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Chapter 1

Introduction

Words exist because of meaning; once you have grasped the meaning,
you can forget the words. Where can I find a man who has forgotten

words, so I can have a word with him? [Chuang, 300] Chapter:26

One of the goals in artificial intelligence concerns the creation of intuitively
usable interfaces that lower the gap between increasingly complex applications
and their users. Consequently, sub-fields have emerged that seek to develop
intelligent user interfaces as well as ubiquitous and pervasive computing envi-
ronments for intuitive everyday computing. For this, the notion of hands-free
computing has received considerable attention, especially due to the advent of
mobile computing, which has been pushed forward due to increasingly small
and powerful devices for which traditional interaction paradigms are more or
less unsuitable [Johnson, 1998].

Therefore, a new window of opportunity for spoken dialog systems opened
through which research on human-computer interaction via natural language
was moved away from artificially reduced blocks-world scenarios to realistic
applications and into the hands of mobile users. Today, so called controlled
dialog systems [Allen et al., 2001a] have become reliable enough to be deployed
in various real world applications, e.g. timetable or cinema information systems.
In controlled dialog systems the interaction between the user and the system
is restricted so that recognition and understanding errors can be kept minimal.
The more conversational a dialog system becomes, the less predictable are the
users’ utterances. Recognition and processing, therefore, become increasingly
difficult and unreliable. This is due to the fact that virtually on all levels in the
natural language processing pipeline, ambiguities, underspecification as well as
noise multiply greatly.

An important step toward the development of more natural and intuitively
usable dialog systems was constituted by the inclusion of additional modali-
ties such as gesture, mimics or haptics. One of the central motivations be-
hind the work on multi-modal systems is based on the hypothesis that the
individual modalities can be employed to mutually disambiguate each other.

13



14 CHAPTER 1. INTRODUCTION

A single pointing gesture, for example, can be as ambiguous with regards to
the user’s intention as the utterance tell me more on about that. Fused to-
gether, however, they provide enough information for a system to infer the
intended action requested. In recent years several research projects on multi-
modal interfaces sought to overcome individual problems arising with more or
truly conversational dialog systems [Malaka and Zipf, 2000, Allen et al., 2001b,
Wahlster et al., 2001, Johnston et al., 2002, Sonntag et al., 2007]. The goal of
intuitive and conversational multimodal interfaces that can someday be used in
real world applications, however, has not been achieved yet.

The work presented herein is to be understood as part of the larger research
undertaking pursuing this goal of intuitively usable multimodal systems that
can cope robustly with spoken language and other modality-specific input. For
this, I will examine the following research question and hypothesis: While it
is true that individual modalities disambiguate each prior approaches have by
and large overlooked - or at least failed to treat - contextual information as
another modality that is crucial for interpreting the standard modality-specific
input, such as user utterances, gestures and the like, felicitously. In short, the
claim is, that systems seeking to understand natural and conversational input
context needs to be treated as a bona fide modality that contributes equally per-
tinent information as all other modalities and, therefore, needs to be considered
analogously. Failing to include context consequently causes systems to become
restricted, brittle and inherently unscalable.

In order to support this claim, the challange of modeling and applying of
contextual - and therefore linguistically implicit - information and the corre-
sponding pragmatic knowledge will be examined as one of major challenges for
understanding conversational utterances in unrestricted dialog systems. In or-
der to provide a more concrete motivation, I will exemplify three problems,
which still thwart unrestricted conversational interaction via natural language
in the following section.

1.1 Motivation

What - a frustrated computer scientist or application developer might ask - is
the raison d’être - for ambiguities, underspecification or noise. And why are we
not to live in a world where input comes in noiseless, unambiguous and clearly
specified packages. Especially, looking at spoken or written natural language
utterances as the key input modality for multimodal systems, one finds that they
are frequently ambiguous, highly underspecified and, additionally, come with
various kinds of noise. In contrast to human languages, computer languages are
designed to avoid morpho-syntactic, semantic or pragmatic ambiguities. Human
languages, however, seem to be riddled with situations where the addressee has
to choose between multiple interpretations. In these cases linguist say that the
addressee resolves the ambiguity. For human beings the process of resolution is
often unconscious, to the point that it is sometimes difficult to recognize that
there ever was any ambiguity.
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Classic examples of ambiguity commonly present lexical ambiguities, e.g. for
the lexical item bank. Some examples that can be found in the British National
Corpus [BNC, 2008] are given with their respective BNC indices in parenthesis
below:

(1) ... the gene bank might ultimately contain 500 collections ... (B76 493)

(2) Robbers ran from a bank in Milan, Italy, ...(CBE 2870)

(3) ... south of the town, on the west bank of the River Kent ... (B0A
1365)

Please note, that in these examples sufficient ‘contextual information is pro-
vided by the lexical neighborhood to enable the reader to resolve the ambiguity,
i.e. to know what was meant. This is usually stated by saying that a lexical
item can have more than one meaning or that it exhibits different - but related
- senses. Based on that distinction, linguists differentiate between homonymy
in the former and polysemy in the latter case [Kilgarriff, 1993]. In the fields of
linguistics and computational linguistics it is well known that resolving such am-
biguities, i.e. finding the meaning or sense, that is at hand in a given utterance
or sentence, can only be done by observing at least the lexical item in that partic-
ular discourse context [Ide and Veronis, 1998, Schütze, 1998, Widdows, 2003a].

In the literature this type of context is usually equated with the surrounding
words and corresponding classifiers can be trained using supervised machine
learning techniques [Mitchell, 1997, Stevenson and Wilks, 2001]. It is important
to remember, however, that successful contextual computing in this regard does
not only encompass the contextual information about the surrounding lexical
items but also the contextual knowledge of the real-world relations between the
entities denoted by these items, i.e. between genes and banks, rivers and banks
or robbers and banks. In the supervised learning approaches this knowledge
is provided by the human annotators of the training data, who can correctly
resolve the ambiguities of bank in Examples 1 through 3 and can, therefore,
annotate the individual occurrences correspondingly.

Underspecification occurs, whenever omissions are found, which are recov-
erable by recourse to context. For example, when asking for directions one
might consider information about the source, i.e. from which place, and the
goal, i.e. to which place, to be relevant to an instructional request. However,
in many cases people asking for directions to places omit to specify the source,
for example, as in:

(4) How do I get to the supermarket? (G25 74)

The more or less of obvious reason is that a default source, i.e. from here,
is contextually given - or can be assumed - as is the case in most situations
where people ask for directions. It is therefore not necessary for a speaker to
explicate this bit of information, as one can rely on the addressee’s capability
to make the correct inference by recourse to a shared context. Such inferences
are also computationally cheap for humans and take significantly less time than
the laborious pronunciation or typing of the words from here.
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In the field of linguistics expressions which are inherently context-dependent,
e.g. anaphora, such as the pronouns he or it or the demonstratives that or there
as well as the deictic expressions here or now are called indexicals [Bunt, 2000].
Utterances containing indexicals are - by virtue of the pervasiveness of contex-
tual knowledge - the norm in discourse, with linguistic estimations of declarative
non-indexical utterances around 10% [Barr-Hillel, 1954]. Without contextual
awareness and the respective knowledge, utterances, or fragments thereof, be-
come susceptible of interpretation in more than one way.

In contrast to the challenges presented by ambiguities and underspecifica-
tion, problems with noise arise mainly due to problems in processing. In some
cases, however, e.g. spoken or typed input, we also find noise as a result of hes-
itations, false starts and errors performed by the user or as a result of environ-
mental conditions, e.g. real noise. Nevertheless, the more problematic and fre-
quent sources of noise, in a technical sense, are produced by the modality-specific
recognizers. Consider the following best and second best speech recognition hy-
potheses that were produced based on the utterance I am on the Philosopher’s
Walk spoken by a user to the SmartKom system to denote the starting point of
a navigational request [Wahlster et al., 2001, Gurevych and Porzel, 2003]:

(5) Feature films on the Philosopher’s Walk

(6) Am on the Philosopher’s Walk

While both hypotheses contain some noise - due to recognition mistakes - it
is clear that - in the given context - the intended meaning is more recoverable
in Example 6 than in Example 5. Noise can, therefore, be generated by current
input processing systems, such as automatic speech recognition, or by the user,
for example, as typographical errors in text-based input. In the light of the
dire need to address the problems of ambiguity, underspecification and noise in
dialog systems with robust and scalable means, I will now sketch out the aim
and intended contribution of this work in the following section.

1.2 Thesis Aim and Contribution

As one knows from personal experience, human-human communication works
extremely well despite all of the challenges presented above, i.e. we can under-
stand each other despite all of the ambiguities and underspecifications present
in our utterances even at noisy cocktail parties. The amazing robustness of
human-human communication is - at least in part - a result of our context-
awareness and our corresponding pragmatic knowledge, both of which enable
us to disambiguate and decontextualize our interlocutor’s utterances robustly
even under noisy conditions.

The work presented herein builds upon the recognition of the fact that com-
putational approaches to any of the three aforementioned challenges can benefit
from the inclusion of contextual information, real world knowledge and corre-
spondingly reified contextual knowledge in order to recover the user’s intent
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from a given conversational input. The main aim, therefore, is to present a for-
mal approach for explicating contextual information and pragmatic knowledge,
that can be applied, employed and evaluated in natural language understanding
systems.

The ancillary contributions I aim to make through this work are:

• a hitherto missing clear distinction between contextual information and
the associated pragmatic knowledge - needed for this contextual comput-
ing approach;

• a set of applications of contextual computing for the various steps of
processing the user’s natural language input in dialog systems, such as
hypothesis verification in automatic speech recognition, word sense dis-
ambiguation and relation extraction in semantic interpretation as well as
intention recognition in contextual interpretation1;

• evaluations of the contribution of contextual computing in these areas with
regard to their performance as well as the corresponding methodological
challangens, e.g. regarding measuring the performance of such adaptive
systems as a whole;

• a descriptive ontology-based approach for enabling context-adaptive de-
contextualization of these interpretations applied in a real time multi-
modal prototype system.

It will, therefore, be shown herein that explicit formal knowledge models
and means to observe a given context can be employed to build more scalable
systems that are better equipped to handle context-dependent ambiguous, un-
derspecified and noisy input. The central focus of this work, therefore, lies on
the development of robust and scalable systems that can interact with human
users using natural modalities, such as spoken language, which have evolved to
facilitate efficient communication among interlocutors who share vast and rich
amounts of background knowledge and which is always situated in given con-
text. In order to situate this work in relation to these contributions, an overview
of its organization will now be given in the following section.

1.3 Thesis Organization

The following work is presented in four additional chapters: State of the Art
(Chapter 2), Domain and Discourse (Chapter 3), User and Situation (Chapter
4) and Conclusion (Chapter 5).

Chapter 2 provides an overview of prior work on knowledge modeling and on
developing human-computer interfaces that seek to handle natural language in-
put with an emphasis on their context-awareness and ability to perform context-
dependent analyses. This section will conclude with a list of four context types,

1In the naming of these three processing steps I follow Allen’s (1987) textbook
nomenclature.
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i.e. domain-, discourse, interlocutionary and situational context, which I regard
to contribute distinct and pertinent information for contextual computing. From
there on, I will examine the individual contribution of these different context
types to a set of natural language processing tasks.

Chapter 3 presents a set of tasks that are specific to natural language under-
standing and different types of classifications, e.g., in seeking to resolve the
meaning evoked a given form based on ontologically represented knowledge
of the domain and discourse context. These tasks are examined individually
throughout the chapter’s sections as follows: Section 3.1 introduces the ground
ontological domain representations and explicates the modeling principles em-
ployed for the specific representation chosen as well as presenting the ontology
itself in subsections 3.1.1 and the following. Section 3.2 starts the subsequent
empirical employment of this context-dependent domain- and discourse knowl-
edge for the tasks of hypotheses verification together with its evaluation and
results presented in subsections 3.2.1 and the following. Section 3.3 then adds
discourse context via an ontological discourse model with its evaluation and cor-
responding results displayed in subsections 3.3.1 and the following. Section 3.3
takes on the task of word sense disambiguation with its evaluation and corre-
sponding results given in subsections 3.4.1 and the following. Section 3.5 con-
cludes this set of tasks with semantic relation extraction, with its evaluation and
corresponding results given in subsections 3.5.1 and the following. Section 3.6
presents an overall evaluation of the domain representations employed as shown
in subsections 3.6.1 and the following. Section 3.7 concludes this chapter with
a summary of the empirical data and the corresponding experimental results.

Chapter 4 turns to the remaining interlocutionary and situational context,
which will be presented in Section 4.1. Section 4.1.1 takes a look at the user
as a source of contextual information and shows how the corresponding inter-
locutionary context has been examined and employed for contextual computing.
Section 4.1.2 does the same for situational context and completes the types of
contexts presented. Section 4.2 consequently examines the resolution of the in-
tention behind a given utterance, i.e. asking what the illocutionary function

behind a given - otherwise disambiguated - form-meaning pairing is and eval-
uated as a showcase approach for computational pragmatics. Finalizing this
approach in contextual computing, leads to the presentation of the descriptive
ontological model of what matters pragmatically in a given context in Sec-
tion 4.3. I will, then, conclude this chapter by describing the implementation
and application of the resulting model for pragmatic knowledge and the corre-
sponding ontological design pattern in Section 4.4.

Chapter 5 concludes this work by summarizing the demonstrated results
and our approach to contextual computing for natural language processing.
Based on these results a reconsideration of our initial and applied categorizations
and hypotheses will be cast in the light of further experimental steps and for
future novel approaches that, given the differentia and models, we can examine
appropriate learning techniques and suitable interactive models and behaviors.
Finally, the references cited in this work and appendices describing additional
details of the models, data structures and algorithms employed herein are given.



Chapter 2

State of the Art

Many areas of artificial intelligence (AI) have had to struggle in various ways
in which contextual dependencies arise, e.g. knowledge representation, natu-
ral language processing or expert systems to name a few. As the importance
of context is frequently glossed over in the literature, researchers noted al-
ready in the early 80s that the denotation of the term has become murkier
throughout its extensions in different fields of AI, calling it a conceptual garbage
can [Clark and Carlson, 1981]. A classic AI example of contextual computing
showed how the medicinal expert system MYCIN [Wallis and Shortliffe, 1982]
can benefit from contextual considerations when prescribing treatments, result-
ing in fewer fatal intoxications as a result from the prescription [McCarthy, 1984].
This case constitutes a classic example as it establishes a blueprint for the so-
called representational approaches to contextual computing in AI [Dourish, 2001,
Dey, 2001]. Initially, we find an expert system that prescribes treatments based
solely on the diagnosed disease. The subsequent contextual addition is - as will
be discussed in greater detail below - twofold: firstly, a set of parameters is
defined, i.e. which other medications the user is also taking - and secondly, a
set of rules stating what to prescribe if certain parameter settings hold.

The following sections I will provide an initial discussion of context defi-
nitions and the role contextual computing has played in the targeted area of
artificial intelligence, natural language processing and multimodal systems.

2.1 Defining Context

A general feature of context and contextual computing is lack of consensus con-
cerning of the word itself. Over the past years many researches in computer sci-
ence and other areas provided a vast and diverse number of definitions. This has
prompted researchers to employ latent semantic analysis (LSA) and principal
component analysis on a corpus of 150 definitions for context to find prominent
similarities and divergences [Foltz et al., 1998, Bazire and Brézillon, 2005].

As both LSA and the subsequent clustering showed, the definitions were very
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Figure 2.1: Components and relations that appear in context definitions as
extracted by Bazire and Brezillon (2005)

diverse and, in general, dependent on the discipline in which they originated.
Bazire and Brezillon (2005) extracted the following central components that are
also shown in Figure 2.1: the user, the item, the environment, the observer and
the context that influences them - as well as the relations between the context
and the components and the relations among the components.

Their work shows that any definition highlights some subset of the compo-
nents and relations. However, depending on the scientific area, each definition
covers only a subset of the entire ensemble of components and relations and
either omits or merges those components and relations that, given their own
domain context, do not seem to matter. Below some sample definitions - that
illustrate this domain-dependent diversity and selectivity - are listed:

• things or events related in a certain way [Ogden and Richards, 1923];

• paths of the information retrieval [Boy, 1991];

• a window on the screen [Abu-Hakima et al., 1993];

• a set of preferences or beliefs [Cahour and Karsenty, 1993];

• an infinite and partially known collection of assumptions [Turner, 1993].

In defining context for the domain of contextual computing individual def-
initions [Schilit et al., 1994, Dey, 2001] - as examples of the representational
approach [Dourish, 2001] - constitute further instances of the model of Bazire
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and Brezillon (2005). For example, Dey’s definition of 2001 highlights informa-
tion that can be used to characterize entities, such as person, place, or object,
as well as the user and the application (components in the model shown in Fig-
ure 2.1. Analogously, from the viewpoint of context-aware computing Schilit et
al (1994) highlight the location of use, the collection of nearby people and dy-
namically changing objects as components to which context-aware system can
adapt their interaction. The critical notion of relevancy is added in Dey’s def-
inition of a context-aware system, i.e., that it uses context to provide relevant
information and/or services to the user, where relevancy depends on the user’s
task. The ensuing question concerning this determination of relevancy will be
discussed shortly in Section 2.2, a further terminological discussion of context
in this light is also provided by Dourish (2004) from an ethnomethodological
perspective [Dourish, 2004].

Given these components of the Bazire and Brezillon (2005) model and the
freely specifiable relations among them, also dictionary definitions can be seen in
the of components and their relations. For example, the Merriam Webster Dic-
tionary [Merriam-Webster, 2003] defines context as: the interrelated conditions
in which something exists or occurs. According to the Oxford English Dictio-
nary [Soanes and Stevenson, 2005], the term context usually has two primary
senses:

1. the words around a word, phrase, statement, etc. often used to help
explain (fix) the meaning;

2. the general conditions (circumstances) in which an event, action, etc. takes
place.

Clearly, the first meaning is closely related to linguistic sense and the lin-
guists’ use of the term, whereas the second sense is the one which is closer to a
desirable account of context in AI. This is also congruent to the observation by
McCarthy (1986) who states that:

[A]lmost all previous discussion of context has been in connection
with natural language. However, I believe the main AI uses of for-
malized context will not be in connection with communication but
in connection with reasoning about the effects of actions directed to
achieving goals. It’s just that natural language examples come to
mind more readily.[McCarthy, 1986]

The definition of Angeles (1981) reflects the latter desideratum expressed by
McCarthy more satisfactorily, as follows:

context (L. contexere, to weave together. from con, ’with’, and
texere, ’to weave’): The sum total of meanings (associations, ideas,
assumptions, preconceptions, etc.) that (a) are intimately related to
a thing, (b) provide the origins for, and (c) influence our attitudes,
perspectives, judgments, and knowledge of that thing.[Angeles, 1981]
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Finally, a set of useful insights are presented in Collins Cobuild English
Language Dictionary [Cobuild, 1995], which lists prevalent meanings of the term
as follows:

1. The context of something consists of the ideas, situations, events, or in-
formation that relate to it and make it possible to understand it fully.

2. If something is seen in context or if it is put into context, it is considered
with all the factors that are related to it rather than just being considered
on its own, so that it can be properly understood.

3. If a remark, statement, etc. is taken or quoted out of context, it is only
considered on its own and the circumstances in which it was said are ig-
nored. It, therefore, seems to mean something different from the meaning
that was intended.

Let me refer back to the work of Bazire and Brezillon’s (2005) more com-
prehensive analysis of context definitions summarized above at this point and
conclude this section by reiterating the main points one can take home from
looking at the various definitions of context:

• Given that meanings - whether one considers the meaning of a verbal
or non-verbal action - always arise within (or interwoven with) a given
context, it becomes clear that this meaning is lost - or harder to recover -
when things are taken out of context; in most of the cases I will examine
herein they become ambiguous or underspecified.

