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Static and Dynamic Qualitative Spatial
Knowledge Representation for Physical Do-
mains

Andrea Miene and Thomas Wagner

The use of qualitative spatial knowledge representation has significant advantages over purely quantitative spatial
representations. It allows abstraction from irrelevant details on different levels of granularity and abstraction and allows
to generalize large sets of quantitatively different spatial situations into a single description and therefore provides the
foundation for more abstract e.g., sensor-independent behavior models. Nevertheless a qualitative spatial knowledge
representation is rarely used to describe (complex) behavior for autonomous agents in physically grounded environments.
One of the main reasons is the lack of robust methods that support the generation of qualitative spatial descriptions
from quantitative sensor input. In this paper we present two approaches that provides support to the generation of

static and dynamic qualitative spatial representations.

1 Introduction

The use of qualitative knowledge has a long tradition in Al-
research and resulted in various approaches and several ap-
plicable systems ranging from diagnosis in technical domains
to natural language understanding. Especially in the last
decade qualitative spatial reasoning gained a lot of atten-
tion and resulted in several sophisticated calculi that allow
to reason on metric [2], ordinal [4] and topological (e.g.,
[13]) spatial knowledge (a good overview can be found in
[3])- The use of these approaches appears promising, es-
pecially in domains with incomplete spatial knowledge since
all of these approaches allow to deduce implicit knowledge
and therefore are able to fill gaps in a spatial representation
without any additional (explicit) knowledge. The use of qual-
itative knowledge appears especially interesting in physically
grounded domains like RoboCup since we are facing not only
incomplete but also uncertain knowledge due to the perma-
nent present of sensor noise. One of the key ideas behind
qualitative spatial knowledge is to support the abstraction
from precise quantitative data. Additionally, qualitative spa-
tial knowledge plays a crucial role for the integration of more
sophisticated deliberative behavior models in autonomous
robots which rely on quantitative sensor input. Without a
qualitative abstraction a behavior models is directly based on
the quantitative sensor data. Any change on the sensor level
and any quantitative change in the physical environment will
therefore require at least an adoption of the behavior model
in use. Despite all these arguments qualitative knowledge
it is still rarely used in autonomous robots. One of the key
reasons is the difficulties that arise from the generation of
qualitative representations. Although qualitative knowledge
should allow to abstract from precise quantitative data the
generation of qualitative representations based on uncertain
knowledge will often result in incorrect representations due

to the underlying classification process.

In this paper we present two approaches that allow to
generate either static or dynamic qualitative representations
robustly without any classification. In the first approach
we show how ordinal qualitative knowledge (i.e., left, right)
can be generated. It is shown how qualitative navigation
and the validation of ordinal qualitative perception are re-
lated to each other'. Furthermore we show that the gener-
ated knowledge also supports robust qualitative navigation.
Even in cases where qualitative navigation is not in the fo-
cus of interest this approach can be used to validate ordi-
nal perception [19, 18]. Based on this static representation
we proceed in the second part of the paper with the nat-
ural extension of the static representation by assuming that
the perceived objects/landmarks are moving and present an
approach, that allows for the generation of dynamic quali-
tative knowledge which plays a crucial role especially in the
RoboCup-domain. The approach enables us to both inter-
pret and predict complex situations. It is based on a qualita-
tive description of motion scenes and additional background
knowledge [7, 10, 11, 12]. It is shown how dynamic situa-
tions can be described and validated based on a declarative
logical description. Both approaches have been validated
extensively on real and/or on simulated noisy sensor data.

2 Motivation and Related Work

The generation of qualitative ordinal knowledge and its use
for qualitative navigation has been investigated practically as
well as theoretically. The idea has been introduced by Levitt
and Lawton as part of their QUALNAV-approach [8]. Imag-
ine walking through an unknown city during a conference

1Ordinal qualitative perception can be interpreted as the strict
abstraction from all metric information (e.g., angle, distance, ...)

