project: HF-Tag for Measurement of pressure

SFB 637 Autonomous cooperation logistic processes

Power consumption per month				
Update every 15	0.020 J /			
minutes	month			
Stand by current	5.7 J /			
of MSP430	month			
(1µA at 2.2V) Turbo Tag (Zink oxide battery	80 J			

Summary

- Benefits
 - Robustness

SFB 637 Autonomous cooperation logistic processes

- Flexibility
- Privacy
- Less communication costs
- Only few extra hardware costs for additional processing power
- Not all hardware levels are useful
- Length of the communication path

Thank you for your attention

For more information and publications please visit www.intelligentcontainer.com

- Full paper will be presented at the Internet of Things March 2008, Zurich:
 - The Benefits of Embedded Intelligence Tasks and Applications for Ubiquitous Computing in Logistics. In: C. Floerkemeier et al. (Eds.): IOT 2008, LNCS 4952, Springer Berlin Heidelberg 2008, pp. 105–122,
- Contact address

Dipl.-Ing. Reiner Jedermann Universität Bremen, FB1 (IMSAS), Otto-Hahn-Allee NW1, D-28359 Bremen, GERMANY Phone +49 421 218 4908, Fax +49 421 218 4774 rjedermann@imsas.uni-bremen.de

19

Universität Bremer

Universität Bremen