• Given the specific entity under scrutiny only a subset of all possible compo-
nents and their relations with it are pertinent for constructing that entities
meaning, which explains why specific definitions of context focus only on
those components and relations they deem pertinent for that entity.

In the following I will briefly provide an overview of the consequent attempt to
formalize context correspondingly.

2.2 Fleshing Out Context

The basic intuition behind explicating contextual dependencies was that any
given axiomatization of a state of affairs, meanings or relations presupposes an
implicit context. Any explicit context model employed in processing information
should, therefore, provide the information why a particular meaning can be
assigned to the information and applied to the processing. In the literature this
approach has often been called fleshing out and is considered impossible in its
maximal form:

It is seen that for natural languages a fleshing-out strategy – convert-
ing everything into decontextualized eternal sentences – cannot be
employed since one does not always have full and precise information
about the relevant circumstances. [Akman and Surav, 1996]
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Before examining context and contextual computing in the domain of natural
language I will shortly introduce the influential notions of McCarthy on context
in AI [McCarthy, 1977, McCarthy, 1986]. McCarthy (1977) states that there can
never be a most general context in which all stated axioms hold and everything
is meaningful. This means that whenever an axiom is written it holds true
only within the implicit context assumed, and one can always find a different
context in which the axiom fails. Thusly, he proposes a relativized-truth-within-
a-context by stating that a given statement p is true - abbreviated as ist - only
in a given context c, which he, consequently writes as:

ist(p, c)

This states that a formal statement, such as discussed in greater detail in Sec-
tion 3.1.1, called p, holds in context c. The motivation behind this formalization
lies in the increased scalability, as axioms holding in a restricted blocks-world
can be lifted to more general contexts, e.g. for systems in which context can
change. Secondly,one can define vocabularies that have context-specific mean-
ings, as frequently found in natural language. However, while this provides the
formal means to employ subsumption, or in McCarthy’s terms to be able to
transcend a context, it leaves open the question when to transcend and where
to. Taking the viewpoint of corresponding frameworks for handling dynamic
domains, e.g. situation calculus [McCarthy and Hayes, 1969], of McCarthy and
Hayes one has to face the so-called framing problem, where - from the top-down
perspective - one needs to specify when a pertinent change in the background
of a frame should be evoked, because its effects the meaning of something of the
foreground of the frame [Mccarthy, 1979]. In so-called representational approach
to contextual computing, the ensuing challenge is to specify when contexts are
lifted/descended or become changed in the background [Dourish, 2001].

Dourish (2001) points out that current implementations of context-dependen-
cy or context-awareness in computational systems follow an almost standardized
path. Firstly, a set of possible environmental states of contextually relevant pa-
rameters are defined; then, rules are implemented that try to match sensory
inputs to one of the given states during runtime.1 Within these types of appli-
cations context-awareness is fundamentally provided by such matching processes
and context itself is represented by the predefined and stored set of environmen-
tal settings.

The contributions of Dourish’s work (2001) are to point out not only the
difficulties of determining the appropriate settings or states of the pertinent pa-
rameters, but also that the fundamental problem of this approach to contextual
computing hinges of the question of how one can pre-compile all the settings
and parameters that may become pertinent in advance. In his mind it is quite
impossible to define these settings and parameters based solely on past research,
surveys, testing, own experience, and on the purpose of the particular system
alone.

1This matching process commonly involves a thresholding based the measured parameters
and in case of ambiguous results various mediation techniques are used in order to determine
a contextual state [Dey and Mankoff, 2005].
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Especially in such versatile instruments as natural language it becomes vir-
tually impossible to predict all the possible utterances and the corresponding
contextual dependencies on which their interpretation might hinge. But even in
seemingly less murky waters human behavior can hardly be predicted as pointed
out frequently by the example of cell phone use. It can be observed that peo-
ple use their mobile phone as a watch, and although one would assume that
despite the common assumption that it would be uncomfortable to pull some-
thing out of one’s pocket to see what time it is, however, the number of people
wearing wrist-watches has decreased. A similar development affects the use of
alarm clocks. Although originally intended as a ”remembering function” this
property is often used instead of a conventional alarm clock, especially when
traveling. Lastly the employment of Short Message Services (SMS) has greatly
surprised the designers of mobile phones. Originally intended as a means to
relay system-related information the capacity of one message was designed to
be quite limited. Despite of this limitation and a hardly intuitive interface for
entering them, SMS has become an every-day way of communication among
people. In order to cope with the limitation of the message length novel abbre-
viations have been negotiated and completely unanticipated new writing styles
have emerged, e.g. the so-called Camel Case sentences, such as HowAreYou,
that are found in written messages - as SMS - where spaces between letters cost
as much as the letters themselves.

The examples mentioned above show that people may use and interact with
technology in unexpected ways. This reveals a fundamental problem of imple-
menting a predefined set of settings as such approaches will inevitably not scale
to cover possible interactions and behavior that will occur or evolve in future.
According to Dourish the reason for this problem is that context has been ap-
proached as a representational problem by assuming the following properties of
context [Dourish, 2004]:

• context is a form of information, i.e. context is seen as something that
can be known, represented and encoded in software systems;

• context is delineable, i.e. it is thought to be possible to define what counts
as context for a specific application in advance,

• context is stable, i.e. while context may vary from application to applica-
tion, it does not vary from instance to instance of an interaction with an
application;

• context and activity is separable, i.e. context is taken to describe features
of the environment within which an activity takes place but the elements
of the activity do not belong to context itself.

I will return to these general questions concerning representational approaches
to contextual computing throughout the following sections as well as in Sec-
tion 5.3, but will now shift the focus to the domain of context as it relates to
natural language processing and the study of human communication.
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Figure 2.2: A morpho-syntactic analysis of a set of words, showing that my is
an instance of a personal pronoun and church is one of a noun and both together
they act as a noun phrase

2.3 Context in Language

In linguistics the study of the relations between linguistic phenomena and as-
pects of the context of language use is called pragmatics. Any theoretical or
computational model dealing with reference resolution, e.g. anaphora- or bridg-
ing resolution, spatial- or temporal deixis or non-literal meanings requires taking
the properties of the context into account. In current knowledge-based spo-
ken dialogue systems contextual interpretation follows semantic interpretation
- where the result of morpho-syntactic analysis of the automatic speech recog-
nition (ASR) output, as depicted in Figure2.2, is mapped to logic statements
[Allen, 1987].

Multimodal systems - to be discussed in greater detail below - additionally
fuse the results of semantic interpretation with the results of the other modality-
specific analyzers. That is, the modality-specific signals, (e.g. speech or gesture)
are transferred into graphical representations (e.g. word- or gesture graphs) by
means of the modality-specific recognizers, mapped onto their corresponding
meaning representation and then fused using time-dependent unification tech-
niques.

Contextual interpretation as described by Allen (1987) actually refers to the
grounding of logical forms, e.g. of a logical statement expressing the proposition
that my church is green. In grounding the form of a given logical statement,
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e.g. the referent of the referring expression my church in the utterance given
in Figure 2.2, a corresponding instance of the form is determined. This, how-
ever, implies that context-independent graphical and semantic representations
can be computed and the context-dependent contributions follow the semantic
interpretation, resulting in a final grounded representations. I will provide a
more detailed discussion of formal models for representing the meaning of an
utterance in Sections 3.1.1 and 4.1.2.

This so-called modular view supports a distinct study of meaning (corre-
sponding to the semantic representation) without having to muck around in the
murky waters of language use. This view is supported by the claim that some
semantic constraints seem to exist independent of context. In this work,I as-
sume a different view that also allows for context-independent constraints, but
offers a less modular point of view of contextual interpretation. I will show that
contextual analysis can be employed already at the level of speech recognition,
during semantic interpretation and, of course, thereafter. The central claim is
being made, that - as in human processing - contextual information & knowl-
edge can be used successfully in a computational framework in all processing
stages.

In recent times the so-called modular theory of cognition [Fodor, 1983] has
been abandoned more or less completely. The so-called new look or modern
cognitivist positions hold that nearly all cognitive processes are interconnected,
and freely exchange information; e.g. influences of semantic and pragmatic
features have been shown to arise already at the level of phonological processing
[Bergen, 2001]. While most research in linguistics, has consequently departed
from this view, most computational approaches still feature a modular pipeline
architecture in that respect.

In linguistics utterances which are context-dependent are called indexical
utterances [Bunt, 2000]. Indexical utterances are - by virtue of the pervasive-
ness of contextual knowledge - the norm in discourse, with linguistic estimations
of declarative non-indexical utterances around 10% [Barr-Hillel, 1954]. Without
contextual knowledge utterances, or fragments thereof, become susceptible of in-
terpretation in more than one way. Computer languages are designed to avoid
anaphoric, syntactic, semantic and pragmatic ambiguity, but human languages
seem to be riddled with situations where the listener has to choose between
multiple interpretations. In these cases one says that the listener performs
pragmatic analysis; corresponding to contextual interpretation on the compu-
tational side. For human beings the process of resolution is often unconscious,
to the point that it is sometimes difficult even to recognize that there ever was
any ambiguity.2

The phenomenon that this process of resolution, frequently goes unnoticed
is due to the fact that in many cases the ambiguity is only perceived if the con-
textual information & pragmatic knowledge that allowed the listener interpret
the utterance unambiguously are missing. These utterances/texts, therefore,

2Fauconnier and Turner (2002) name some potential reasons why this may be the case
from an evolutionary perspective.
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become ambiguous only after they have been taken out of context, and, for ex-
ample, appeared as a text(-fragment) in a linguistics textbook. The problem for
computational linguistics originates - at least partially - in the fact language un-
derstanding has to make do with exactly such a contextually and pragmatically
impoverished input.

Let us consider some examples and how they are treated in the literature,
using the sample dialog shown in example 7.

(7) (a) User: OK, um, suppose I want to go to a museum tomorrow, which
museum would you advise me?
(b) WoZ: You can visit the modern art museum.
(c) User: What is the exhibit, does it have like any architectural things
inside there because I more like, you know, buildings and architectural
things than, you know,

Setting up a referent is discourse is usually done by means of a referring
expression (usually syntactically packaged as a noun phrase). As shown by
Poesio about 50% of all noun phrases in their corpora are discourse-new, e.g.
in an utterance such as shown in Example (7a) the referring expression a mu-
seum is considered non-anaphoric, i.e. discourse-new [Poesio and Vieira, 1998].
Anaphoric noun phrases make up 30% of their data, e.g. it in Example (7c)
constitutes an anaphoric expression and is, hence, called the anaphora, which
features a specific relation to its antecedent (i.e. the referring expression the
museum). This relation is termed co-reference as both forms denote the same
referent, i.e. a specific museum. The remaining 20% of noun phrases are made
up by so-called associative expressions, such as bridging expressions e.g. the
exhibit in Example (7c) is considered a bridging expression, as the employment
of the definite article is licensed by the fact that the speaker assumes that the
interlocutor knows that museums feature exhibits. Human annotators can reli-
ably mark (indefinite) discourse-new and anaphoric expressions, but reliability
decreases for associative expressions and those cases where discourse-new refer-
ents are introduced by definite articles, due to common world knowledge, as in
The first man on the moon [Poesio, 2002]. The problem arises as the border-
line between these cases and bridging expressions is not very clear, causing the
annotator inter-reliability to decrease.

Given the distinction made by Poesio (1998) most computational approaches
have focused on resolving anaphoric expressions and fewer on resolving associa-
tive expressions and handling discourse-new expressions. The most frequently
studied case of anaphoric reference is that of detecting and labeling co-reference
relations, where one finds a set of linguistic expressions that denote the same
referent. Anaphoric expressions, however, can also range over higher level lin-
guistic constructions in discourse, such as discussed in Byron (2002) in the case
on discourse deictic expressions and abstract anaphora [Byron, 2002]. Also def-
inite discourse-new expressions can refer to contextually evocable entities, e.g.
the old bridge or the mountain in Example (8b).

(8) (a) User: and then I’d like to get out of the - out of the downtown for a
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while and go on the, uh, philosopher’s walk. Uh, how - how might I get
there?
(b) WoZ: Um, you just, um, walk down the Haspelgasse in the opposite
direction, and then you get to the old bridge. You just cross that, and
then there’re signs leading up to the mountain that’s the philospher’s
walk.

Following Byron (2002) a discourse model contains so-called discourse en-
tities. Discourse entities enter into the discourse model as information about
events, objects, situations etc. is introduced into the discourse. Co-reference,
then, means that a form part of an utterance, such as a pronoun, refers to a
discourse entity that is already present in the discourse model. Setting up a
referent in the discourse model, however, is not a trivial matter. In order to set
up a referent correctly one has to solve various kinds of semantic and pragmatic
problems that have been discussed in linguistic research falling under the cate-
gories of polysemy, metonymy, one-pronominalization, gapping and other forms
of so-called non-literal expressions such as metaphoric expressions that will be
discussed in more detail in Section 2.7.2.

However, as noted numerously in the literature natural language permits
speakers to coerce terms in various ways. Coercion effects, in turn, affect
pronominalization and, therefore, the resolution of anaphoric expressions. The
consequence is that, unless, the discourse entities corresponding to the discourse-
new expression are set-up correctly in the discourse model, anaphoric and other
co-referential relations will become unresolvable by recourse to discourse con-
text alone - for example in all cases where (grammatical) gender between the
metonymic expression and the target referent differ.

Speakers can, therefore, employ extra-linguistic domain knowledge to intro-
duce discourse-new discourse entities with definite articles, as in the case of
metonymy or situational knowledge in the case of situationally-evoked refer-
ents. The same knowledge stores can be used to produce elisions and contextual
anaphora, as in Example (9).

(9) a) User: Where is the castle?
b) WoZ: (spatial instructions)
c) User: How much does it cost?

As noted in linguistic analysis [Nunberg, 1987, Hobbs, 1991, Markert, 1999]
metonymy and bridging phenomena are grounded on the fact that the given
form and the referent exhibit a specific relation, called pragmatic function by
Nunberg (1987), e.g. that museums feature exhibits licenses the bridge found
in Example (7c). A bridging expression such as found in Example (10) bases
on the same relation between tourist sites and their fees as the anaphora in
Example (9c) exemplifies.

(10) The most popular site is the Heidelberg castle. The admission fee is 2
Euros.
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For Bunt (2001) the relations between linguistic expressions and contextual
settings - e.g. in the case of indexical expressions - are:

(a) expressions encoding or seeking information about aspects of contexts,
e.g. about objects introduced earlier, situationally evoked referents or the
relative time of speaking

(b) expressions that carry presuppositions, conversational implicatures and
mappings based on shared beliefs and knowledge

In both cases the partial information encoded by the linguistic expression
must be explicated relative to the given context in order for the expression to
have a fully determined meaning. Expressions in which one finds (a) or (b) can
thus only be understood through the relations between linguistic aspects and
aspects of context. It follows that at least 90% of all declarative utterances
cannot be understood if some information provided by contextual information
and the corresponding knowledge is missing. In the following,I will show how
the challenges have been addressed in the field of natural language processing.

2.4 Context in Natural Language Processing

Following [Allen et al., 2001b], one can differentiate between controlled and con-
versational dialogue systems. Since controlled and restricted interactions be-
tween the user and the system decrease recognition and understanding errors,
such systems are reliable enough to be deployed in various real world applica-
tions, e.g. timetable or cinema information systems. The more conversational a
dialogue system becomes, the less predictable are the users’ utterances. Recog-
nition and processing become increasingly difficult and unreliable. This is due to
the fact that on virtually all levels in the natural language processing pipeline,
ambiguities, underspecification and noise multiply greatly.

Research projects struggled to overcome the problems arising with more con-
versational dialogue systems, e.g. [Allen et al., 2000, Malaka and Porzel, 2000,
Johnston et al., 2002, Wahlster, 2003, Boves, 2004]. Their goals are more intu-
itive and conversational natural language interfaces that can someday be used
in real world applications. The work described herein is part of that larger
undertaking as I view the handling of contextual - and therefore linguistically
implicit - information & knowledge as one of major challenges for understanding
conversational utterances in complex dialogue systems. For this we will outline
the various ways of dealing with context proposed in the literature and how
context-dependent processing has been implemented in systems that seek to
understand natural language input.

As in different fields of linguistics, e.g. pragmatics, cognitive-, socio- and
psycholinguistics, the relations between utterances and context are also of con-
cern to computational approaches. These have to specify how to compute the
relations between linguistic and contextual aspects. This is important for both
natural language understanding as well as generation. In understanding the
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Table 2.1: Employment of context in early dialog systems
Context Usage

Domain Knowledge lexicon building and syntactic categories
(static) communicative function, e.g. speech acts
Discourse Knowledge dialogue states and action planning
(dynamic) reference resolution, e.g. anaphora

question is how to decode the context-dependent aspects of a linguistic expres-
sion. In generation one wants to encode contextual information into the linguis-
tic expression.

2.4.1 From Past to Present: The Historical Context

With its beginnings in the 1960s the first NLU systems drew primarily on lex-
ical and syntactic recourses and aimed at recognizing patters that had specific
significances for the target applications. Semantics in those systems was consti-
tuted by the application-specific significances of certain words and phrases or
domain-specific categories as elements of semantic grammars, e.g. the PLANES
[Waltz, 1978] or LIFER/LADDER [Hendrix, 1977] systems. First considera-
tions of contexts emerged with the first attempts to build more realistic NLU
systems starting with SHRDLU [Winograd, 1972] and LUNAR [Woods, 1977].
In these systems syntactic and semantic rules were used to parse utterances
into components and to compute the ensuing consequences for the system. Only
SHRDLU performed some dialogue functions and some context-dependent anal-
ysis restricted to discourse context. Experimental systems hence have increased
their capabilities and involved contextual analysis as shown in Table 2.1.

Visible in all these experimental systems that were limited to such an im-
poverished contextual analysis and precompilations, was their restrictedness in
terms of understanding capabilities, rendering them unscalable and in the case
of more conversational input undeployable. This evidently shows up in the
fragility of systems that fail when confronted with imperfect or unanticipated
input, usually that also includes perfectly unambiguous utterance that stray but
a little from a scripted demo dialogue. As noted above human conversations are
between partners that share a rich background of contextual knowledge (some
more static & some more dynamic contexts) without which natural language
utterances become ambiguous, vague and informationally incomplete.

An interpreter with little context awareness and interpretation will encounter
problems and fail frequently; one which does not fail in unexpected or problem-
atic situations is called robust. Several means have been used to increase ro-
bustness as listed in Table 2.2. These so-called low-level techniques [Bunt, 2000]
have not solved the problem of enabling system to react felicitously in a dynamic
context. These techniques fail to assume a pragmatics-based approach where
fact that the user has an intention communicated via a message where the intend
has to be reconstructed by recourse to the current context. Advances in contex-
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Table 2.2: Means to increase robustness of early dialog systems
Object Method

grammar special rules and relaxations as well as automatic
acquisition of semantic grammars

textual input automatic spelling correction
lexica on-line lexical acquisition

tual analysis have been implemented in a handful of systems that increased their
capabilities and involved contextual analysis insofar as domain ontologies have
been employed for lexicon building, syntactic categories and semantic parsing
and discourse knowledge for modeling dialogue states, action planning as well
as for resolving anaphora and ellipsis.

For example, the PHILQA system [Bronnenberger et al., 1997] featured con-
text independent syntactic and semantic analyses as well as underspecified rep-
resentations and context-dependent resolution with respect to the given do-
main representation. The SPICOS and TENDUM systems featured a reso-
lution of structural ambiguity with underspecification, mass/count quantifica-
tion with metavariables, and communicative functions determined by the user
context [Bunt, 1984, Deemter et al., 1985]. Contextual underspecification was
enabled by quasi-logical forms without semantic definition, which were instan-
tiated unambiguously later by recourse to the semantic domain context, e.g.
as implemented in the CLE system [Alshawi and Moore, 1992]. In much the
same way the influential TRAINS and TRIPS systems used unscoped logical
forms as well as speech acts with context represented as user/system beliefs
[Allen et al., 1995, Ferguson and Allen, 1998]. While these systems put a main
focus on spatial domains helping users to solve specific tasks and produced con-
siderable progress through developing corpora and NLP components the main
emphasis rested on the planning part of the system.