Page 1



visit. You see different landmarks: a large office building
far away on your left, a church on your right and a large
railway station in your back. The underlying hypothesis of
Levitt and Lawton is that the full 360° ordering (roundview)
in which a set of landmarks is perceived by some omnidirec-
tional sensor of an autonomous systems is directly related
to the specific position of the observer. Or the other way
round, the position of the observer is directly related to the
ordering in which a set of landmarks is perceived. Although
the idea appears intuitive when we consider our own experi-
ence of landmark use walking through an unknown city their
hypothesis does not hold in general. The example in figure
1 shows a simple counter example (adopted from Schlieder
[16]). The position of the autonomous system is indicated
as a black dot. Due to Levitt and Lawton each region which
results from connecting each landmark with each other (i.e.,
an arrangement) each region should be identified by a spe-
cific ordering. In picture 1 the cyclic ordering is given by
(1,2,3,4,5).

Figure 1. Localization and ordering information

But the resulting circular ordering information is not
unique to a specific region but instead is valid for all grey
dyed regions.

The detailed formal analysis of Schlieder ([16], [14],
[15]) showed that the information encoded in the round-
view of Levitt and Lawton is not sufficient for qualitative
navigation/localization. Schlieder instead proposed an ex-
tended panoramic-representation that incoorporates the op-
posite sides of landmarks for which he could proof a bijective
mapping between qualitative position and landmark ordering.
For practical applications the information requirements are
very high. We do not only need a full 360° view but we also
have to incorporate the opposite landmark sides which by
definition cannot be perceived directly and therefore have to
be calculated (e.g., based on angular information).

In section 3 we present a view-based approach to quali-
tative navigation that requires only partial egocentric views
(i.e., neither 360° views nor opposite landmark sides) but still
allows a robust mapping between position and perception.

Another field of application for qualitative knowledge is
the qualitative description of motion and correlated the inter-
pretation and prediction of dynamic scenes. Dynamic scenes
consist of objects which are in certain spatial relations to
each other. The relations vary over time due to the move-

ment of the objects. Temporal intervals and the relations
between them can be represented following the approaches
of Allen [1] and Freksa [5]. The spatial relations between the
objects can be described using metric knowledge as angles,
distances and the objects movement in terms of direction
and speed. Quantitative values concerning distances and di-
rections can be mapped onto qualitative classes using quali-
tative distance measures as proposed by Hernandez [6]. For
a detailed discussion of the related work please refer to [10].
An approach which brings together the temporal and spatial
aspects to describe, interpret and predict dynamic scenes is
presented in section 4.

3 Qualitative Localization Based
on Egocentric Views

Localization and navigation can be interpreted as the map-
ping between perception and space. In case of the traditional
approaches [17] the Euclidian 2D /3D space is used as the
reference system and perception is given in terms of quanti-
tative sensor output. In the case of qualitative localization
both perception and the spatial reference system have to be
defined with respect to some qualitative reference system.
In the following the concept of view-based qualitative nav-
igation is demonstrated with landmarks configurations with
four landmarks, although the general concept is not limited
to any specific number of landmarks. (For a full description
please refer to [20].), Therefore we have to give,

1. a definition of the construction of qualitative percep-
tion,

2. the specification of a qualitative reference system and

3. the mapping from perception to space (localization)?.

The fundamental idea of view-based navigation is to use
the egocentric perception of an agent without a mapping
into any allocentric reference system. The only information
used to describe perception is ordering information, i.e., no
angular nor any distance information will be used. Usually
the generation of spatial qualitative descriptions is a diffi-
cult task due to the required classification process. In the
case of ordering information the generation does not require
any kind of classification. The idea is to fix an arbitrary
point within the convex hull of a landmark configuration.
The ordering information is given by the orthogonal projec-
tion of the landmarks on Lon(p,./vp) (see also figure 2).
Formally3,

Definition 1: (Snapshot Generation) Let Pr denote the
position of an agent Ar and Cpapcp) the paral-
lelogram configuration formed by the set of points
A,B,C, D in the plane. The line Lp, v p is the line
of vision from Pr to VP, with VP being a fixed point

2The crucial point is to show that there is a bijective mapping
between perception and qualitative position. This can be shown
e.g., by constructing an appropriate finite state machine. For
details please refer to [20].