Other systems employed dialog acts and thematic structures to decontextual-
ize underspecified semantic representations or logical forms, such as VERBMO-
BIL [Wahlster et al., 1993] and PLUS/DENK [Bunt, 1989]. Given the distinc-
tion between global (unchanging or hardly changing) context, i.e. domain/world
knowledge and local (changing) context, about the situation, user beliefs, sys-
tem intentions or discourse, contextual considerations have either looked at
utterances as a whole [Searle, 1975, Allen and Perrault, 1986, Perrault, 1989,
Ramsey, 2000] or focused on reference & anaphora resolution [Grosz et al., 1977,
Webber, 1991, Byron, 2002, Poesio, 2002]. On a rather general level particu-
lar computational linguistic knowledge sources can be organized into context-
variant and -invariant ones as shown in Table 2.3 [Porzel and Strube, 2002].

2.4.2 The Present: Multimodal Systems

Enormous contributions to the field of Computational Linguistics come from
attempts that focus on aiding human-human communication. Research sys-
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Table 2.3: Context-variant and -invariant levels of analysis
Context-variant Context-invariant

Speech Recognition vocabulary basic vocabulary
language model

Syntax & Parsing open class lexicon closed class lexicon
parsing grammar

Semantics disambiguation lexical semantics á la DRT
domain knowledge common-sense knowledge

Pragmatics intention recognition dialogue acts

tems such as Verbmobil and the C-STAR translators or commercial systems
such as the Personal Translator [Hahn and Amtrup, 1996, Cettolo et al., 1999,
Bub and Schwinn, 1999] have created architectures, standards and principles
which also feature discourse context-sensitive understanding of an utterance’s
meaning [Pinkal et al., 2000]. However, that is not always the same as un-
derstanding the underlying intention, when the system has to answer to this
input. There are several academic and commercial tools available which in-
clude information extraction systems, information retrieval systems, knowledge
acquisition systems, spell-checker, auto summarizer or dictation systems. Usu-
ally these tools are seen as components of NLP systems and not as systems
on their own. Previous systems focusing on human-computer interaction are
by and large either focused on sophisticating their natural language input (un-
derstanding) side or their output (production) side. An additional common
characteristic of existing systems is that they are bound to single, specific do-
mains and their employment of (a priori) defined scripts for dialog management.
However, several end-to-end spoken dialog systems and multimodal research
prototypes exist. Most notably, the TRAINS system and its successor TRIPS
[Ferguson and Allen, 1998] constitutes such a spoken dialogue systems which at-
tempts to help users to solve tasks. Though this attempt involved a considerable
amount of work in developing corpora and NLP components, the main emphasis
lies on the planning part of the system [Allen et al., 1996]. Also, both systems
deal with tiny domains. The AT&T telephone-based system May I help you?
[Gorin et al., 1997] is – like the majority of spoken dialogue systems coming out
of AT&T – restricted to a single domain with not much more than a dozen
conversational topics. The same is also true for EVAR [Gallwitz et al., 1998]
and the Philips train timetable system [Aust et al., 1995].

Multimodal dialogue systems as the QuickSet system [Cohen et al., 1997],
the Command Talk spoken language system [Stent et al., 1999], the EMBASSI
system [Herfet et al., 2001] or the Match system [Johnston et al., 2002] are quite
narrow in focus and coverage of speech input. The vocabulary of these systems
covers only a few hundred entries and the domain knowledge contains only a
few dozen concepts. These systems allow interaction only in a very controlled
fashion. In general the follow identical architectural pipelines, which have been
generalized in the EMBASSI framework as shown in Figure 2.3.
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Figure 2.3: The EMBASSI multimodal architecture

This architecture consists of parallel input modalities (denoted by the letter
In), which can be realized by automatic speech recognition systems, gesture
recognition system or a graphical user interface. Their output is handed over
to the respective modality-specific analyzers (denoted by the letter Fn). Cor-
respondingly the modality-specific system responses are generated by a set of
renderers (denoted by the letter Rn) and communicated via the modality-specific
output mechanisms, such as graphical output or speech synthesis (denoted by
the letter On). The task of multimodal fusion - unifying the input of the an-
alyzers - and multimodal fission - distributing the output unto the renderers
- is performed by the corresponding fusion and fission modules (denoted by
PMI and PMO respectively). Ignoring the assistance and execution systems
described in this architecture, the remaining part consists of a context manager,
which obtains its input from biometric and sensoric input devices and stored
information about the connected applications, devices in the environment and
the user’s preferences.

The SmartKom system [Wahlster et al., 2001] comprises a large set of input
and output modalities which the most advanced current systems feature, to-
gether with an efficient fusion and fission pipeline. SmartKom features speech
input with prosodic analysis, gesture input via infrared camera, recognition of
facial expressions and their emotional states. On the output side, the system
features a gesturing and speaking life-like character together with displayed gen-
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Figure 2.4: The SmartKom multimodal architecture

erated text and multimedia graphical output. It comprises nearly 50 modules
running on a parallel virtual machine-based integration software called Multi-
platform3 and shown in Figure 2.4.

2.5 Methodological Background

In this section I will present methodological approaches for evaluating the per-
formance dialog-, speech- and discourse understanding systems in the light of
their pertinence for the evaluations performed in this work as well as their re-
spective state of the art. Therefore, I will sketch out the most frequently used
metrics for evaluating the performances of the relevant components and sys-
tems at hand in terms of their pertinence and applicability, focusing also on
the specific contribution to this field that were brought about as a result of the
measurements and metrics adopted in this work.

2.5.1 Performance in Dialogue Systems Evaluations

For evaluation of the overall performance of a dialogue system as a whole frame-
works such as PARADISE [Walker et al., 2000] for unimodal and PROMISE

3The abbreviation stands for “MUltiple Language / Target Integration PLATform FOR
Modules”.
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[Beringer et al., 2002] for multimodal systems have set a de facto standard.
These frameworks differentiate between:

• dialogue efficiency metrics, i.e. elapsed time, system- and user turns

• dialogue quality metrics, mean recognition score and absolute number as
well as percentages of timeouts, rejections, helps, cancels, and barge-ins,

• task success metrics, task completion (per survey)

• user satisfaction metrics (per survey)

These metrics are crucial for evaluating the aggregate performance of the
individual components, they cannot, however, determine the amount of under-
standing versus misunderstanding or the system-specific a priori difficulty of the
understanding task. Their importance, however, will remain undiminished, as
ways of determining such global parameters are vital to determining the aggre-
gate usefulness and felicity of a system as a whole. At the same time individual
components and ensembles thereof - such as the performance of the uni- or mul-
timodal input understanding system - need to be evaluated as well to determine
bottlenecks and weak links in the discourse understanding processing chain.

2.5.2 Performance in Automatic Speech Recognition Eval-
uations

The commonly used word error rate (WER) can be calculated by aligning any
two sets word sequences and adding the number of substitutions S, deletions D
and insertions I. The WER is then given by the following formula where N is
the total number of words in the test set.

WER =
S + D + I

N
× 100 (2.1)

Another measure of accuracy that is frequently used is the so called Out Of
Vocabulary (OOV) measure, which represents the percentage of words that was
not recognized despite their lexical coverage. WER and OOV are commonly
intertwined together with the combined acoustic- and language-model confi-
dence scores, which are constituted by the posterior probabilities of the hidden
Markov chains and n-gram frequencies. Together these scores enable evaluators
to measure the absolute performance of a given speech recognition system. In
order to arrive at a measure that is relative to the given task-difficulty, this
difficulty must also be calculated, which can be done by means of measuring
the perplexity of the task see Section 2.6.

2.5.3 Performance in Understanding Evaluations

A measure for understanding rates - called concept error rate has been proposed
for example by Chotimongcol and Rudnicky (2001) and is designed in analogy
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to word error rates employed in automatic speech recognition that are combined
with keyword spotting systems [Chotimongcol and Rudnicky, 2001]. They pro-
pose to differentiate whether the erroneous concept occurs in a non-concept slot
that contains information that is captured in the grammar but not considered
relevant for selecting a system action (e.g., politeness markers, such as please),
in a value-insensitive slot whose identity, suffices to produce a system action
(e.g., affirmatives such as yes), or in a value-sensitive slot for which both the
occurrence and the value of the slot are important (e.g., a goal object, such as
Heidelberg). An alternative proposal for concept error rates is embedded into
the speech recognition and intention spotting system by Lumenvox4, wherein
two types of errors and two types of non-errors for concept transcriptions are
proposed:

• A match when the application returned the correct concept and an out of
grammar match when the application returned no concepts, or discarded
the returned concepts because the user failed to say any concept covered
by the grammar.

• A grammar mismatch when the application returned the incorrect concept,
but the user said a concept covered by the grammar and an out of grammar
mismatch when the application returned a concept, and chose that concept
as a correct interpretation, but the user did not say a concept covered by
the grammar.

Neither of these measures are suitable for our purposes as they are known to
be feasible only for context-insensitive applications that do not include discourse
models, implicit domain-specific information and other contextual knowledge as
discussed in Porzel et al [Porzel et al., 2006a]. Therefore this measure has also
been called keyword recognition rate for single utterance systems. Another cru-
cial shortcoming noted [Porzel and Malaka, 2004b], is the lack of comparability,
as these measures do not take the general difficulty of the understanding tasks
into account. Again, this has been realized in the automatic speech recognition
community and led to the so called perplexity measurements for a given speech
recognition task. I will, therefore, sketch out the commonly employed perplexity
measurements in Section 2.6.

The most detailed evaluation scheme for discourse comprehension, intro-
duced by Higashinaka et al (2002), features the metrics displayed in Table 2.4
[Higashinaka et al., 2002]. Higashinaka et al (2003) combined these metrics by
means of composing a weighted sum of the results of multiple linear regres-
sion and a support-vector regression approaches [Higashinaka et al., 2003]. This
sum is. then, compared to human intuition judgments and metrics, comparable
to PARADISE metrics [Walker et al., 2000], concerning task completion rates
and -times. While this promising approach manages to combine factors related
to speech recognition, interpretation and discourse modeling, there are some

4www.lomunevox.com/support/tunerhelp/Tuning/Concept Transcription.htm
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Table 2.4: Proposed measurements of discourse comprehension

1 slot accuracy
2 insertion error rate
3 deletion error rate
4 substitution error rate
5 slot error rate
6 update precision
7 update insertion error rate
8 update deletion error rate
9 update substitution error rate
10 speech understanding rate
11 slot accuracy for filled slots
12 deletion error rate for filled slots
13 substitution error rate for filled slots

shortcomings that stem from the fact that this schema was developed for single-
domain systems that employ frame-based attribute value pairs for representing
the user’s intent.

Nevertheless, recent advances in discourse modeling, as described in Sec-
tion 3.1.2 together with multi-domain systems enable approaches that are more
flexible and more difficult to evaluate than the slot-filling measures described
above, as they employ discourse pegs, dialogue games and overlay operations
[Pfleger et al., 2002, Alexandersson and Becker, 2003] for handling more con-
versational input and cross-modal references . More importantly, no means
of measuring the a priori discourse understanding difficulty is given, as I will
discuss in Section 2.6.

2.5.4 Performance in Classification Evaluations

In the realm of semantic analyses the task of word sense disambiguation is
usually regarded as the most difficult one. This means it can only be solved
after all other problems involved in language understanding have been resolved
as well. The hierarchical nature and interdependencies of the various tasks are
mirrored in the results of the corresponding competitive evaluation tracts - e.g.
the message understanding conference (MUC) or SENSEVAL competition. It
becomes obvious that the ungraceful degradation of f-measure scores (shown in
Table 2.5.4 is due to the fact that each higher-level task inherits the imprecisions
and omissions of the previous ones, e.g. errors in the named entity recognition
(NE) task cause recall and precision declines in the template element task (TE),
which, in turn, thwart successful template relation task performance (TR) as
well as the most difficult scenario template (ST) and co-reference task (CO).
This decline can be seen in Table 2.5.4 that presents their corresponding f-
measures - where precision and recall are weighted equally as given by the
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Table 2.5: Evaluation results of the best systems of the 7th Message Under-
standing Conference

NE CO TE TR ST
f ≤ .94 f ≤ .62 f ≤ .87 f ≤ .76 f ≤ .51

Formula 2.2 below [Marsh and Perzanowski, 1999].
Despite several problems stemming from the prerequisite to craft costly gold

standards, e.g. tree banks or annotated test corpora, precision and recall and
their weighable combinations in the corresponding f-measures (such as given in
Table 2.5.4), have become a de facto standard for measuring the performance of
classification and retrieval tasks [Van Rijsbergen, 1979]. Precision p states the
percentage of correctly tagged (or classified) entities of all tagged/classified en-
tities, whereas recall r states the positive percentage of entities tagged/classified
as compared to the normative amount, i.e. those that ought to have been tagged
or classified. Together these are combinable to an overall f-measure score, de-
fined as:

F =
1

α 1

p
+ (1 − α)1

r

(2.2)

Herein α can be set to reflect the respective importance of p versus r, if α =
0.5 then both are weighted equally. These measures are commonly employed
for evaluating part-of-speech tagging, shallow parsing, reference resolution tasks
and information retrieval tasks and sub-tasks.

An additional problem with this method is that most natural language un-
derstanding systems that perform deeper semantic analyses produce representa-
tions often based on individual grammar formalisms and mark-up languages for
which no gold standards exist. For evaluating discourse understanding systems,
however, such gold standards and annotated training corpora will continue to
be needed.

2.6 Measuring Task Difficulties and Baselines

As the measurements, presented in Section 2.5.3, are not designed to reflect
complexity of the tasks performed by the relevant components and systems at
hand. I will, therefore, present the most frequently used metrics for estimating
the difficulty inherent in such tasks as will be pertinent herein.

2.6.1 Measuring Perplexity in Automatic Speech Recog-
nition

Perplexity is a measure of the probability weighted average number of words
that may follow after a given word [Hirschman and Thompson, 1997]. In order
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to calculate the perplexity B, the word entropy H needs to be given for the
specific language of the system W . The perplexity is then defined within limits
as:

0 < H = −
∑

∀1<W<n

P (W )log2P (W ) < log2n (2.3)

B = 2H

Improvements of specific speech recognition systems can then consequently be
measured on a corpus with a given perplexity by measuring the corresponding
error rates (WER and OOV) Together, this yields a performance measure for
recognition quality that can be compared to other speech recognition perfor-
mances on corpora with differing perplexity. The more common approach is
to employ baseline measurements as a comparison for individual performances,
e.g., where perplexity measures or other task-difficulty metrics are not at hand,
as it is usually the case in classification tasks. I will, consequently, present
pertinent baseline approaches in the following section.

2.6.2 Measuring Task-specific Baselines

Baselines for the performance of classification tasks are commonly defined based
on chance performance, on an a posteriori computed majority class performance
or against the performance of an established classification method. In other
words, using the f-measure for performance discussed in Section 2.5.4, one can
ask:

• what is the corresponding f-measure, if the evaluated component guesses
randomly - for chance performance metrics,

• what is the corresponding f-measure if the evaluated component always
chooses the most frequent solution - for majority class performance met-
rics,

• what is the corresponding f-measure of the established baseline classifica-
tion method.

Much like kappa coefficiency measures for statistical inter-rater agreement,
where observed agreement P (a) is set in relation to what one would have ex-
pected P (e) as shown in Formula 2.4 [Galton, 1892, Cohen, 1960, Carletta, 1996],
existing employments of majority class baselines assume an equal set of identical
potential mark-ups, i.e. attributes and their values, for all markables.

κ =
P (a)− P (e)

1− P (e)
(2.4)

Therefore, they cannot be used in a straight forward manner for many tasks that
involve disjunct sets of attributes and values in terms of the type and number
of attributes and their values involved in the classification task. This, however,
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Table 2.6: Summary of performance and difficulty measurements

Domain Performance Difficulty

automatic
speech WER/OVV Perplexity
recognition
natural
language CER none
understanding
MUC tasks
(NE, TE, TR, f-measure baselines
ST, CO)
unimodal
dialogue PARADISE none
system
multimodal
dialogue PARADISE none
system

is exactly what we find in natural language understanding tasks, such as in
so-called sense tagging or word sense disambiguation tasks [Stevenson, 2003].
Additionally, baseline computed on other methods cannot serve as a means for
measuring scalability, because of the circularity involved: as one would need
a way of measuring the baseline method’s scalability factor in the first place.
Table 2.6.2 provides an overview of the existing ways of measuring performance
and task difficulty in automatic speech recognition and understanding.

Current evaluation frameworks for uni- or multimodal dialogue systems
[Walker et al., 2000, Beringer et al., 2002] that allow for spoken language input
do not include metrices for measuring the accuracy of the involved intention
recognition systems, simply because such information is hard to extract au-
tomatically from the logs of system runs [Litman et al., 1999b]. Furthermore,
no general computational method or framework for measuring the difficulty of
natural language understanding tasks have been proposed so far. We are, there-
fore, faced with a lack of methods for measuring the difficulties of the individual
tasks involved in the language understanding process. Such generally applicable
methods, however, are needed for measuring the scalability of natural language
understanding systems and components.

2.7 Point of Departure

Utterances in dialogues, whether in human-human interaction or human-computer
interaction, occur in a specific situation that is composed of different types of
contexts. In the following a categorization of the types of context relevant
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to spoken dialogue systems - and human computer interaction in general -
is given together with their respective scope (content) and modularization in
HCI systems. This work will, as observable below, depart from the common
distinction between linguistic and extra-linguistic contexts, whereby all extra-
linguistic contexts are also often lumped together as the situational context
[Connolly, 2001]. The categorization proposed herein subsumes the linguistic
context under the heading of dialogical context. Dialogical context encompasses
the dialogical counterparts of both co-text and inter-text as well as non-linguistic
input from other modalities, e.g. interacting with traditional interfaces (WIMP)
or gesture and the like. The categorization employed herein also differentiates
extra-linguistic (or situational) context into interlocutionary-, domain- and sit-
uational context as shown below.

2.7.1 Context Types

As shown in table 2.7 dialogical context in our model corresponds to what has
been termed linguistic context in the domain of natural language analysis and
encompasses information from the discourse history, i.e. prior utterances by
the interlocutors. As pointed out in section 2 discourse context is essential
for a variety of tasks that one finds under the headings of reference resolution,
anaphora resolution or semantic disambiguation. The following section presents
an elaboration of these problems in the light of the essential contributions of
context.

Table 2.7: Contexts, content and knowledge sources
types of context content knowledge store

domain context world/conceptual knowledge domain model
dialogical context what has been done by whom dialogue model
interlocutionary context properties of the interlocutors user model
situational context time, place, etc situation model

2.7.2 The Tasks (Revisited)

In order to employ a consistent terminology in the subsequent discussions and
experiments on finding appropriate meanings for given linguistics forms, I will
adopt - wherever possible- the basic notations and insights that originated in
the so called construction grammar framework [Lakoff, 1987, Langacker, 1987,
Fillmore, 1988, Talmy, 1988]. As also noted in Section 4 work on context and
real language use in formal linguistics was based the earlier insights in functional
and usage-based models of language and was mainly restricted to the field of
Cognitive Linguists.

The ensuing grammatical framework and vocabulary in formal construction
grammar [Goldberg, 1995, Kay and Fillmore, 1999, Feldman, 2006], has been
explicitly devised to handle actually occurring natural language phenomena,
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which notoriously contains non-literal, elliptic, context-dependent, metaphori-
cal or underspecified linguistic expressions. As shown in this chapter, these phe-
nomena still present a real challenge for current natural language understanding
systems. Furthermore, I agree with the central principle of construction gram-
mar which states that grammatical phenomena also contribute to the meaning
of a sentence which is the reason why syntax cannot be defined independently
of semantics of a grammar.

Constructions are the basic building blocks, posited by the construction
grammar framework, and are defined as follows [Goldberg, 1995]: A construc-
tion is a form-meaning pair < Fi, Si > if some aspect of Fi or some aspect of Si

is not strictly predictable from the component parts of that construction or from
other previously established constructions. (Ibid:4). Using this framework, the
aforementioned task of resolving referring expressions and ambiguities can be
stated as follows: Given a form Fi, which can be a referring expression such as
the bank or an anaphora such it, what is the corresponding meaning S(F ) in the
given context. It is important to keep in mind that a form in construction gram-
mar can be constituted on all linguistic levels, i.e. we find phonological forms,
morpho-syntactic forms, lexical forms and clausal forms. That means, one can
describe lexical constructions as the and bank individually, look at a composite
construction such as the referring expression the bank or even a whole utterance
such as Where is the bank and how they can resolved, meaning which specific
meaning is to be assigned to it given the context at hand.

Computationally, this entails - as I will show in Sections 3.2 through 3.5 as
well as in Section 4.2 - dealing with our target challenges in automatic language
understanding for resolving a contextually adequate formal specification of the
semantics from the given ensemble of forms. The target data structure will,
consequently, be referred to as a semantic specification [Chang et al., 2002]. The
corresponding tasks in natural language generation are selecting (constructing)
in a context-dependent manner - a semantic specification out of myriads of
alternatives and the ensuing construction-based formulation thereof.

Numerous works have sought to label various relations between forms and
meanings. I have already exemplified the difference between homonymy and pol-
ysemy, but additional phenomena have received great attention, e.g. metonymy
[Hobbs, 1991, Markert, 1999], metaphor [Lakoff and Johnson, 1980], coercion
[Michaelis, 2001], type shifting [Faucounnier and Turner, 1998] and mental spaces
[Fauconnier, 1985]. While this work will not discuss these phenomenon in
greater detail, it is important to note that the fundamental assumption under-
lying such analysis is that individual forms feature some kind of literal meaning
and that they can assume non-literal meaning by means of metonymical or
metaphorical usage, coercion and the like. While the work presented herein
departs from this assumption, our view is not irreconcilable with it.

Various terms have been proposed in the literature, e.g., intricacy or en-
trenchment [Faucounnier and Turner, 1998, Langacker, 2000], that express that
these phenomena can be measured on a scale. Which means, in the words of Fau-
counnier and Turner, that meaning can be assigned to forms with increasing or
decreasing intricacy. A literal usage would require little to no intricacy and oth-
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ers, such as so-called blends require more (ibid). For Langacker this intricacy can
be boiled down to statistical measure of entrenchment, the more frequently used
a specific contextually evoked form - meaning pairing becomes, the more central
is the correspondingly entrenched meaning of that form [Langacker, 2000].

Before returning to these questions below, let me point out, once more, that
the general task of determining a particular meaning representation - that has
to be constructed with more or less intricacy from the forms at hand - will be
the central empirical domain to be employed in the approach to contextual com-
puting presented herein. If linguistic forms were to be unambiguous and always
fully specific, then no additional meaning construction would be necessary due
to the given one-to-one mapping between a specific form and its meaning. Since
that is, obviously, not the case additional information and knowledge is needed
to construe the intended meaning of a given form.

In the computational sense this entails that meaning resolution can be seen
as determining the most plausible meaning from the set of the possible mean-
ings that can be constructed out of the given form.5 In line with the central
claim of this work, we, therefore, find that on all computational levels of nat-
ural language processing where underspecification, ambiguity and noise arises,
one needs additional information and knowledge for finding the most plausi-
bly constructed meaning, thereby resolving the form-meaning mappings out of
many other potential ones. As I will argue below contextual information and
pragmatic knowledge constitutes this additional modality by means of which
meaning resolution becomes possible, or - in other words - the other potential
form-meaning mappings are inhibited from being activated as the most plausible
one did.

What would, therefore, be needed is a context-dependent scoring that identi-
fies the most plausible item out of a set of possible alternatives. In the following
sections I will introduce, examine and evaluate how such an approach to con-
textual computing can be employed to increase performance, robustness and
scalability of natural language processing systems in the areas of:

• Automatic Speech Recognition

• Semantic Interpretation

• Pragmatic Interpretation

Before I present the data, experiments and results of applying the approach
to contextual computing pursued herein to these areas of natural language pro-
cessing, I will discuss the subsequent modeling of contextual knowledge stores
employed by the contextual computing approach to be discussed hereafter. Since
domain knowledge is nowadays commonly modeled using formal ontologies, they
will be introduced first generally and then specifically, in terms of the concrete
ontologies and modeling principles employed to represent domain knowledge in
our experiments.

5This, in turn, is quite congruent to other approaches in contextual computing where the
computational notion of correctness is - by necessity - replaced with the notion of plausibility.
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Chapter 3

Domain and Discourse

3.1 Modeling Domain and Discourse Knowledge

The early ways in which knowledge has been represented semantically in spo-
ken dialogue systems or multi-modal dialogue systems show that individual
representations with different semantics and heterogeneously structured con-
tent can be found in various formats within single natural language processing
systems and applications. For example, a typical NLP system, such as TRAINS
[Allen et al., 1996], employs different knowledge representations for parsing, ac-
tion planning and generation, despite the fact that what is being represented
is common to all those representations, e.g., the parser representation for going
from A to B has no similarity to the action planner’s representation thereof
[Ferguson et al., 1996]. Also central concepts, for example city, are represented
semantically in multiple ways throughout the system.

The origin for this early state of affairs is that the respective knowledge stores
were hand-crafted individually for each task. Sometimes they are compiled
into code and cease to be externally available. Where an explicit knowledge
representation is used, one finds a multitude of formats and inference engines,
which often cause both performance and tractability problems. In this section I
will, therefore, introduce representational formats for formal ontologies followed
a description of the knowledge representation i.e. the formal ontology, used to
serve as a representation of the domain context within complete multi-modal
dialogue system. Therefore, I will describe the underlying modeling principles
and the benefits of such a rigorously crafted knowledge store.

3.1.1 Modeling Domains

Recently developed multi-modal dialogue systems equipped with the ability
to understand and process natural language utterances from one or more do-
mains [Wahlster et al., 2001, Johnston et al., 2002, Reithinger et al., 2005] em-
ploy formal ontologies as defined notoriously by Gruber (1993) as a conceptual
specification of a domain of interest [Gruber, 1993] which is:

45
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• machine-readable - formal;

• semantics are based on logic - explicit.

Formal ontologies have already been employed to represent domain-specific se-
mantic specifications in natural language processing systems [Chang et al., 2002,
Porzel et al., 2006b]. Before showing examples of semantic domain specifica-
tions, I will present the formal representations that have been emerging, e.g.
from the Semantic Web Project [Berners-Lee et al., 2001], that employ such
formal conceptualizations to add semantic information to textual and other
data available on the Internet [Baader et al., 2003]. Efforts originating in web
standardization consortia and projects, such as the World Wide Web Consor-
tium [W3C-OEP, 2005] and the aforementioned Semantic Web project, brought
about a series of knowledge modeling standards based on the - ever more ad-
equately named - Extensible Markup Language (XML) [XML, 2001]. Most
notably, for this work the Resource Description Framework (RDF) and the
corresponding formal means to define vocabularies and grammars for RDF in-
stances such as Resource Description Framework Schemata (RDFS) [RDF, 2001,
RDFS, 2001]. Building upon this framework specific proposals included the
DARPA Agent Mark-up Language (DAML) [Klein et al., 2000], Ontology In-
terchange Language (OIL) [Fensel et al., 2001] and their mix (DAML+OIL)
[Gil and Ratnakar, 2002] resulting in the Ontology Web Language standards -
OWL-Lite, OWL-DL, OWL-Full and OWL2 - that have subsequently been em-
ployed for crafting knowledge representations ranging from so-called lightweight
ontologies, e.g., mere taxonomic models, to fully axiomatized representations of
foundational, domain-independent and domain-specific ground and descriptive
knowledge [Gangemi et al., 2002].

It has been shown that foundational and domain-specific knowledge - based
on RDFS grammars and vocabularies - can be employed for representing knowl-
edge in multimodal dialog systems [Gurevych et al., 2006, Oberle et al., 2007].
The expressive capabilities of the grammars that have been proposed vary
[Fensel et al., 2001], this is due to typological and grammatical variations of
ontology dialects. The ontologies implemented in the corresponding SmartKom
and SmartWeb systems are described in greater detail in Sections 4.3 and 3.1.3.1

Formal ontological models of domain knowledge are also based on a for-
mal semantics, which - corresponding to the logical calculus employed - enables
specific reasoning engines, such as FACT, RACER or CEL [Horrocks, 1998,
Haarslev and Möller, 2003, Baader et al., 2006]. They provide inferencing ca-
pabilities [Guarino and Welty, 2002], such as class consistency or subsumption
checking. Also graphical ontology engineering front-ends and visualization tools
are available for editing, maintaining, and visualizing the corresponding ontolo-
gies.

1For the time being it should suffice to note that using such an XML-based semantic
mark-up language where instances can be defined in the syntax of the Resource Description
Framework brings about several advantages, e.g., that the ontology instances are understand-
able for all RDF-based applications and other grammars that are constructed using RDFS.
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Computationally speaking, the foundation of RDF is a model for repre-
senting named properties and property values. The RDF model draws on
well-established principles from various data representation communities. RDF
properties may be thought of as attributes of resources and in this sense cor-
respond to traditional attribute-value pairs. RDF properties also represent re-
lationships between resources and an RDF model can therefore resemble an
entity-relationship diagram. In object-oriented design terminology, resources
correspond to objects and properties correspond to instance variables.

The RDF data model is a syntax-neutral way of representing RDF expres-
sions. The data model representation is used to evaluate equivalence in meaning.
Two RDF expressions are equivalent if and only if their data model represen-
tations are the same. This definition of equivalence permits some syntactic
variation in expression without altering the meaning. The basic data model
consists of three object types:

• Resources: All things being described by RDF expressions are called re-
sources. A resource may be an entire Web page; such as the HTML
document ”http://www.w3.org/Overview.html” for example. A resource
may be a part of a Web page; e.g. a specific HTML or XML element
within the document source. A resource may also be a whole collection
of pages; e.g. an entire Web site. A resource may also be an object that
is not directly accessible via the Web; e.g. a printed book. Resources are
always named by URIs plus optional anchor ids (see [URI]). Anything can
have a URI; the extensibility of URIs allows the introduction of identifiers
for any entity imaginable.

• Properties: A property is a specific aspect, characteristic, attribute, or
relation used to describe a resource. Each property has a specific meaning,
defines its permitted values, the types of resources it can describe, and its
relationship with other properties. This document does not address how
the characteristics of properties are expressed; for such information, refer
to the RDF Schema specification).

• Statements: A specific resource together with a named property plus the
value of that property for that resource is an RDF statement. These three
individual parts of a statement are called, respectively, the subject, the
predicate, and the object. The object of a statement (i.e., the property
value) can be another resource or it can be a literal; i.e., a resource (spec-
ified by a URI) or a simple string or other primitive data type defined by
XML. In RDF terms, a literal may have content that is XML markup but
is not further evaluated by the RDF processor. There are some syntactic
restrictions on how markup in literals may be expressed;

Resources are identified by a resource identifier. A resource identifier is a URI
plus an optional anchor id. For the purposes of this section, properties will be
referred to by a simple name.
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The semantics of ontological formalism is by and large based on description
logic extended with concrete data types. The languages, therefore, employ a
combination of frame- and description logic. It provides most of the modeling
primitives commonly used in the frame-based knowledge representation systems.
Frames are used to represent concepts. These frames consist of a collection
of classes along with a list of slots and attributes. Under the term class or
class expression a class name, or an enumeration, or a property-restriction,
or a Boolean combination of class expressions is to be understood. Slots are
interpreted as a collection of properties. They are divided into those that relate
classes to other classes (so called object properties) and those that relate classes
to data type values (so called datatype properties). Slots can be filled by: class
names, names of the atomic elements, collection of the above (conjunctive sets -
and, disjunctive sets - or, or negation - not), concrete data types (integers and
strings).

Then, domain and range restrictions of the slots can be defined. Domain
restriction asserts that the property only applies to the instances of particu-
lar class expressions. Range restriction specifies that a property only assumes
values that are instances of the respective class expressions. Slot fillers can
have several types of further constraints, also called facets. These include value-
type restrictions (all fillers must be of a particular class), has-value restrictions
(there must be at least one filler of a particular class). The value-type restriction
corresponds to the universal quantifier of the predicate logic. The has-value re-
striction is analogous to the existential quantifier. Another constraint on the slot
fillers is cardinality, which limits the number of possible fillers of the given class.
Atomic elements or individuals can also be associated with a class definition via
slot constraints.

3.1.2 Modeling Discourse

Most dialogue systems, and certainly multi-domain ones [Johnston et al., 2002,
Reithinger et al., 2003], employ a discourse model that contains representations
of objects mentioned throughout the discourse along with a record of what has
actually been said by whom, which I will call the discourse protocol. Of course,
linguistic investigations on discourse phenomenon, for example on anaphoric
expressions that refer to objects in the discourse model that have been men-
tioned before are both numerous and diverse [Searle, 1975, Grosz et al., 1977,
Lambrecht, 1994, Ramsey, 2000, Kehler, 2002] Generally, these co-referring ex-
pressions - of which there is a record in the discourse protocol - are called
antecedents. I have shown the results of corpus-based analyses of the form
sides of referring expression, such as The first man on the moon, in Section 2.3
[Poesio and Vieira, 1998, Byron, 2002, Poesio, 2002].

Using the formal ontological terms I presented in Section 3.1.1, represen-
tations of the referent, i.e. the entity to which the expression refers, in the
discourse model can be an instances of some type, as in the case of named en-
tities such as the individual person named Neil Armstrong, who is the referent
of the referring expression given above. Additionally, hypernyms of named en-
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tities2 refer to terms in the so-called T-Box or the so-called vocabulary of the
ontology, as in the case of the two referents of the two common noun construc-
tions found in the expression: Cats sit on mats. Lastly, there a cases such as
discourse deictic expressions and abstract anaphora where reference is made to
parts of the discourse protocol as in Could you repeat that in the former and to
referents that have been introduced via entire phrasal constructions in the later
case. In both cases subsequent anaphoric shortening has also been observed
[Webber, 1991, Byron, 2002].

Traditionally, formal discourse models have been discussed for uni-modal
settings [Webber, 1979] while more recently formal models have been proposed
for multimodal discourse modeling [LuperFoy, 1992, Alexandersson et al., 1995,
Pfleger et al., 2003]. In her proposal LuperFoy suggest a three tiered model.
Therein a surface layer, called the linguistic layer (ibid) the input is represented
in terms of linguistic objects. This syntactically structured discourse protocol
features a build-in decay as utterances lose relevance as time goes on. The inner
layer that represents a model of the world, e.g. an ontology, is referred to more
traditionally by LuperFox as the knowledge base. Between these two layers the
resides the discourse layer in her model, which contains amodal representations
of the referents of the ongoing discourse called discourse pegs. In case a new
linguistic object comes into the surface buffer it is checked, if the instance or
concept can be linked to an existing peg, as in the case of anaphoric relation-
ships; if it can not be linked to an existing peg, it is assumed to refer to a
discourse new referent. Given sufficient referential information pegs are linked
to concrete object in the world model, knowledge base or ontology.

A shortcoming of the LuperFoy Model is that all non-linguistic modalities,
such as gestures, must actually represented as linguistic objects in the linguis-
tic layer. This, however, was remedied by a corresponding enhancement that
included other modality-specific objects to be represented as such, e.g., visual
objects as item presented to the user or gestural objects as items pointed out
to the user or by the user [Pfleger et al., 2003]. This enhanced multimodal
discourse model, displayed in Figure 3.1 was also employed in the SmartKom
system thereby connecting the represented discourse objects (corresponding to
LuperFoy’s pegs) to the ontology, that I will describe below in Section 3.1.3. A
tight coupling of representations employed in the domain model and the multi-
modal discourse model not only enabled the experiments presented in Section 3.3
[Porzel et al., 2003a], but also additional algorithms, such as default unifica-
tion or overlay algorithms [Carpenter, 1992, Alexandersson and Becker, 2001,
Löckelt et al., 2002], that can hand down logically fitting defaults or prior dis-
course objects. Apart from the discourse layer, the coupling of the domain
model representations to those employed by the modality-specific layers also
enabled multimodal fusion and fission algorithms in the SmartKom system
[Porzel et al., 2003b]. Due to its central importance also for experiments pre-
sented in Sections 3.1 through 3.4, I will describe this specific inner layer, i.e.

2Proper names, as the lexical leafs of the hierarchy are by definition solely hyponyms of
some general term, while all general terms are both the hypernyms of their hyponym as well
as the hyponym of their more general term.
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Figure 3.1: The SmartKom Discourse Model

the domain model, and its modeling principles in greater detail below.

3.1.3 Semantics in SmartKom

As mentioned above multimodal systems, such as SmartKom, can benefit from
basing their semantic representations on ontological domain models. The spe-
cific model described herein, serves as a common knowledge representation for
various modules throughout the system [Gurevych et al., 2003b]. It represents
a general conceptualization of the world using a so-called foundational ontol-
ogy [Russell and Norvig, 1995, Gangemi et al., 2002] as well as of particular do-
mains (domain-specific ontologies). This way, the ontology represents language-
independent world-knowledge. The language-specific knowledge can be stored
elsewhere, e.g. in a lexical resource that links lexical forms to a semantic repre-
sentation, e.g., defined in terms of ontology concepts or language-specific knowl-
edge can be modeled and added as an ontology proper [Buitelaar et al., 2006].

The ontology to be employed in the subsequent experiments was initially
designed as a general purpose component for knowledge-based natural language
processing. It bases on a foundational ontology developed following the spe-
cific procedures proposed by Russel and Norvig (1995) and originally covered
the tourism domain encoding knowledge about sights, persons and buildings
[Russell and Norvig, 1995]. Then, the existing ontology was adopted in the
SmartKom project and modified to cover a number of new domains, e.g. new
media and TV program guides. The top-level (i.e. foundational and/or domain-
independent) part of ontology was re-used with some slight extensions. Further
developments were motivated by the need of a process hierarchy. This hierarchy
models processes which are domain-independent in the sense that they can be
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relevant for many domains, e.g. InformationSearchProcess
The ontology employed herein has about 730 concepts and 200 non-taxonomic

relations. It includes a generic top-level ontology whose purpose is to provide a
basic structure of the world, i.e. abstract classes to divide the universe in distinct
parts as resulting from the ontological analysis. This top-level was developed
following the procedure outlined in [Russell and Norvig, 1995]. The acquisition
of the ontology went in two directions: top-down to create a top level of the on-
tology and bottom-up to satisfy the need of mapping lexical items to concepts.
The purpose of the top-level ontology is to provide a basic structure of the
world, i.e. abstract classes to divide the universe in distinct parts as resulting
from the ontological analysis [Guarino and Poli, 1995]. The domain concepts
emerged through a comprehensive analysis of collected corpus of multimodal
human utterances [Schiel et al., 2002, Schiel and Türk, 2006].

3.1.4 Modeling Ground Knowledge

Following the top-level distinctions mentioned above, a collection of concepts
that have primary ontological status [Guarino and Welty, 2000] were defined.
The guiding principle was to differentiate between the primary ontological en-
tities and the roles taken by them in particular situations, events, or processes.
For example, a building can be a hospital, a railway station, a school, etc. But
while taking all these roles, it doesn’t cease to be a building. Another example
is a person who can take the role of a school teacher, a mother, etc., but it still
remains a person for.