3The generation of a complete ordinal snapshot as described
in definition 1 is only necessary for the initial construction of the
reference system.
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Figure 2: Construction of an ordering view

within Cpacp). Furthermore Lo,y (pr v Py be the
orthogonal intersection of Lp.,yp. The landmark
panoramic ordering information can then be described
by the orthogonal projection P(Pr,V P,Cp(apcp))
of the points ABCD onto Lorin(p,/vP)-

Assume a parallelogram configuration Cp(apcp) of the
landmarks A, B,C, D € L with all landmarks connected to
each other by a straight line L, /r,, n,m € L£*. The resulting
structure decomposes the space in twelve region outside the
convex hull of CP(ABCD)-
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Figure 3: Qualitative regions, transitions und ordinal percep-
tions for a parallelogram landmark configuration

Moving around Cpapcp) either clockwise or counter-
clockwise results in a set of ordering snapshots that describe
qualitatively the position of the observer with respect to
Cp(aBcD),

Observation 1: (Parallelogram Snapshot Cycle) The
panoramic landmark representations resulting from
the subsequent projection P(Pr,VP, CP<ABCD))
by counter-clockwise circular movement around
VP can be described by the following ordered,
circular sequence of snapshots: ((ABCD),(ACBD),
(CABD), (CADB), (CDAB), (DCBA), (DCAB),

4There are no specific requirements for parallelogram configu-
ration e.g., a rectangle.

(DBCA), (BDCA), (BDAC),
(BADC), (ABDC))

Each line L, ,, connecting landmarks n and m with
each other can be interpreted as a transition axis. Given
the agent is located at position [POS — 7] with the asso-
ciated perception (BDCA) and is moving counterclockwise
towards region [POS — 8]. While passing the transitions
axis L,/c the ordering perception changes from (BDCA)
to (BDAC), Considering the result of a full round walk the
ordering topology of observation 1 can alternatively be de-
scribed in terms of a sequence of transitions: ( B/D, A/D,
C/D, A/B, C/B, B/D, A/C, A/D, A/B, C/D, C/B,
A/C )®. During the navigation around Cp(aBcp) each
transition axis L,,/,, is passed exactly twice. Thus the ob-
servation of a transition is at least to some extent invariant.
But the navigation process is even more constrained. Given
the transition axis L., /,, we are able to distinguish on which
side a robot passes L,,/y,. In case of L ;¢ the landmarks A
moves from the right to the left and landmark C moves from
the left to the right side in the case of moving from region
[POS — 7] to [POS — 8]. While passing the L4,c on the
bottom side from region [POS — 12] to [POS — 1] (once
again, we assume a counter-clockwise direction of naviga-
tion) the landmarks switch is exactly the other way round.
So the navigation can be described more precisely as,( C'/D,
A/B, C/B, D/B, A/C, D/A, B/A, D/C, B/C, C/A ).
The fundamental advantage of describing a landmark con-
figuration in terms of a transition sequence is that only a
minimum of information is required to determine the ob-
servers positions. Just observing e.g., the landmark switch
A/C in combination with the direction of navigation (clock-
wise vs. counterclockwise) and the direction of the landmark
switch allows to determine the exact observer position with
respect to Cp(aBcD)-

An additional interesting feature of ordering information
is that it is e.g., variant to various deformation like com-
pression. The circular sequence of snapshots described in
observation 1 is indeed only valid for parallelogram land-
mark configurations. Imagine we are moving the landmarks
B and D in figure 3 towards each other. As a matter of
consequence the transitions axis L4,p and Lg/p have no
longer a parallel orientation. Instead after moving the land-
marks B and D towards each other the axis L4/p and L¢/p
will intersect on the right side of Cpapcp) and create a
new region (CDBA). Generally four new regions may arise
depending on which landmarks are changing their relativ po-
sition to each other. This allows us to describe the second
observation,