Here the question arises, how deep the differentiation should go. Consider
the example of a person: we give a concept Person a primary ontological status,
but what about the concepts Man and Woman? Should they be given the same
status? Our answer is positive and is based, on one hand, on the assumption
that sex is the primary property that defines a person as a man or a woman, on
the other hand, a functional approach shows that relations of these two classes
to other classes and their other attributes can be determined by this property.
In this way, the basic top-level ontological categorization in our system divides
all concepts into two classes Type and Role (see Figure 3.2). As the class Type
includes concepts with primary ontological status independent of the particular
application, every system using the ontology for its specific purposes deals with
the class Role. We will return to this question in later sections that discuss
dedicated formal models of pragmatic knowledge

The Taxonomy and Vocabulary of the Ontology

Role is the most general class in the ontology representing actual roles that any
entity or process can perform in a specific domain. It is divided into Event
and AbstractEvent. In the view of the ontology employed herein, Role therefore
represents a role that any entity or process can perform.

Along with events, e.g. processes or physical objects that exist in space or
in time, our model includes abstract objects, e.g., numbers, abstract properties,
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Top

Role Type

Event
Abstract Event 

Type Event Type

Abstract Object Abstract ProcessProcessPhysical Object

Abstract Event

Figure 3.2: Top-level part of the ontology

such as spatial relations and abstract events relevant to real processes, such
as Start, Finish, Interrupt, etc. These are modeled separately thereby allow-
ing these modeled patterns in the description of the processes throughout the
ontology. The class AbstractEvent further differentiates abstract object from
abstract process in correspondingly named classes.

In the non-abstract domain Event ’s themselves are further classified in Phys-
icalObject and Process. In contrast to abstract objects, they have a location in
space and time. The class PhysicalObject describes any kind of objects we come
in contact with - living as well as non-living. These objects correspond to roles
in different domains, such as Sight, Goal and Landmark in the tourism domain
or Film and Movie in the TV and cinema domain, etc., and can be associated
with via semantic relations to the processes via slot constraint definitions. Next
to events such as physical objects there processes defined in the ontology.

The modeling of Process as a kind of event that is continuous and homo-
geneous in nature, follows the frame semantic analysis used for generating the
FrameNet data [Baker et al., 1998]. Based on the analysis of additional data
collected by Schiel et al (2004) in the domains under inspection herein, we de-
veloped the classification of processes given in Figure 3.3.

• General Process, a set of the most general processes such as duplication,
imitation or repetition processes;

• Mental Process, a set of processes such as cognitive, emotional or per-
ceptual processes;

• Physical Process, a set of processes such as motion, transaction or con-
trolling processes;

• Social Process, a set of processes such as communication or instruction
processes.

While the three last classes can be understood intuitively, the first one needs
further explanation. It consists of several subclasses, such as AbstractDupli-
cationProcess, AbstractRepetitionProcess, AbstractImitationProcess, etc. These
are abstract processes that are independent from the real processes and can take
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Figure 3.3: Upper part of the process hierarchy

place at the same time with the main process. For example, the semantic struc-
ture of an utterance ”I used to come here” can be represented as a combination
of the Motion Directed Transliterated Process and Abstract Repetition Process.

The MentalProcess subtree includes CognitiveProcess, EmotionProcess and
PerceptualProcess. Under CognitiveProcess we understand a group of processes
that aim at acquiring information or making plans about the future. The further
division of EmotionProcess into the following subclasses - EmotionExperiencer-
ObjectProcess and EmotionExperiencerSubjectProcess - is due to the fact that
an emotion can be either provoked by an object (e.g. The cry scared me) or can
be experienced by an agent towards some object (e.g. I want to go home).

The PhysicalProcess has the following subclasses: the semantics of Control-
lingProcess presupposes the controlling of a number of Artifacts, e.g. devices,
MotionProcess models different types of agent’s movement regarding some ob-
ject or point in space, PresentationProcess describes a process of displaying
some information by an agent, e.g. a TV program by Smartakus, an artifi-
cial character embedding the SmartKom system, StaticSpatialProcess consists
in the agent’s dwelling in some point in space, TransactionProcess presupposes
an exchange of entities or services among different participants of the process.

Another subclass of the Process - SocialProcess includes CommunicativePro-
cess, which consists in communicating by the agent a message to the addressee
by different means, and InstructiveProcess which describes an interaction be-
tween an agent and a trainee.

Let us consider the definition of the Information Search Process in the
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ontology. It is modeled as a subclass of the Cognitive Process, which is a
subclass of the Mental Process and inherits the following slot constraints:

• begin time, a time expression indicating the starting time point;

• end time, a time expression indicating the time point when the process
is complete;

• state, one of the abstract process states, e.g. start, continue, interrupt,
etc.;

• cognizer, filled with a class Person including its subclasses.

Information Search Process features one additional slot constraint, piece-of-
information. The possible slot-fillers are a range of domain objects, e.g. Sight,
Performance, or whole sets of those, e.g. as for TV Program, but also processes,
e.g. Controlling TV Device Process. This way, an utterance such as shown in
Example 11 can also be mapped onto Information Search Process.

(11) I would like information about the castle

This process has an agent of type User and a piece of information of type
Sight. Sight has a name of type Castle. Analogously, the utterance shown in
Example 12.

(12) How can I control the TV

can be mapped onto Information Search Process, which has an agent of type
User and has a piece of information of type Controlling TV Device Process.

The class Physical Object describes any kind of objects we come in contact
with - living as well as non-living - having a location in space and time in contrast
to abstract objects. These objects refer to different domains, such as Sight and
Route in the tourism domain, AV Medium and Actor in the TV and cinema
domain, etc., and can be associated with certain relations in the processes via
slot constraint definitions.

The Hierarchy of Non-taxonomic Relations

The structure of the non-taxonomic relations also reflects the general intention
to keep abstract and concrete elements apart. A set of most general properties
has been defined with regard to the role an object can play in a process: as an
agent, theme, experiencer, instrument, means, location, source, target or path.
These general roles applied to concrete processes may also have subslots: thus
an agent in a process of buying (TransactionProcess) is a buyer, the one in the
process of cognition is a cognizer. This way, non-taxonomic relations can also
build a hierarchy. The property has-theme in the process of information search
is a required piece-of-information, in presentation process it is a presentable-
object, i.e. the item that is to be presented, etc.

Consider the class Process. It has the following relations: has-beginning, a
typed time expression which here (plays the role) of indicating a starting point,
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has-end, the same indicating the time point when the process is complete, has-
state, one of the abstract process states. These relations describe properties that
are common to all processes, and as such they are inherited by all subclasses
of the Process class. The choice was made not to include has-agent into the
number of properties of the Process class to account for the fact that not all
processes have one.

An EmotionExperiencerSubjectProcess, for example, inherits the slots of the
Process class, among them the slot has-theme that can be filled with any pro-
cess or object (the basic idea is that any physical entity or the performance of
any process can become an object of someone’s emotion). It also has several
additional properties such as experiencer to denote the one who undergoes the
process, and preference to define the attitude an experiencer has to the object
of its emotion. Any instance of the class Person (and its subclasses) can fill
the slot has-experiencer, the filler of the slot has preference is any instance of
the class Attitude (or any of its subclasses). Attitude is a subclass of the class
Abstract Object, i.e., positive or negative attitude is modeled as an abstract ob-
ject and then brought into connection with a certain process, e.g., the Emotion
Process.

Another example demonstrating how slot structures can be shared between
some super- and subclasses can be seen in the subclass AvEntertainment, that
inherits from its superclass Entertainment the following slots: has-duration, has-
endtime, and has-begintime, filled by the instances TimeDuration and TimeEx-
pression respectively. The class AvEntertainment features two additional slots:
has-language, its filler must be an individual instance of the class Language,
e.g., English, and has-medium, its filler is of class Medium. The class AvEn-
tertainment has further subclasses - Broadcast representing an individual entry
in a TV program, and Performance modeling an entry in a cinema program.
Both of them inherit the slots of the superclasses Entertainment and AvEnter-
tainment, while also featuring their own additional slots, e.g., has-channel and
has-showview for the Broadcast, cinema and has-seat for the Performance.

Given this elaborate structure of the non-taxonomic relations, it is important
to note its significance for the contextual computing experiments - that I will de-
scribe in Sections 3.2 through 3.6 - as well as in the light of the correspondence
between these non-taxonomic relations and so-called role relations in lexico-
graphic frame semantic analysis [Fillmore and Baker, 2000, Rosario et al., 2002]
as well as in all forms of role binding in constructional analysis, e.g. involv-
ing multiple specific role bindings afforded by argument structure constructions
[Goldberg, 1995].

3.1.5 Roadmap

As I have discussed in Section 2.7.2, one of the fundamental task in natural
language processing for dialogue systems is to pick the most plausible item out
of a set of possible alternatives. As also noted earlier in Section 1.1, these
alternatives multiply in conversational spoken dialog system due to noise, am-
biguities, and underspecification, which is why, in the following, I will examine



56 CHAPTER 3. DOMAIN AND DISCOURSE

Table 3.1: An overview of the areas and problems addressed
problem application

noise in automatic speech recognition hypothesis verification
ambiguities in semantic interpretation word sense disambiguation
underspecification in pragmatic interpretation pragmatic ambiguities

the contribution of contextual information & knowledge by looking at each of
these problems in different areas of natural language processing, as shown in
Table 3.1.

3.2 Using Domain Context for Noisy Input

Given such ontological models of domain knowledge, as described in Section 3.1
above, I will begin this examination of the contribution of using such domain
knowledge for contextual computing by presenting a set of experiments per-
formed to examine the effects of including domain context into the speech pro-
cessing pipeline. More specifically, I will describe the data, the annotation
thereof and the results concerning speech recognition ambiguities in the form
of n-best on each of these tasks given in Table 3.2. I will, therefore, shortly
introduce the models currently employed in speech recognition systems for the
task of hypothesis verification.

3.2.1 The Task: Domain-sensitive Hypothesis Verification

A common phenomena found in different fields of natural processing, such as
automatic speech recognition, information retrieval or question answering, is
that processing techniques seem to hit a ceiling of performance. In terms of
contextual computing, automatic speech recognition systems employ by and
large two knowledge sources:

• acoustic models in the form of Hidden Markov Models (HHM), which are
learned from previously recorded data using either maximum likelihood
criteria (with the Baum-Welch algorithm or gradient-based methods) or
maximum mutual information criteria (with gradients respecting transi-
tion or observation probabilities);

• language models in the form of statistical n-gram models derived from
previously collected and transcribed data.

Some low-level context-dependent features have been added to handle di-
alects and speaker-adaptation, dynamic lexica [Rapp et al., 2000] and recently
out-of-vocabulary recognition techniques to enable the recognizer to detect un-
known words and switch to pure phoneme recognition [Fetter, 1998]. However,
no explicit contextual knowledge, e.g. of the domain or situation at hand is
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Table 3.2: Domain Context - The Tasks TA TB TC

Task Name Task description

TA classification of the correctness of each hypothesis as a
(Accurate) representation of the user’s intention into correct versus

incorrect based on the domain context.
TB choosing the best speech recognition hypothesis from

(BestOf) an n-best list of hypotheses based on the domain context
TC classification of the coherence of each hypothesis into

(Coherence) coherent versus incoherent based on the domain context

taken into account, which leaves the problem of dealing with phonetically in-
distinguishable input, unresolved and consequently produces noise. The classic
example in the community is, that a large vocabulary speech recognition (LVSR)
system, as needed for more conversational dialogue systems, could hardly dif-
ferentiate between homonymic utterances such as: “it is hard to wreck a nice
beach” and “it is hard to recognize speech”. Humans on the other hand hear
either one or the other depending on the context.

Noise in Speech Recognition: N-best Lists

Today’s LVSR systems rarely feature simple one-best hypothesis as interface
between ASR and NLU. While that may suffice for restricted dialogue systems,
most systems either operate on n-best-lists as ASR output or convert ASR
word graphs [Oerder and Ney, 1993] into n-best lists, given the distribution of
acoustic and language model scores [Schwartz and Chow, 1990].

In our data a user expressed in example 13 the wish to see a specific city
map again, leading to the top two speech recognition hypotheses (examples 14
and 15). In the annotators experiment described below, annotators found that
example 14 constituted a more plausible representation of the utterance whereas
example 15 constituted a less adequate representation thereof:

(13) Ich würde die Karte gerne wiedersehen
I would the map like to see again

(14) Ich würde die Karte eine wieder sehen
I would the map one again see

(15) Ich würde die Karte eine Wiedersehen
I would the map one Good Bye

Facing multiple representations of a single utterance consequently poses the
question which of the different hypotheses most likely corresponds to the user’s
utterance. Several ways of solving this problem have been proposed and imple-
mented in various systems, i.e.

• to use scores provides by the ASR system, i.e. acoustic and language
model probabilities [Schwartz and Chow, 1990]; or
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• to use scores provided by the natural language understanding and dis-
course modeling components [Litman et al., 1999a, Pfleger et al., 2002].

Consequently, in this work, the research question to be addressed below
is how additional contextual knowledge - i.e., knowledge of the domain - can
be employed beneficially for enhancing a dialog system’s performance on this
task. In the following I will, therefore, report on the experimental setup and
evaluations of this question, thereby introducing the notion of contextual co-
herence. As described in Section 3.1, models of domain knowledge fill the
model column for domain context in the context categories presented in Ta-
ble 2.7 and have been employed in natural language understanding systems
[Allen et al., 1995, Ferguson and Allen, 1998]. The scoring procedure described
herein can be employed independently of the specific ontology modeling lan-
guage used, as the underlying algorithm operates only on the nodes and named
edges of the directed graph represented by the model. This specific domain
model is, then, converted into a graph, consisting of:

• the class hierarchy, with each class corresponding to a concept representing
either an entity or a process;

• the slots, i.e. the named edges of the graph corresponding to the class
properties, constraints and restrictions.

3.2.2 The Data: Collection & Annotation

A first step towards solving classification problems in the area of human language
processing is to test the hypothesis that humans are able to solve the classifi-
cation problems reliably according to the predefined classification scheme. This
classification scheme should ideally be determined by the concrete tagging task
of the classification system. As a precursor step before this, a clear definition
of the given tasks needs to be given, which can also be translated into an anno-
tation scheme for human mark-up As such it needs to provide a set of disjunct
levels of annotations for the individual discriminatory decisions that can be per-
formed on spoken dialogue data, ranging from annotating referring expressions,
e.g., named entities and their relations, anaphora and their antecedents, to word
senses and dialogue acts. Each task must, therefore, have a clearly defined set
of markables, attributes and values for each corpus of spoken dialogue data.

Methodology We will employ a uniform and generic method for computing
task-specific sets of markables, sets of values and baselines for a given task Tw

from the entire set of task, i.e. T = {T1, . . . , Tz} and Tw ∈ T . I will present the
conspecific figures of the markables, sets of values and baselines of our first tasks
T = {TA, TB, TC} in Table 3.6. A gold standard annotation of a task features
a finite set of markable tokens W = {w1, . . . , wn} for task Tw, e.g. if n = 2 in a
corpus containing only the two ambiguous lexemes bank and run as markables,
i.e. w1 and w2 respectively. For a member wi of the set C I can now define the
number of values for the tagging attribute of sense as: Ai = {bi

1, . . . , b
i
ni
}. For
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Table 3.3: Domain Corpus - SRH0

Corpus Name SRH0

Data Collection Hidden Operator Test
Subjects 29
User Utterances Annotated - turns 1479
Speech Recognition Hypotheses - SRHs 2300
SRH per turn 1.55

example, for three senses of the markable bank as w1 the corresponding value set
is A1 = {building, institution, shore} and for run as w2 the value set A2 =
{motion, storm}. Note that the value sets have markable-dependent sizes.

Data Collection

In order to craft annotation schemes, test the reliability of such annotations
and compute baselines a corpus of spoken language data was employed. The
data collection was conducted by means of a hidden operator test, which was
designed as a light-weight Wizard-of-Oz experiment [Rapp and Strube, 2002].
In the test the system was simulated. Altogether 29 subjects were prompted to
say certain inputs in 8 dialogues. 1479 turns were recorded. Each user-turn in
the dialogue corresponded to a single intention, e.g. an instructional request (for
example How do I get to the Peterskirche) or informational request (for example
Give me information about the Peterskirche). The collected audio files were sent
to the speech recognizer and the resulting n-best lists of SRH, were recorded
in log-files. The final corpus consisted of approximately 2300 hypotheses. This
corresponds to approx. 1.55 speech recognition hypotheses per user’s turn.

An additional corpus of 1375 hypotheses was obtained by generating a new
unseen set of SRH using the final SmartKom system. The collected n-best lists
of SRH, were recorded in log-files. The final corpus consisted of 552 utterances.
This corresponds to approximately 2.5 speech recognition hypotheses per user’s
turn. The data obtained from the hidden operator and system tests had to be
processed to compose a corpus with n-best speech recognition hypotheses. For
this purpose, the files were converted into the audio format of the SmartKom
system and fed to the speech recognition component [Berton et al., 2006]. The
input for the domain modeling component, i.e. n-best lists of speech recognition
hypotheses were recorded in log-files and then processed by a set of conversion
scripts. The speech recognition hypothesis corpus was then transformed into
a set of annotation files which could be read into MMAX, an annotation tool
adopted for this task [Müller and Strube, 2001]. Though originally developed
for annotating other phenomena, the tool is equally suitable for this task, given
an annotation scheme it can also compute statistics for the reliability of anno-
tations.
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Table 3.4: Domain Corpus - SRH1

Corpus Name SRH1

Data Collection Hidden Operator Test
Subjects 29
User Utterances Annotated - turns 552
Speech Recognition Hypotheses - SRHs 1375
SRH per turn 2.5

The Data Annotation & Reliability

In any annotation experiment first of all the central question can be stated in the
terminology given above, as whether it is possible to reliably annotate a given
corpus, here one of speech recognition hypotheses, with a given set of values.
The motivation for that, as mentioned in Section 3.2.2, was to find out whether
it is feasible to examine the contribution of domain knowledge to contextual
computing on the task of classifying speech recognition hypotheses using the
values reflected in the annotation scheme. I will, therefore, firstly present agree-
ment measures for human annotators tagging the attribute contextual coherence
with the two values coherent and incoherent.

This discrimination task was designed to exclude other contextual influences,
e.g. discourse context (added and discussed in section 3.3 was solely based on
general world-knowledge. I will, subsequently, show the feasibility of determin-
ing internal coherence of the output of the speech recognizer. Based on these
results - i.e. human annotators classifying 2300 speech recognition hypothe-
ses reliably in terms of their domain-specific coherence, subsequent experiments
on coherence measures, best-SRH classification, word sense disambiguation and
relation extraction ensued which will be discussed in Sections 3.3 through Sec-
tion 3.6.

In an initial annotation experiment, the first data set of hypotheses were ran-
domly mixed to avoid any priming influences and given to separate annotators
for classifying each SRH as a markable with the values of coherent versus inco-
herent. To measure the reliability of annotations the so-called kappa statistic is
frequently employed - where applicable - as the overall coefficient of agreement
between annotators [Cohen, 1960, Carletta, 1996]. For this annotation tools
can facilitate the automatic computation of the kappa metric on annotated files
[Poesio and Vieira, 1998, Müller and Strube, 2001]. The resulting kappa statis-
tic, employing Formula 2.4, over the annotated data were K=0.7 given this first
annotation of coherent versus incoherent [Gurevych et al., 2002], which clearly
suffices to say that human annotators can quite reliably differentiate between
coherent samples (as in Example (14)) and incoherent (as in Example (15)).
In this experiment 1479 utterances from the dialogues collected in the hidden-
operator tests - where each utterance corresponded to a single intention, e.g. a
route- or a sight information request - were used as the initial set of transcrip-
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Table 3.5: Task Coherence - Annotation Experiment - SRH0

Data Source Corpus SRH0

User Utterances Annotated - turns 1479
Speech Recognition Hypotheses - SRHs 2300
Classification Values coherent - incoherent
Agreement: Kappa κ = 0.7

tions and the corresponding speech recognition output, i.e. n-best lists of SRHs
for all utterances. This initial corpus is overviewed in Table 3.3.

Human Annotations for the Evaluation Tasks A, B and C

For the ensuing experiments a new subset of the hidden operator corpus was
used for second set of annotation experiments as well as an evaluation of the
system. For this the scores of the recognizer and other components of the system
were logged next to the contextual coherence scores discussed below. This trial
resulted in a sub-corpus of 552 utterances corresponding to 1.375 SRHs along
with the respective confidence scores; described in Table 3.4. The data resulting
from the new set of annotation experiments were employed to produce a hand-
annotated corpus to be used as a so-called gold standard for the evaluation of
the contextual coherence scores. Furthermore, given new annotation tasks one
should test anew whether human subjects are able to annotate the data reliably
according to the novel annotation schemata. Therefore, two annotators were
specially trained for each of these particular annotation tasks.

Note that in the initial annotation experiment, the task of annotators was
to classify a subset of the corpus of SRHs as either coherent or incoherent where
the hypotheses were randomly mixed in order to avoid contextual priming and
a metric, such as kappa was applicable to express inter-annotator agreement as
shown in Table 3.5. In the subsequent annotation experiments the markables
were presented in their dialogical order together with the human transcription in
case of Task A and B and without it for Task C, where the hypothesis’ internal
coherence was to be determined regardless of the actual utterance that caused
it. In order to present and compare performance measures - as discussed in
Section 2.5 - and baseline measures - as discussed in Section 2.6 in a uniform way
- I will express the performance of human annotation, automatic classification
and baseline approach in terms of precision on the given classification task. This
corresponds to p in Formula 2.2 or a corresponding f-measure with α = 1 as
discussed in Section 2.5.3.

Task A: Annotator Performance

Given the transcribed corpus of utterances and their corresponding speech recog-
nition hypotheses SRH1, the underlying question of this annotation experiment



62 CHAPTER 3. DOMAIN AND DISCOURSE

Table 3.6: Classification Values and Annotation Performance for Corpus SRH1

Data Source Corpus SRH1

Task Classification Values Human Performance
TA correct - incorrect precision ≈ .8

TB best - non-best precision ≈ .95
TC coherent - non-coherent precision ≈ .8

.

was if the amount of noise produced by the speech recognition system distorted
the signal to a degree that the correct intention behind it can no longer be
recovered.3 Such hypothesis are, consequently, to be annotated with the value
incorrect. In case the amount of noise is tolerable and the intended meaning is
still correctly represented, the corresponding annotation value was correct.

In the experiment for Task A - Accurate - the results and values are displayed
in Table 3.6. They show that annotators could reliably identify accuracy in over-
all meaning, i.e. differentiate between correct or incorrect representations of the
transcribed utterance and the corresponding SRH. Given the corpus SRH1, the
annotators reached an agreement of 80% given the task to classify the correct-
ness of each hypothesis as an accurate representation of the user’s intention.
Clad in terms of performance, they reached a precision of ≈ .8 relative to each
other.

Task B: Annotator Performance

In the experiment for Task B - BestOf - the values and results are also displayed
in Table 3.6. They show that annotators could also reliably identify the best
hypothesis, given a transcribed utterance and the corresponding SRHs gener-
ated by the speech recognition system. Given the corpus SRH1, the annotators
reached an agreement of 95.35%. Also in this experiment, the annotators saw
the SRHs together with the transcribed user utterances. The task of annotators
was to determine the best hypothesis from the n-best list of SRHs corresponding
to a single user utterance. The decision had to be made on the basis of several
criteria.

The most important criteria was how well the SRH captures the intentional
content of the user’s utterance. If none of the SRHs captured the user intend
adequately, the decision had to be made by looking at the actual word error rate.
In this experiment the inter-annotator agreement was 95.69% corresponding to
an excellent relative performance of ≈ .96

A kappa-statistic suitable for measuring the reliability of annotations is not
applicable straight-forward in this case, as there are heterogeneous markable sets

3Please note that in this case noise corresponds to speech recognition errors, i.e. insertions,
substitutions and deletions as discussed in Section 2.5.2, and the signal corresponds to the
utterance seen as an ordered sequence of strings.
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for each classification, due to the different number of SRHs in the n-best lists.
However, for the chosen annotator-relative performance measure this does not
constitute a problem as it is calculated based percentage of utterances, where
the annotators agreed on the best SRH.

Task C: Annotator Performance

The results of the experiment on Task C - Coherence - replicate the findings
of the initial experiment - described above - for the classification of coherence,
i.e., that novel annotators could again reliably assign the values coherent and
incoherent, given a transcribed utterance and the corresponding SRHs choices
generated by the ASR system. Based on the new corpus SRH1, the annotators
reached an agreement of 79.71% or performed with a precision of ≈ .8 relative
to each other.

Next, I will present the results of employing first solely domain-specific
knowledge for automatically classifying the corpus SRH1 of recognition hypothe-
ses using the formal model of the domain that was derived from different corpus
of data [Schiel and Türk, 2006]. This approach can be employed by any lan-
guage understanding system to classify utterances, e.g. n-best list thereof, as
instances of a given domain model, e.g. the ontology described in Section 3.
The corresponding algorithm will be described below, followed by its evaluation
against the human annotation-based gold standards for Task A, B and C, where
each task-specific doubly annotated corpus was transformed into an evaluation
gold standard by means of the annotators agreeing on a single solution for the
cases of disagreement. I will now describe the algorithm, its corresponding per-
formance on the three tasks and their individual baselines metrics derived from
the individual gold standards of the three annotation experiments described
above [Porzel et al., 2003a].

3.2.3 The Algorithm: Domain-specific Coherence

The algorithm performs a number of processing steps and routines, each of
them and the corresponding data structures will be described separately in the
respective subsections.

Obtaining Input

A necessary preprocessing step is to convert each markable into a set of concepts
that label nodes in the graph employed to represent the domain context. This
can be achieved in three ways depending on the type of input:

• Unstructured input, e.g. a set of lexical strings. For this one employ
a corresponding lexicon enhanced with specific concept mappings. That
is, for each entry in the lexicon it can be marked as being an instance
of none, one or many classes of the ontology. A set of the concepts,
corresponding to the classes of which the lexical strings - in the original set
of strings - are instances, constitutes the resulting input. All other strings
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with no concept mappings, e.g. articles, are ignored in the conversion.
More elaborate ontological models of lexica have been proposed that also
include a detailed morpho-syntactic specification [LMF, 2005, MAF, 2005,
SynAF, 2005]; also a fully integrated model within a ground ontology has
been proposed at the cost of making the resulting ontological model to be
expressible only in OWL-Full and higher [Buitelaar et al., 2006].

• Semi-structured input, e.g. some local semantic grammar exists, as found
in the output of different parsers [Abney, 1996, Pinkal et al., 2000], pro-
duction systems [Engel, 2002] or semantic analyzers [Bryant, 2003] or some
legacy data model of an information extraction system [Pivk et al., 2006].

• Structured input, e.g. when the system is ontology-based so that all in-
stances employed in communication are based on one ontological gram-
mar and ontological vocabulary, as implemented in the SmartWeb system
[Reithinger et al., 2005, Ankolekar et al., 2006, Oberle et al., 2007].4

In all cases ambiguities may arise, e.g. in case of multiple mappings from
a lexical item to several nodes in the domain model. The algorithm, to be
presented below, regards each enumeration of the possible mappings from the
recognized set of strings at hand individually and selects the most coherent
enumerations score - to be defined below - as the score for the source recognition
hypothesis. The problem of ambiguity, and the algorithm’s performance therein,
will be discussed in greater detail in Section 3.4, after presenting the way in
which domain knowledge can be employed for contextual computing.

The Scoring Algorithm

First of all, the algorithm converts the domain model, i.e. the ontology, into a
directed graph with concepts as nodes and relations as edges. In order to enable
the algorithms to ascend the class hierarchy upwards as well as downwards the
graph was enriched during its conversion by parent-of relations symmetric to the
subclass-of relation. This eliminates directionality problems as well as avoids
cycles and 0-paths. In order to find the shortest path between two concepts,
the algorithm employs the single source shortest path algorithm - also called the
Dijkstra algorithm [Dijkstra, 1959, Cormen et al., 1990].

Given a set of concepts C {c1, ..., cn}, the algorithm runs once for each
concept. The Dijkstra algorithm calculates minimal paths from a source node
to all other nodes. Then, the minimal paths connecting a given concept ci with

4In case of the SmartKom system the communication was not based on an RDF-schema
model, but restricted to XML documents syntactically specified by XML-schemata, which
nonetheless enables the parser and NLU system’s output to be defined in the corresponding
ontological vocabulary, e.g. by employing an automatic approach to specify the schema in-
terface specifications - on the XML-level - based on a formal RDFS model. The model that
has been used for the SmartKom system was already described in Section 3.1.3 above. Due
to the restrictions of XML schema, this approach requires a strictly reductionistic ontology,
i.e. one without multiple inheritance [Gurevych et al., 2003a].
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every other concept in C (excluding ci itself) are selected, resulting in an n× n
matrix of the respective paths.

To score the minimal paths connecting all concepts with each other in a
given set C, the algorithm employed a approach that singled out non-taxonomic
relations - to be regarded as the semantic edges of nodes modeled in an non-
semantic isa hierarchy [Demetriou and Atwell, 1994]. In this approach, R =
{r1, r2, . . . , rn} is the set of direct relations (both isa and semantic relations)
that can connect two nodes (concepts); and W = {w1, w2, . . . , wn} is the set
of corresponding weights, where the weight of each isa relation is set to 0
and that of each other relation to 1. For each two concepts ci, cj the set
P = {p1, p2, . . . , pm} denotes the scores of all possible paths that link the two
concepts. The score for path k(k = 1, . . . , m) can be given as shown in For-
mula 3.1.

pk =

n∑

i=1

aiwi (3.1)

where ai represents the number of times the relation ri exists in path k. The en-
suing distance between two concepts ci and cj is, then, defined as the minimum
score derived between ci and cj , as shown in Formula 3.2.

D(ci, cj) = min(pk) k = 1, 2, . . . , m (3.2)

The algorithm then selects from the set of all paths between two concepts
the one with the smallest weight, i.e. the cheapest. The distances between all
concept pairs in C are summed up to a total score. The set of concepts with
the lowest aggregate score represents the combination with the highest semantic
relatedness.

Since the objective is to compute a coherence score based on a domain model
for given arbitrary sets of concepts that are part of the vocabulary of the model
on a specific scale, additional extensions are necessary. In this experiment, the
concept sets to be scored can differ in terms of their content, the number and
their mappings from the original speech recognition hypothesis. Moreover, the
final score could reflect the number of concepts in an individual set given the
number of lexical items in the original hypothesis. Additionally, the results
must be normalized in order to allow for evaluation, comparability and clearer
interpretation of the semantic coherence scores.

A Domain-specific Score for Sets of Concepts

In order to make the algorithm described above applicable and evaluatable with
respect to the task at hand as well as other possible tasks a maximal distance
between two concepts ci and cj that are only connected via isa relations in the
model needs to be determined as Dmax. The basic idea is to calculate a score
based on the semantic distances in the set C and to let short distances indicate
coherence and a greater distance for concept pairs in a given C that have no
semantic path. A maximum value can serve as a cut-off for long distances
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and, thus, help to prune the search tree for long and semantically irrelevant
(redundant) transversals of the taxonomy. This constant has to be set according
to the structure of the model. For example, employing the ontology described
in Section 3.1.3, the maximum distance between two concepts does not exceed
ten and Dmax can therefore be set accordingly.

A domain coherence score can now defined a set C as the average path length
between all concept pairs in C as shown in Formula 3.3.

S(C) =

∑
ci,cj∈C,ci 6=cj

D(ci, cj)

|C|2 − |C|
(3.3)

Since the ontology is a directed graph, there are |C|2− |C| pairs of concepts
with possible directed connections, i.e., a path from concept ci to concept cj

may be completely different to that from cj to ci or even be missing. As a
symmetric alternative, one may want to consider a path from ci to cj and a
path from cj to ci to be semantically equivalent and thus model every relation
in a bidirectional way. In that case a symmetric score S′(C) can be computed
as given in Formula 3.4.

S′(C) = 2

∑
ci,cj∈C,i<j min(D(ci, cj), (D(cj , ci))

|C|2 − |C|
(3.4)

The algorithm implemented both options: one for domain models that fea-
ture more bi-directional relations (via axiomatization or explicit modeling) and
one for domain models that feature more uni-directional relations.

In the ontology used for this experiment some bi-directional relations can be
found, e.g. given c1=Broadcast and c2=Channel, there exists a path from c1 to
c2 via the relation has-channel and a different path from c2 to c1 via the relation
has-broadcast. However, such reverse relations are only sporadically represented
in the ontology. Consequently, it is difficult to account for their influence on
S(C) in general. That is why we chose the S′(C) function for the evaluation,
i.e. only the best path D(ci, cj) between a given pair of concepts, regardless of
the direction, is taken into account.

In order to score the alternative nodes from the domain model - defined by
I ′(inputn+1) - the function shown in Formula 3.4 is employed. This means a
domain context coherence score S′ is calculated for each domain-specific concept
set C′. To let a higher number indicate more domain-specific coherence an
inverse linear transformation of the scores is performed resulting in numbers
from 0 to 1.

Given the algorithm presented above, a significant number of misclassifi-
cations for SRHs would result from the cases when an SRH contains a high
proportion of function words (having no conceptual mappings in the resulting
concept set C) and only a few content words which are defined as instances of
a class in the domain model. To illustrate consider the set of strings given in
Example 16.

(16) Wo den Informationen zu das gleiche
Where the information to the same
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Figure 3.4: Determining the optimal threshold on the coherent versus incoherent
classification data from corpus SRH0. The vertical axis shows performance and
the horizontal shows the word to concept threshold V

Depending on the given lexical mappings the corresponding concept set could
be constituted out of a single concept, e.g. one concept mapped to Information.
This would classify the set as coherent with the highest possible score, as this
is the only concept in the set. This, however, would often lead to misclassifica-
tions. To eliminate this effect and to discard linguistically slighted distributions
of function and content words a post-processing technique takes the relation
between the number of ontology concepts Nc in a given concept set and the
total number of words Nw in the original SRH into account. This relation is
defined by the ratio V = Nc/Nw. Therewith an automatic classification of an
hypothesis as being incoherent - irrespective of its coherence score S(C), by
setting a threshold V . The threshold may be set freely. Employing the gold
standard data an optimal threshold can be set once for each task. In all cases
this threshold is found where it would be linguistically expected, i.e. where the
set contains at least one concept per three lexical forms found in the input, as
exemplified in the dependency graph of the threshold value V and the results in
performance for the task of coherence using corpus SRH0 is shown in Figure 3.4.
In the findings presented in the evaluation section below the resulting threshold
values employed were V = .33 for Task A, V = .34 for Task B and V = .39 for
Task C.

Looking at an example of the algorithm at work, I will employ the utterance
given in Example 135 The resulting two SRHs - SRH1 and SRH2 - are given
in Examples 14 and 15 respectively. The human annotators considered SRH1

to be coherent and labeled SRH2 as incoherent. Mapping the contained lexical
instance to concepts, each SRH is transformed into a distinct concept sets as
shown in Table 3.7. As no ambiguous words are found in this example, C1

5Example 13 was Ich würde die Karte gerne wiedersehen or be glossed as I would the map

like to see again in English.
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Table 3.7: Example concept sets and labels

Concept Set c1 c2 c3

C1 Person Map Watch Perceptual Process
C2 Person Map Parting Process

Table 3.8: Example semantic and taxonomic paths and distances

Set Distance Property Definition
C1 1 has-watcher(Watch Perceptual Process, Person)
C1 1 has-watchable object(Watch Perceptual Process, Map)
C1 10 via isa relations(Person, Map)

C2 1 has-agent(Parting Process, Person)
C2 10 via isa relations(Person, Map)
C2 10 via isa relations(Parting Process, Map)

corresponds to SRH1 and C2 corresponds to SRH2

Once each hypothesis is mapped unto the graph the algorithm determines all
paths between the concepts of each set, of which only the semantic edges are
correspondingly weighted for the scoring. This yields the following semantic
paths for C1 the domain models states a) that a person can be the watcher of
a perceptual watching process and b) that a map can be a watchable object of
such a process as shown in Table 3.8.
The ensuing average distance between the concepts of C1 and C2 using S′ -
given in Formula 3.4 - is:

total distance number of concept pairs average using S′

(C1) = 12 3 S′(C1) = 4
(C2) = 21 3 S′(C2) = 7

The corresponding result for S - given in Formula 3.3 - is:

total distance number of concept pairs average using S
(C1) = 42 6 S(C1) = 7
(C2) = 51 6 S(C2) = 8.5

In both cases the results are sufficient for a relative judgment, i.e. SRH2

constitutes a less semantically coherent structure than SRH1. To allow for
a binary classification of each hypothesis as either coherent or incoherent as
well as either correct or incorrect, a cutoff score must be set unlike in Task B
(Best-of), where the best scoring hypothesis wins. The settings employed in
the experiments of Task A and C will be presented shortly along with their
corresponding results in Section 3.2.4.
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Please note that, given the results presented below, a corresponding domain-
specific contextual computing component has been integrated in the SmartKom
prototype multimodal dialog system [Porzel et al., 2006a] and provides a coher-
ence score for each hypothesis generated in the speech processing pipeline of
the system. In this implementation it is employed by the natural language sys-
tem to determine the best hypothesis from the n-best lists in conjunction with
acoustic or statistical scores provided by other speech and language processing
component. Next to the application of the domain-specific scoring algorithm the
SmartKom system also employs the ontology described in Section 3.1.3, which
is also used in this experimental setting. In the following, the evaluation of the
performance of the classification system will be presented below in the light of
the human gold standard and a set of baseline measures computed for Tasks A,
B, and C.

3.2.4 Results: Domain-sensitive Hypothesis Verification

For this evaluation of algorithm the dataset of corpus SRH1 - presented in
Table 3.4 was employed. Based on the double human annotations - presented in
Table 3.6 - for each classification task, three corresponding gold standards were
crafted via inter-annotator negotiations. Given these gold standard mark-up
for the Tasks Accurate (TA), BestOf (TB) and Coherence (TC), a corpus-based
computation of a baseline metric has additionally become feasible, as I will
describe below and apply for a discussion of the evaluations results thereafter.

Methodological Baseline Computation

Baselines for classification or tagging tasks have been discussed in Section 2.6.2.
The baselines presented herein are corpus-based using the individual gold stan-
dards to compute a majority class performance on this annotated data. Thus,
I can, again, provide the corresponding f-measure with α = 1 as expressed in
Formula 2.2, which I have given for measuring human and algorithmic perfor-
mance. The baseline performance, therefore, mirrors an analogous evaluation
of a component that always chooses the most frequent solution - given herein
as majority class performance metric for a given task against the same gold
standard.

A gold standard annotation of a task features a finite set of markable tokens
W = {w1, . . . , wn} for task Tw, e.g. if n = 3 in a corpus containing the ambigu-
ous lexeme bank as in our initial Examples 1, 2 and 3, as markable, i.e. w1.
For a member wi of the set W I can now define the number of values for the
tagging attribute of sense as: Ai = {bi

1, . . . , b
i
ni
}. For example, for three senses

of the markable bank as w1 we get the corresponding value set A1 = {database,
building, shore} for Examples 1 through 3. Note that the value sets can have
markable-dependent sizes. For computing the proportional majority classes one
need to compute the occurrences of a value j for a markable i in a given gold
standard test data set, called Vij herein. Now, it is possible to determine the
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most frequently given value and its number for each markable ci as shown in
Formula 3.5.