Observation 2: A semi-irregular formed quad-tuple config-
uration, i.e., with two parallel lines either Lac and
Lg;p or Lasg and Lo/ p, will generate the following
additional state:

((DBAC) VXOR (ACDB)) VXOR ((BACD) VXOR
(CDBA))

5Therefore, the parallelogram snapshot cycle (Observation 1)
does not require to focus on some arbitrary viewpoint V P. Instead
the observation of the transitions is sufficient. The point V P of
definition 1 is only required for the initial reference view.
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The new positions cannot be combined arbitrarily. Lets
assume the same case as above. The landmarks B and D are
moved towards each other and therefore the axis L 4,p and
L¢c/p will intersect on the right side of Cpapcp). Since
no straight lines i.e., Ly ,p and L¢,p, can intersect more
than once it is clear that L4,p and Lc/p will not intersect
on the left side of Cpapcpy. Thus any landmark config-
uration with four points has at most two additional regions
(in addition to the ones specified in observation 1),
Observation 3: A irregular formed quad-tuple configura-

tion, i.e., with no parallel lines La,c, Lg/p, La/B
and Lg/p, will generate the following additional
states:
((DBAC) Vxor (ACDB)) A ((BACD) Vxor
(CDBA))

Thus we are able to distinguish nine different convex
quad-tuple configuration by a strict analysis of ordering snap-
shots (see figure 4).

L

Figure 4: Convex quad-tuple ordering topologies
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The approach has been tested in two different scenarios.
First it was tested in the RoboCup-domain with a simu-
lator of the Sony-Four-Legged-League [18]. Since our ap-
proach is intended to be used for localization outside the
convex hull of a landmark configuration the edges of the
lines within the soccer field were used as landmarks (for
the detailed description please refer to [18]). Secondly, in
order to get results that do not depend on any specific
kind of landmark (re-)detection we also developed a sim-
ulator EGO-QUALNAYV that allows to control precisely var-
ious fault modes like odometrie, missing landmarks, partial
views and wrong identification of landmarks. (Figure 5(b)
shows a more complex scenario. Each bright dot describes
a landmark configuration (a cluster) whereas all landmark
configurations are connected to each other by an accessibil-
ity relation in order to construct more complex scenarios.)

Even in cases where up to 60% of the perception is in-
correct® and with a high rate of missing information (e.g.,
landmarks that could not be distinguished) the simulated

SFor detailed results please refer to [20].

(a) Validation in the (b) EGO-QUALNAV-SIM -
RoboCup-domain (Simulator environment with a graph-
of the Sony-Four-Legged- based network of landmark
League) configurations

Figure 5: Validation

agent was able to find its way from an arbitrary start point
to an arbitrary endpoint (for a detailed description of the re-
sults and the precise formalisation with the according proofs
please refer to [20]).

4 Dynamic Qualitative Informa-
tion

In this section we introduce our approach on representing
motion with qualitative dynamic knowledge. The approach
enables us to both interpret and predict complex dynamic
situations [10, 12].

4.1 Qualitative Motion Description

The description includes single object’'s motion in combina-
tion with the changes in the objects’ pairwise spatial relations
over time. The basic assumption of our approach is that we
have an allocentric view from above of the motion scene. On
a quantitative level the objects absolute and relative move-
ment is described by four types of time series: the motion
direction and speed of each object, and the spatial direction
and distance for each pair of objects. In a first abstraction
step each time series is segmented into time intervals of ho-
mogeneous motion values.