V max
i = maxij∈{1,...,bi}Vij (3.5)

The total number of values for a markable ci can be defined as in Formula 3.6.

V S
i =

n1∑

j=1

Vij (3.6)

In Formula 3.7 V max
i is defined as the majority class baseline.

Bi =
V max

i

V S
i

(3.7)

If an classification algorithm always chooses the most frequent attribute for
markable ci, the likelihood of correct guesses corresponds to Bi. The total
number of values can, consequently, be calculated as shown in Formula 3.8.

V S =
n∑

i=1

V S
i (3.8)

Based on this it is possible to compute the task-specific proportional baseline,
given in Formula 3.9, for task Tw, i.e., BTw

, over the entire test set.

BTw
=

1

V S
·

n∑

i=1

V S
i Bi =

1

V S
·

n∑

i=1

V max
i (3.9)

Thus, BTw
calculates the average of correct guesses for the majority baseline.

Additionally, one also compute different individual majority class baselines for
each markable as well as a total number of values given for all wn out of W .

A lower measure on this baseline metric of one corpus as compared to an-
other indicates that the method of choosing for each markable always the most
frequently occurring class would perform worse on the former corpus then the
latter one. This being the basic desideratum of the any baseline metric, I will
note that proportional baseline measure is also able to compute the performance
of such a majority class-based approach on any data set for any classification
task - as will be further exemplified in Section 3.4.4 - before presenting the
baseline metrics for Task A, B, and C.

Determining the Task-specific Majority Class Baselines

In the following, I will present the individual majority class baselines computed
for Tasks A, B and C. In Section 3.2.2, I have already presented task-specific
relative human annotation performances, which - in terms of performance re-
liability - can be regarded as an upper bound baseline measure, whereas the
respective majority class baselines constitute an lower bound one.
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Task A: Baseline Performance

A majority class baselines baseline for the evaluation of algorithm on Task A
was derived by considering each speech recognition hypothesis a markable in
the set W = {w1, . . . , wn} which contained a total number of 1375 given the
corpus SRH1 at hand. The values of the attribute Accurate were correct and
incorrect. In the gold standard employed for the evaluation of algorithm - which
was derived from the annotation experiment described in Section 3.2.2 - 51.93%
of all markables were classified as correct. This constituted the majority class
for this corpus and consequently leads to a majority class baseline performance
of ≈ .52 as shown in Table 3.9

Task B: Baseline Performance

Again, each speech recognition hypothesis was considered as a markable in the
same set W of corpus SRH1. The values of the attribute BestOf were best and
non-best. In the case of this task, keeping the set of markables W constant
to Task A as well as to Task C corresponds to the classification conditions for
the respective annotation tasks. While having the same markable set in all
annotations, baseline metrics and evaluations brings about certain advantages,
the consequential drawback in case of Task B is that - in cases where in the
recognition system produced only one hypothesis for a given utterance - the
classification task to assign the value best becomes trivial. To treat all experi-
ments alike in this respect also gave a corresponding advantage to the human
annotators - as reflected in their high performance relative to the one obtained
in the other tasks. Besides being fair-handed, the evaluation results to be pre-
sented below, show that the mean distance between the algorithm’s performance
on the three task and that of the relative human performance was .12 with a
variance of ±.03 while the average human performance on the tasks varied by
more than threefold. Given the gold standard markable set employed for the all
evaluations of the algorithm 63.91% of all markables were classified as best by
the human annotators. This constituted the majority class for this corpus and
consequently leads to a majority class baseline performance of ≈.64% as shown
in Table 3.9.

Task C: Baseline Performance

A majority class baselines baseline for the evaluation of algorithm on Task C
was derived by, again, considering each speech recognition hypothesis in cor-
pus SRH1 as a markable in the set W . The values of the attribute Coherent
were coherent and incoherent. In the gold standard employed for the evaluation
of algorithm - again derived from the annotation experiment described in Sec-
tion 3.2.2 - 63.05% of all markables were classified as correct. This constituted
the majority class for this corpus and consequently leads to a majority class
baseline performance of ≈.63% as shown in Table 3.9.
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Table 3.9: Classification Values and Baseline Performance for Corpus SRH1

Data Source Corpus SRH1

Task Classification Values Majority Class Baseline Precision
TA correct - incorrect ≈ .52

TB best - non-best ≈ .64
TC coherent - non-coherent ≈ .61

.

Classification Results

The experimental results presented below employ a classification system that
- once an inverse linear transformation of the scores produced by S′, given in
Formula 3.4 - which there range from 1 to Dmax) - is performed the output
produced is a score on the scale from 0 to 1. Now, higher scores reflect a
lower average semantic path-length of the shortest graph found to connect the
concepts in the set C, given the ontology described in Section 3.1.3. As discussed
in Section 3.2.3, all sets where V was smaller than V = .33 for Task A, V = .34
for Task B and V = .39 for Task C - as a result of dividing the number of lexical
items in the SRH by the number of concepts in C - were set to Dmax and now
become 0.

Task A: Classification Performance

For the case of Task A (and also C) a score had to be determined for making
a binary value distinction, as in the case of V - discussed in Section 3.2.3 -
an optimal score was found for Task A by going about half the way towards
Dmax at 4.2. This means that all SRHs found below .45 on the inversely linear
transformed score where subsequently classified as incorrect and those above as
correct in this classification experiment.

Employing the classification system described above, the experimental clas-
sification yields the precision of ≈ .65 on task TA. This means that in 65.09%
of all cases a markable - a speech recognition hypothesis - defined by the gold
standard as correct is classified as such by the classification system. Which con-
stitutes a gain of ≈ .13 points over the corresponding baseline of ≈ .52, which
only classified 51.93% - or 8.16% less - of the gold standard markables correctly.

It, therefore, also lies ≈ .15 points below the human relative performance of
≈ .8. - this direct comparison, however, has to be taken with a grain of salt
as the difference of 14.91% subtracts the 65.09% correctly classified markable
from of the 80% correctly classified markables of an annotator - employing the
alternate annotator’s mark-up as a gold standard - which constitutes a different
gold standard then the merged one employed for determining the algorithm’s
percentage. These results are presented together with the results of the human
reliability and majority class baseline metrics in Table 3.10.
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Task B: Classification Performance

For the experimental setting of Task B no score for making a binary value dis-
tinction is needed, as the highest scoring hypothesis from each set was classified
best and the rest correspondingly as non-best. As stated above, the word to con-
cept threshold, V , was set to .34. Employing the ensuing classification system,
the experimental classification yields the precision of ≈ .84 on task TB. This
means that in 84.06% all the markables defined by the gold standard as best are
classified as such by the classification system.

This result constitutes a gain of ≈ .2 points over the corresponding baseline
of ≈ .64, which only classified 64% - or 20.06% less - of the gold standard
markables correctly. Looking at the human relative performance of ≈ .95 this
result lies still ≈ .11 points below - or 10.94% as the difference between 95% and
84.06% correctly classified. These results are also presented together with the
results of the human reliability and majority class baseline metrics in Table 3.10.

Task C: Classification Performance

As in the case of Task A a score for achieving a binary value distinction is also
needed in Task C. As in the case of the threshold V an optimal score was deter-
mined empirically. As it is quite possible for an speech recognition hypothesis
to be marked incorrect in Task A, but still to be internally coherent in Task C,
but not vice versa - to be both incoherent, but also a correct representation of
the underlying intention - it follows that a higher number of markables labeled
correct is to be expected as compared to ones labeled coherent.

This state of affairs is both reflected by the higher majority class baseline
in Task C compared to Task A as well as in the higher permissiveness of the
classification cut-off point at 7.1. This means that all SRHs found below .29 on
the inversely linear transformed score were subsequently classified as incoherent
and those above as coherent in this classification experiment. The threshold V ,
however, is less affected by this and can be found at 3.9.

Employing these settings, the experimental classification yields the precision
of ≈ .7 on task TC . This means that in 70.4% of all cases a markable - a speech
recognition hypothesis - defined by the gold standard as coherent is classified as
coherent by the classification system. Which constitutes a gain of ≈ .07 points
over the corresponding baseline of ≈ .63, which only classified 63.01 % - or 7.35%
less - of the gold standard markables correctly. It, therefore, lies≈ .1 point below
the human relative performance of ≈ .8 established on a different gold standard
for the corpus SRH1. These results are presented together with the results of
the human reliability and majority class baseline metrics in Table 3.10.

A statistical analysis and further discussion of the results presented above
and summarized in Table 3.10 are given in Section 3.7. For the time being, I
will note that the question behind classification tasks accurate and coherent is of
a more basic nature, i.e. concerning the feasibility of separating correct and co-
herent from incorrect and incoherent hypotheses by employing domain context.
In the case of the Task B (BestOf), there is also a straight-forward application
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Table 3.10: Results of Classification Experiments for Tasks A, B and C

classification majority class classification relative
task on baseline gain algorithm loss human
corpus SRH1 precision precision precision
Accurate ≈ .52 ≈ .13 ≈ .65 ≈ .15 ≈ .80
BestOf ≈ .64 ≈ .20 ≈ .84 ≈ .11 ≈ .95
Coherent ≈ .63 ≈ .07 ≈ .70 ≈ .10 ≈ .80

for employing domain context in the standard task of hypothesis verification,
where the challenge lies in picking the best hypothesis out of the given n-best
list. The performance of the classification system presented in this and the fol-
lowing Sections - with regard to the task of determining the best representation
of an user’s utterance - will also be discussed further in Section 3.3.4. Before
doing so, I will turn to the question if the addition of another context type, i.e.
discourse context, can contribute additional information that provides yet more
pertinent knowledge about the overall context.

3.2.5 Roadmap

In order to continue this examination of the specific contributions of contextual
computing in a set of tasks from the area of natural language processing - where
the challenge lies in determining the most plausible item out of a set of possible
alternatives as described in Section 2.7.2. The results of employing a specific
domain model to score the possible alternatives have been presented above and
- in the light of choosing a best-fitting speech recognition hypothesis out of a
noisy set as in the case of Task B - show that this inclusion of domain knowledge
as additional context classifies 20% more of the data correctly than a - hindsight-
based and, therefore, somewhat informed - majority-class baseline. As discussed
in Section 3.1.2, real utterances actually occur in the specific discourse context of
what has been said before. In addition to considering each utterances by itself,
the question of examining the potential contribution of adding domain concepts
from the preceding discourse context to the set of discourse entities representing
a speech recognition hypothesis - for which semantic paths are sought and scored
- arises. I will present the corresponding algorithmic extensions and subsequent
findings and in the following Section 3.3.

3.3 Using Discourse Context for Noisy Input

In a sense a given dialogical situation can be said to evoke a specific domain
context in the background. The experiments presented so far have shown that
interweaving corresponding domain knowledge, given as a formal and explicit
model of a the domain at hand, brings about the specific gains and losses shown
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in Table 3.10, by means of employing a semantic distance measure for arbitrary
sets of nodes from that model. As discussed in Section 3.2.3 the situationally
given discourse entities featured in the utterance, employing the terminology of
Byron (2002), are mapped unto the vocabulary of the domain model. Once that
mapping is performed a distance is computed considering the semantic paths
connecting the individual concepts in the evoked domain model, as described
in Section 3.2.3. In the examinations of contextual computing described so far
this domain-specific algorithm was examined for a set of classification tasks on
a corpus of noisy speech recognition hypotheses using an ontology as described
in Section 3.1.3.

Next to the domain context evoked in a given dialogical situation, each
utterance occurs in its own discourse context. I have presented models of this
discourse context already along with their role and elementary functions in
dialog systems in Section 3.1.2. Additionally, discourse context also constitutes
the context type, which is employed numerously within dialog systems as well
as in other computational approaches to discourse and text understanding on
various levels of sophistication as discussed in Section 2.3 and Section 2.4.

Given the task described in the beginning of Section 3.2, it is now possible to
asses the specific contribution of including discourse context on the three tasks
for which performance results, task-specific gold standards and baseline metrics
exist. I can, therefore present this addition of discourse context by applying
the evaluation methodology employed in Section 3.2 to measure this contextual
contribution to the individual classification tasks. Therefore, the necessary algo-
rithmic extensions - creating a discourse sensitive way for scoring the individual
discourse-enhanced sets of concepts - and task-specific performance measures
will, consequently, be discussed in the following sections.

3.3.1 The Task: Discourse-sensitive Hypothesis Verifica-
tion

In the following, I will describe the domain- and discourse-sensitive classifica-
tion system and how it can be applied to estimate how well a given speech
recognition hypothesis fits with respect to the existing models of domain and
discourse context. Thereby, a second context type from the four types given
in Table 2.7, i.e., discourse context, is added to domain context for the three
hypothesis verification tasks listed in Table 3.2. The aim, therefore, remains to
examine how context-sensitivity provides mechanisms to increase the robustness
and reliability of dialogue systems. A consequential test is to also to examine
if the discourse-sensitive algorithm can be employed by a spoken dialogue sys-
tem to enhance the interface between automatic speech recognition and natural
language understanding, which will be discussed further in Section 3.3.4.

3.3.2 The Data: Collection & Annotation

As stated above, it is possible in this examination to draw on identical lexical
and ontological resources. Therefore, the markable set of speech recognition hy-
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Table 3.11: Annotator & Baseline Performance TA,TB and TC

Classification Task Classifier Precision on SRH1

Task A Human Annotators ≈ .80
(Accurate) Baseline Majority Class ≈ .63

Task B Human Annotators ≈ .95
(BestOf) Baseline Majority Class ≈ .64
Task C Human Annotators ≈ .80

(Coherent) Baseline Majority Class ≈ .52

Table 3.12: Creating discourse-sensitive concept sets
I(inputn+1) I ′(inputn+1)

C1 ∪ Cbest(inputn) = C′
1

C2 ∪ Cbest(inputn) = C′
2

... ... ...
Cn ∪ Cbest(inputn) = C′

n

pothesis from the SRH1 corpus - described in Section 3.2.2 - can be employed.
As for the classification task and the computation of the performance of hu-
man annotators and of the baseline method the same metrics will employed as
above and discussed in Section 2.5. The annotated data, therefore, yield the
same human- and baseline performances in terms of precision for the respective
annotation experiments and gold standards in Table 3.11

3.3.3 The Algorithm: Scoring cum Discourse

A necessary preprocessing step for the discourse-sensitive concept scoring is
to include discourse context into the concept representation to be valued as
C′(inputi)) resulting from the following pair of concept sets:

- a concept set of the noisy input to be scored, i.e. C(inputn+1),

- and a concept set of the preceding input, i.e. C(inputn).

For that purpose, the discourse-sensitive system stores the best concept rep-
resentation from the preceding input as Cbest(input). The best set in this case
is the one which received the highest score from the domain-specific system -
described above - from the respective list of alternative representations for the
utterance. To produce a conceptual discourse-enriched context set for inputn+1,
a union can be build of each of its possible interpretations I = {C1, C2, . . . , Cn}
with the stored Cbest(inputn) from the previous interpretations. This results in
a contextually augmented new set I ′ = {C′

1, C
′
2, . . . , C

′
n} representing possible

contextual concept interpretations of inputn+1.
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If, however, the calculated score of Cbest(SRHn) is below a certain threshold,
meaning that even the best prior hypothesis is most likely not semantically
coherent, then Cbest(SRHn) = {∅}. Thusly, when Cbest(SRHn) is empty only
the concept sets for SRHn+1 are taken into account. This is, of course, also the
case at the first dialogue turn.

In order to score the alternative discourse-sensitive context sets defined by
I ′(SRHn+1), the scoring approach given in Formula 3.4 in Section 3.2.3 is em-
ployed. Thereby, one can calculate a domain- and discourse-context score S′

for each conceptual context representation C′. Also, the same inverse linear
transformation of the scores resulting in numbers from 0 to 1 can be performed,
so that higher scores indicate better contextual coherence.

3.3.4 The Results: Discourse-sensitive Hypothesis Verifi-
cation

Again, for the case of Task A and C a cut-off score had to be determined for
making a classification between correct - equal or above the cut-off score - and
incorrect - below the cut-off score in Task A as well as between coherent and
incoherent in Task C. For this the same procedure can be applied as in the
case of finding the optimal word-concept ratio V discussed in Section 3.2.3 and
shown for the corresponding domain-specific classification tasks in Section 3.2.4.

Task A: Classification Performance

As described in Section 3.2.2, the task in this classification experiment on the
corpus SRH1 is to differentiate correct speech recognition hypotheses - which
contain a tolerable amount of noise - from incorrect ones - where the users
intention is too distorted to be deemed recognizable. In order to obtain a binary
classification an optimal point was found for Task A by going about two thirds
of the way towards Dmax at 5.9 when employing Formula 3.4 for scoring the
discourse enhanced concept sets. This means that all SRHs found below .59 on
the inversely linear transformed score where subsequently classified as incorrect
and those above as correct in this classification experiment. Given this setting
and a word-concept ratio V of .39 the discourse contextually enhanced system
yields the precision of ≈ .66 on task TA. This means that in 65.60% of all cases
a markable - a speech recognition hypothesis - defined by the gold standard
as correct is classified as such by the classification system. Which constitutes
a gain of ≈ .14 points over the corresponding baseline of ≈ .52, which only
classified 51.93% of the gold standard markables correctly. This classification
result also lies .15 points below the human relative performance of .8.

Task B: Classification Performance

Again in this central task, as described in Section 3.2.2, the corresponding chal-
lenge is to determine the best speech recognition hypothesis from the set of
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hypotheses that constitute more or less noisy representations of an original ut-
terance. The classification system, consequently, will classify the highest scoring
hypothesis with the value best and rest with non-best using the word to concept
ratio of V = .3. The performance of the ensuing discourse context-sensitive
classification system on this task was to ≈ .88. That is, 88.07% of all cases
where the best SRH defined by the human gold standard for TB is among the
best scored by the domain- and discourse sensitive algorithm. This constitutes
a gain of ≈ .24 points over the corresponding baseline of ≈ .64, which only
classified 63.91% of the gold standard markables correctly. This classification
result still lies .07 points below the human relative performance of ≈ .95.

Task C: Classification Performance

This task is described in Section 3.2.2 as well as in Section 3.2.2 and the corre-
sponding classification challenge on the corpus SRH1 is to differentiate coherent
speech recognition hypotheses - which by themselves form a coherent utterance
- from incoherent ones - where the no intention is deemed recognizable. In order
to obtain a binary classification an optimal point was found for Task A by going
about half of the way towards Dmax at 4.4 when employing Formula 3.4 for
scoring the discourse enhanced concept sets. This means that all SRHs found
below .44 on the inversely linear transformed score where subsequently classified
as incorrect and those above as correct in this classification experiment. Given
this setting and a word-concept ratio V of .3 the discourse-enhanced system
yields the precision of ≈ .71. This means that in 71.05% of all cases a markable
- a speech recognition hypothesis - defined by the gold standard as coherent is
classified as such by the classification system. Which constitutes a gain of .08
points over the corresponding baseline of ≈ .63, which only classified 63.05%
of the gold standard markables correctly. This classification result also lies .09
points below the human relative performance of ≈ .8.