In order to segment the time series into time intervals
two different segmentation methods are used: a threshold-
based segmentation method and a monotonicity-based seg-
mentation method, which groups together strictly monotonic
increasing intervals, strictly monotonic decreasing intervals
and intervals of constant values. Each threshold-based seg-
mented interval is described by a single attribute: the av-
erage of its values. A monotonicity-based segmented inter-
val is described by its start value, its end value, and the
run direction of values: increasing, decreasing or constant.
Both segmentation methods allow various interpretations of
the resulting intervals. The monotonicity-based segmenta-
tion is useful to recognize dynamic aspects of motion, e.g.,
the acceleration of a moving object. But due to the fact
that the values are measured only at the start and the end
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of an interval its intermediate values are not known. There-
fore, the threshold-based segmentation is more useful to find,
e.g. an object that moves with a certain average speed.
In a second step the attribute values describing the inter-
vals are mapped onto qualitative classes for direction, speed
or distance, respectively using qualitative distance measures
as suggested by Herndndez [6]. The entire process is car-
ried out online, i.e., at each time cycle one set of positional
data is processed. Fig. 6 shows the entire process of mo-
tion description exemplary for a time series of object dis-
tances, segmented using the monotonicity-based method. A
single interval already allows for a simple interpretation of
the movement of the two involved objects: they approach
each other and finally meet, which is expressed by the term
HOLDs(approach-and-meet(p, q), (tn, tnt+k)). The predicate
HOLDS expresses the coherence between a certain situation
and the time interval in which it is taking place or is valid
(see Allen [1]).

type: object distance
segm. criterion: monotonicity
begin: t,end: t,,,

description

positional obj1: j2:

A " j1: p, obj2: g

information value at begin: 50
value at end: 0

tobj x y

0 19912 run: -1

0 21374

T
. classification of attributes
15 10 27 85

value at begin: medium distance
value at end: no distance (meets)
run: decreasing

T

interpretation

time series, e.g. distance between objects pand g HOLDS(approach-and-meet(p, ), tn, tn)

Figure 6: Overview: Generation of motion description

4.2 Interpretation and Prediction of Dy-
namic Scenes

Based on the qualitative motion description it is possible
to recognize and predict motion situations. Domain know-
ledge, e.g. about the function or type of objects involved
in a situation, leads to more appropriate interpretations. In
addition, positional information is integrated by representing
the duration a certain object is located in a certain region
via time intervals.

As an example it is possible to predict an impending
offside trap (FIFA rules, law 11). In order to predict an im-
pending offside situation for player p, he has to be located in
the opponents’ half, actually have the ball behind him and
a small remaining number of £ = 3 — 4 opponent defenders
in front of him. Then it depends on the relative movement
of p and an opponent ¢ if an offside position is impend-
ing. Therefore, we have to take into account the current
spatial direction between p and q (spatdir), obtained from
the threshold-based segmentation, and the development of
the spatial direction between p and ¢ (clockwise (change-
spatdir-cw) or counterclockwise (change-spatdir-ccw), ob-
tained from the monotonicity-based segmentation). If the
spatial direction is already close to the change between in-
front-of and behind, and the values are increasing or de-
creasing (clockwise/counterclockwise change of spatial di-

180° 180°

g g & 0 g &
2 7
¥ 270
6
| aEl
-2
a=345°| 315
360" 360

Figure 7: Development of spatial directions between offender
and defender announcing an impending offside position.

rections) an offside position is impending.

HoLDs(offside-danger(p, q), (maz(si), min(e))) <
s, ei), i€ {1,.... 6} :
HOLDS(region(p, opponent-half), (s, e1))A
HOLDS(behind(ball, p), (s2., e2))A
HOLDS(in-front-of (¢, p), (s3, €3)) A team(p) # team(gq)A
HOLDS(number-of-opponents-in-front-of(p, n), (s4, €4)) A2 < n < kA
((noLps(change-spatdir-cw(p, q). (ss, e5))A
HOLDS(spatdir(p,q,1 V 5), (se, e6)))V
(HOLDS(change-spatdir-ccw(p, ), (s5. e5))A
HOLDS(spatdir(p, ¢, 4 V 8), (s6. €6))))A
Vi,je{l,..., 6} :s; < ey

A complex situation like offside-danger(p, g) combines
several time intervals. The temporal relations between the
intervals are modelled using temporal relations on time inter-
vals defined by Allen [1] and on semi-intervals as proposed
by Freksa [5]. The term Vi,j € {1,...,n} : s; < e; postu-
lates that all n intervals involved in the situation are pairwise
contemporary. (max(s;), min(e;)) specifies the sub-interval
covered by all n time intervals (s;,e;),1 < i < n. Fig. 7
shows the case of an increasing development of values. If the
present trend lasts for some further time, an offside situation
will occur in the moment the spatial relation changes to the
next class (i.e. from 5 to 4) and at the same point in time
from in-front-of to behind.

Within the prediction phase we can also distinguish off-
side traps caused by a forward movement of an opponent ¢
from offside situations caused solely by the movement of the
offender p himself be taking into account the movement of
these players.

To evaluate our approach we have chosen three games
from the Robocup Worldcup 2002: FC Portugal vs. Puppets,
TsinghuAeolus vs. FC Portugal and VW2002 vs. Cyberoos.
The games include 53 offside situations in which the game
was interrupted by the referee. In 45 cases our system also
detected an offside situation. In 8 situations our systems
is not in line with the referee. But in all of these situa-
tions the referee decides offside against a team A although a
player of team B has touched the ball before the game was
interrupted. So our system detected every correct offside
situation and furthermore 8 wrong decisions of the referee.

A detailed explanation of the offside example together
with the in depth evaluation of results is presented in [12].
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5 Discussion

Intelligent, mobile, autonomous systems usually require be-
havior models that describe complex pattern of behavior at
various levels of granularity and abstraction. Based on pure
quantitative sensor data behavior model have to be described
strictly at one specific level of detail and depend directly on
sensor data. Each change in either sensor typ or quality ul-
timately requires an adoption of the modeled behavior. In
other terms behavior models that directly rely on quantita-
tive data are always hardware dependent. On the other hand
when looking in didactics literature e.g. soccer tactics be-
havior is not only described in way that does not depend on a
specific kind of cognitive system with specific sensors, it also
describes behavior in an abstract fashion so that a specific
pattern of behavior (e.g., a counter attack) can be applied
in various situations that differ significantly in quantitative
terms [9].

In this paper we presented two approaches that allow to
sgenerate qualitative spatial knowledge based on quantita-
tive sensor input (real as well as simulated). In section 3
we described an approach to qualitative navigation based on
ordering information. We showed that ordering information
can be generated robustly without any kind of classifica-
tion from quantitative to qualitative description. The most
important property is that the perception of ordering infor-
mation is highly constrained with respect to the underlying
ordering topology. Wether an ordering perception is correct
or not can be identified easily, given the perceptive agent
has at least some hypothesis about his current qualitative
position and the ordering topology of the landmarks config-
uration is known. We assume that our approach can easily
be integrated with other approaches to navigation as well as
been used on its own.

The second approach in section 4 focused on qualita-
tive description, interpretation, and prediction of dynamic
scenes. The presented approach is domain-independent and
can therefore be used in various applications that require
the qualitative interpretation of dynamic scenarios in phys-
ically grounded environments. It was applied and validated
in the soccer domain [12, 10] and also in the domain of au-
tonomous vehicles [11]. The time intervals describing the
motion situations were used as a basis for a pattern mining
approach for situation and behavior prediction in simulated
robotic soccer [7]. Finally, it might be useful to combine
both presented approaches: the described landmark transi-
tions in the approach to ordering information do not do not
happen suddenly. Before two landmarks are switching they
are continuously moving towards each other. This can be de-
scribed perfectly within the second presented approach and
provides additional evidence wether an observed transition is
coherent with the dynamic motion description.
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