Comparing the Performances

At this point, the presented classification experiments yielded two sets of perfor-
mance data with their corresponding baselines, which allows for directly compar-
ing the three task-specific performances of the domain context-specific system
to those of the discourse-enhanced system. Given the six experiments per-
formed on the task of hypothesis verification I will also present a statistical
analysis thereof as well as looking at the potential contribution of this contex-
tual computing approach to the robustness of the spoken dialog employed in
the experiments. Initially, one can note that - despite the different concept
sets that served as input in the discourse-sensitive run through the tasks - the
results exhibit an internal consistency. In both runs he largest gains over the
baselines are found in Task B, where including discourse context raises the gain
over the baseline by .04 points, as the discourse enhanced algorithm classified
24.07% more of the markables correctly than the baseline whereas the solely
domain-specific classified 20.06% more markables correctly. The second highest
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Table 3.13: Domain and Discourse Context: Overview Experimental Results

classification majority class domain discourse relative
task on baseline algorithm algorithm human
corpus SRH1 precision precision precision precision
Accurate ≈ .52 ≈ .65 ≈ .66 ≈ .80
BestOf ≈ .64 ≈ .84 ≈ .88 ≈ .95
Coherent ≈ .63 ≈ .70 ≈ .71 ≈ .80

gains are, again, to be found in both experiments on Task A, where including
discourse context only raises the gain over the baseline by one point, but both
the discourse enhanced algorithm as well as the solely domain-specific one clas-
sify respectively 13.16% and 13.67% more of the markables correctly than the
baseline method. The smallest gain is found in Task C where discourse context
again raises the gain over the baseline by one point and both algorithms classify
respectively 7.3% and 8.04% more of the markables correctly than the informed
majority-class baseline. The corresponding results are shown together with the
human relative performances from the annotation experiments in Table 3.13.

The classification results presented in Table 3.13 also show that the discourse-
specific enhancement yielded a greater improvement over the domain-specific
system in the BestOf Task as compared to Tasks Accurate and Coherent. This,
however, can be regarded as a result of the underlying task-specific questions.
That is, in Tasks A and C the question of general correctness and coherence
can be considered more domain- than discourse-dependent, while choosing be-
tween rival hypotheses for determining which one is best the inclusion of prior
discourse context seems to provide valuable clues. While the data does not
support a statistical analysis of this specific difference, it has, however, become
feasible to analyze the overall gains of the experiments presented so far over their
respective baselines. As the results of the second experimental run through the
tasks are consistent - in the sense discussed above - with those of the first one,
it has been shown that in all cases gains over the majority-class baseline can be
achieved. In order to asses the overall likelihood that these six gains have arisen
by chance it is possible to estimate their so-called statistical significance, which
I will present in the following.

Analyzing the Performances

In order to analyze likelihood that the six gains presented in Table 3.13 are
statistical significant, it is possible to view the two sample sets of performances
- the baseline performances as sample A and the contextual computing per-
formances as sample B, as a so-called unpaired set [Pearson, 1939]. The sets
can be considered unpaired, as neither constitutes the classification system a
further development of the baseline approach nor would one assume them to
feature equal variances. Taking the opposite perspective, i.e. to view them as
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Table 3.14: Statistical Analysis: Domain and Discourse Results

mean performance standard median average
Sample (95% confidence deviation perfor- deviation

interval) from mean mance from median
A

baseline 59.6 5.99 63.0 4.02
performances (52.30 - 66.96)

B
classification 74.0 9.7 70.7 7.01
performances (66.71 - 81.38)

task-specific pairs, would be statistically easier. Therefore, I will examine them
as an unpaired set, given that the probability p of treating them as a pair will
be lower than in an unpaired t-test.

Generally, the t-test - paired or not - has been designed to deal with small
sample sizes by means of including a descriptive statistics report of the 95%
confidence interval corresponding to the chance that is a real mean and stan-
dard deviation that one would find given a lager sample size, of which the
observed mean and standard deviation may themselves be a deviation. Given
the two samples of performances, presented in Table 3.13 a calculation of the
corresponding unpaired t-test results in t = −3.10, given 10 degrees of freedom,
which means that the probability of these gains is p = 0.011. This probability
for assuming the null hypothesis is deemed statistically significant and based on
the standard deviations, -errors and means as well as their confidence intervals
displayed in Table 3.14. Also, as expected the resulting probability for a paired
test is even more statistically significant and amounts to p = 0.003.

Comparison Shopping

Orthogonal to the statistical significance of the results gained by this contex-
tual computing approach for scoring noisy speech recognition hypotheses, the
question whether or not these gains suffice to improve the overall system per-
formance and robustness can be examined by itself. In the following, I will
examine the contribution of this inclusion of domain and discourse context in
the light of existing scoring approaches, which are based on acoustic- and lan-
guage models that - as described in Section 3.2.1 - are learned from previously
recorded and transcribed data. As stated above and also shown in the discourse
fragment consisting of the two sequential utterances given in Example 17 and
Example 18, the central question in hypothesis verification from the point of
view of overall system performance is to determine the best hypothesis to be
selected for further processing. This, of course, corresponds to solving Task B.

(17) ich möchte auf dem schnellsten Weg von Köln nach Heidelberg
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Table 3.15: Example hypothesis verification scores

hypothesis statistical scores domain and discourse scores

Example 19 1 .32
Example 20 .52 .48
Example 21 .34 .39
Example 22 .35 .00
Example 23 .52 .71

I want on the fastest way from Cologne to Heidelberg

(18) wie komme ich in Heidelberg weiter
how can I in Heidelberg continue

In the corpus of utterances and hypotheses SRH1 the utterance, given in Ex-
ample 18, yielded the hypotheses given in Examples 19 through 23.

(19) Rennen Lied Comedy Show Heidelberg weiter
Race song comedy show Heidelberg continue

(20) denn wie Comedy Heidelberg weiter
then how comedy Heidelberg continue

(21) denn wie Comedy Show weiter
then how comedy show continue

(22) denn wie Comedy weiter
then how comedy continue

(23) denn wie komme ich in Heidelberg weiter
then how can I in Heidelberg continue

The domain and discourse-based scores together with those of the automatic
speech recognition system for the hypotheses - given in Examples 19 through 23
- are displayed in Table 3.15. The domain- and discourse score C′

best selects
Example 23 as the contextually most plausible concept structure, i.e. more
plausible than the alternative ones. This hypothesis was also labeled as the
best SRH by the annotators.

Nevertheless, please note that a direct comparison of the performance of
two computational approaches for TaskB concerns the contribution of an ex-
plicit formal context model to the high performance of the automatic speech
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Table 3.16: Performance Comparison for Task B

Classification System Precision Category
domain- and discourse model system ≈ .88 high-level context
domain model system ≈ .84 high-level context
acoustic- and language model system ≈ .84 low-level context
baseline system ≈ .64 majority-class

recognition system employed [Berton et al., 2006]. It is not to be seen as a
proposal for a substitution of one with the other. In the terminology em-
ployed herein, all approaches that match the acoustic features extracted from the
speech signal against acoustic and language models learned from training data
[Schwartz and Chow, 1990] are viewed as low-level contextual computing tech-
niques [Bunt, 2000], which can be employed variously to increase the robustness
of natural language processing systems as displayed in Table 2.2. Their perfor-
mance in this Task, as seen in Table 3.16, also exceeds the performance of the
majority-class baseline approach derived from the gold standard by .20 points
and is roughly equal that of the high-level system based on the domain model
alone - the results are displayed in Table 3.13. Only the domain- and discourse-
sensitive system exceeds it by classifying 4.19% more of the best hypothesis -
as defined by the gold standard - correctly as such.

This first analysis of the results gained in this set of experiments on noisy
speech data and their contribution within an advanced multimodal dialog sys-
tem concludes the task of hypothesis verification, presented in Table 3.2. This
task was employed as an example of noise generated by the speech recognition
systems. The reason this type of noise lies in the multiple ways in which the
features extracted from the speech signal can be mapped to lexically segmented
phoneme sequences. As shown in the experiments presented above, domain and
discourse knowledge can be employed to assist in resolving these phonetic am-
biguities that arise in the bottom-up processing of human utterances. However,
despite the significant results gained so far, several further intriguing research
questions are raised by this approach of employing contextual knowledge.

Specifically, one can ask to what extend constitute the semantic paths -
consisting of concept nodes and their semantic relations - appropriate represen-
tations of the meaning poles of the given forms. More generally, one can further
seek to entangle the dependencies between the domain model given to algorithm
and its performance. These questions concern both meaning construal and its
formal representation, which fortuitously corresponds to the second and next
challenge of those listed in Table 3.2, i.e. how to deal with the subsequent am-
biguities in semantic interpretation. I will, therefore, discuss both the specific
and general questions raised by the work presented so far in further experiments
presented in the following Sections 3.4 through 3.6.
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3.3.5 Roadmap

The six classification experiments presented in the last sections showed how con-
textual computing can be performed by recourse to ontological representations
of domain knowledge and representations of entities form the discourse model.
Specifically, they concerned the task of hypothesis verification, which was given
as an example of noise due to alternative forms generated by speech process-
ing. To further the overall examination of the possible contributions of higher
level contextual computing as for discussing the additional questions facilitated
through this approach, I will turn to the problem of ambiguity from the point of
having presumably correct forms, but multiple mappings to possible meanings.
Therefore, I will start with the well-known classification problem of word sense
disambiguation - as exemplified in the lexical ambiguities for the form bank in
Examples 1 through 2 - in the following Section 3.4.

3.4 Using Domain Context for Semantic Ambi-
guity

In the prior sections I have examined the specific gains of employing domain- and
discourse context to disambiguate alternative form representations - in the form
of speech recognition hypotheses. In this approach each hypothesis was mapped
to multiple concept sets. Each concept set constitutes a different ontology-based
representation of the potential discourse entities at hand [Byron, 2002]. Since
these concepts correspond to names of nodes in a domain model - as described
in Section 3 and Section 3.1.3 - they are connected via taxonomic isa-relations
and non-taxonomic semantic relations.

The system employed for ranking these sets of concepts selects the best
scoring concept set for a given hypothesis as the representative set for that
hypothesis, thereby discarding the other sets as inferior mappings. Please note,
that, for example, in Task B the hypothesis classified as best was the one with the
highest scoring representative concept set. In an implicit manner the selection
of a representative node set for the individual lexical forms contained in the
hypothesis constitutes a semantic disambiguation of the form at hand if that
form could have been mapped also to different nodes in the model and semantic
is employed as it is in formal knowledge representation [Gruber, 1993], which I
discussed in Section 3. This, of course, is pertinent as the algorithm employed for
the domain- and discourse-specific ranking takes - in that sense - disambiguated
- sets of concepts as input and in cases of semantic ambiguities ranks them
depending on their average pairwise semantic path-length in the given domain
model.6

I have discussed the importance of semantic ambiguity for scientific exami-
nations of natural language in Section 2.3 as well as for natural language pro-
cessing in Section 2.4. Until the advent of multi-domain spoken dialog system,

6Please note, that I will examine the importance of the semantic relations as well as the
effects of the domain model in Sections 3.5 and 3.6 hereafter.
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the problem of lexical ambiguities first and foremost constituted a challenge for
text processing applications, e.g. information retrieval systems [Weiss, 1973],
free text understanding [Sussna, 1993] as well as for evaluations of the corre-
sponding disambiguating classification systems [Edmonds, 2002]. In the follow-
ing, I will examine the selection of representative semantic representations as
such a classification task, the main difference being that our markables are not
typed, but correspond to the spoken language data as described in Section 3.2.2.
The specific question of this examination of semantic ambiguities concerns the
performance of the so far implicit selection of a correct mapping to a logical
form, i.e. the appropriate node in the domain model.

The corresponding experimental setting employs an additional corpus of an-
notated speech data to be presented below as well as the domain model described
in Section 3.1.1 to measure the reliability of the domain context-sensitive scor-
ing approach in terms of its semantic disambiguation of the individual word
senses found in the task-specific gold standard derived from the corpus. Af-
ter localizing this approach to word sense disambiguation in the state of art,
I will apply the evaluation methodology employed in Section 3.2 and describe
the task-specific contribution of a corresponding classification system for word
senses. Also, preluding the further examination of the semantic relations, an ad-
ditional employment of the hierarchical nature of the semantic slots - discussed
already in Section 3.1.3 will be presented along with the necessary algorithmic
extensions. Thereby considering the semantic specificity of the non-taxonomic
relations used for scoring the individual alternative sets of concepts that result
from ambiguous word to concept mappings.

3.4.1 The Task: Word Sense Disambiguation

As in the case of the previous tasks it is again possible to employ both learned
models derived from annotated data as well as knowledge-driven approaches to
word sense disambiguation (WSD). In WSD approaches of the past can be di-
vided into two types, i.e., data- and knowledge-based approaches. IN this case
data-based approaches extract their information directly from textual corpora
and are follow the common division into supervised and unsupervised methods
[Stevenson, 2003]. While supervised methods work with a given set of potential
classes in the learning process, e.g. stemming from a thesaurus [Yarowsky, 1992],
or hand annotated data [Weiss, 1973]. As always, supervised methods require a
manually annotated learning corpus. Unsupervised methods on the other do not
determine the set of classes before the learning process, but through analysis
of the given data by identifying clusters of similar cases, e.g. using cluster-
ing by committee [Pantel and Lin, 2003], which automatically discovers word
senses from text given large amounts of data. In the case of spoken dialogue
and speech recognition output the amounts of transcribed data are increas-
ing, still more from research projects that record and transcribe speech data
[Shriberg et al., 2004] than from commercially deployed spoken dialogue where
access to the real data is restricted for legal reasons.

Still, given the basic distinction between data stemming from written cor-
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pora7 and data from spoken dialog systems, I categorized the latter further into
controlled and conversational spoken dialogue systems in Section 1. Neither
data- nor knowledge-driven word sense disambiguation have been performed on
speech data stemming from human interactions with dialogue systems, since
multi-domain conversational spoken dialogue systems for human computer in-
teraction have not existed in the past. Now that some speech data from multi-
domain systems have become available, experiments have been performed on
that data ranging from anaphora resolution [Strube and Müller, 2003] via do-
main recognition [Rüggenmann and Gurevych, 2004a] to the annotation and
classification experiments for the sense disambiguation discussed below.8

For this disambiguation task, i.e. Task D, the underlying question was to
what extend the knowledge-based method for computing a domain-specific rank-
ing described in Section 3.2.3 disambiguates correctly between alternative in-
terpretations, i.e. concept representations, of a given recognized utterance at
hand. For example, in speech recognition hypotheses containing forms of the
German verb kommen, i.e. (to) come, the scoring approach described above ob-
tains different sets of concepts - in one case the form kommen is mapped to the
concept MotionDirectedTransliteratedProcess, which corresponds to the motion
sense of the word or a WatchPerceptualProcess in the showing sense - given the
vocabulary of the labeled nodes from the domain model.

Prior knowledge-based approaches have employed both lexical recourses as
well as formal ontologies. The kind of knowledge therefore varies between more
and less light-weight machine-readable domain models. In that respect the
knowledge-based approach employed herein also has been tested with an ontol-
ogy that is partially derived from lexicographic analysis found in the FrameNet
data [Baker et al., 1998] as described in Section 3.1.3. In that respect compara-
ble approaches employed WordNet as a lexical [Miller et al., 1990, Sussna, 1993,
Voorhees, 1993]. Both employed taxonomic distances via hypernymy and syn-
onymy and other relations, where modeled, between a number of input lexemes.
Their disambiguation results on textual data also turned out to be significantly
better than chance. Given the speech data described in Section 3.2.2 to be
annotated with corresponding word senses taking from the ontological vocabu-
lary I will possible to asses how the contextual computing system described in
Section3.2.3 fares as a word sense classification system on a corpus of speech
recognition hypothesis. Therefore, I will present the corresponding results based
on the same method and metrics as in the corpus-based evaluations employed
in the prior tasks.

7In that respect data-driven WSD was applied to various tasks, such as machine translation,
information retrieval, content and grammatical analysis [Ide and Veronis, 1998] and other
specifically designed collections of documents, as in the case of the SENSEVAL word sense
disambiguation competition [Edmonds, 2002].

8It should be mentioned that prior WSD work on generation of spoken language exists with
regards to finding correct phonetization of words in the field of speech synthesis where both
supervised and unsupervised machine learning techniques were employed [Yarowsky, 1995].
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Table 3.17: Domain Corpus - WSD1

Corpus Name WSD1

Data Collection Wizard of Oz Test
Subjects 224
User Utterances Transcribed/Annotated - turns 3100
Ambiguous Markables - SRH 2225

3.4.2 The Data: Collection & Annotation

Firstly, an annotation of the speech recognition hypotheses had to be performed
to provide a gold-standard for evaluation as well as for the baseline computation.
For this separate human annotators sense-tagged the data stemming from log
files of the automatic speech recognition system, implemented in the SmartKom
system [Wahlster et al., 2001], introduced as corpus SRH1 in Section 3.2.2. To
characterize this data from the point of view of sense disambiguation it is im-
portant to point out that there are notable differences between disambiguating
spontaneous speech and texts, i.e., a smaller size of processable discourse context
as well as hesitations, disfluencies and speech recognition errors.

Existing spoken language understanding systems can produce syntactic and
semantic representations for multiple domains, e.g. the production system ap-
proach described by [Engel, 2002] or unification-based approaches described by
[Crysmann et al., 2002], have shown to be more suitable for well-formed in-
put but less robust in case of imperfect input. For conversational and reli-
able dialogue systems that achieve satisfactory scores in evaluation frameworks
[Walker et al., 2000, Beringer et al., 2002] as described in Section 2.5, robust
methods for disambiguating the sometimes less than ideal output of the large
vocabulary spontaneous speech recognizers are, therefore, quite desirable.

In order to find a sufficient number of ambiguous markables new data set
WSD1 was taken from another corpus of SmartKom data that featured sev-
eral additional domains, such as electronic program guide for TV and cinema
information as well as assistance domains such as reservation or seating that
were not given in corpus SRH1. By means of the Wizard-of-Oz paradigm
[Francony et al., 1992] a set of experiment were performed - where a full-blown
multimodal dialogue system was simulated by a team of human hidden operators
- with 224 subjects that produced 448 dialogues [Schiel et al., 2002]. After man-
ual segmentation of the data into utterances corresponding to single intentions,
e. g. a route or sight seeing request, the resulting audio files were transcribed.
Then, the segmented audio files were again given to the speech recognition
engine integrated in the dialogue system [Wahlster, 2003]. The corresponding
speech recognition word lattices [Oerder and Ney, 1993] were transformed into
n-best lists of speech recognition hypotheses. For obtaining the data set WSD1

a random sample of 3100 utterances was taken for the annotation experiment
as displayed in Table 3.17, which contained 2225 ambiguous markables. Again,



3.4. USING DOMAIN CONTEXT FOR SEMANTIC AMBIGUITY 87

Table 3.18: Task TD Disambiguation - Annotation Experiment - WSD1

Data Source Corpus WSD1

Task Classification Values Human Performance
TD word senses precision ≈ .79

.

the utterances containing no ambiguous forms could have been removed from
the corpus, however, since all performance measures in this case are based not
on the utterances as markables, but on the ambiguous forms, they do not affect
them. Additionally, the corpus will, again, be employed further.

The annotation of the data was done by two persons specially trained for
the annotation tasks, again with the purposes of, firstly, assessing relative hu-
man performance in terms of measuring inter-annotator reliability. Secondly,
another gold-standard is needed for this task to evaluate the classification sys-
tems’ performance. For that purpose, the annotators reached an agreement on
annotated items of the test data on which they had differed in the first place.
The resulting gold-standard, therefore, represents the highest degree of correctly
disambiguated data employable for comparison with the tagged data produced
by the disambiguation system.

Task D: Annotator Performance

As in the case of Task B a class-based kappa statistic cannot be applied here, as
the classes vary depending on the number of mapping per ambiguous form to
the ontology. For the annotation task, corresponding forms where automatically
generated and displayed to the annotators [Müller, 2002]. Also an additional
class, i.e., not-decidable was allowed for cases where it is impossible to assign
sensible meanings. The WSD1 data set altogether was annotated with 2225
markables of ambiguous tokens, stemming from 70 ambiguous words occurring in
the test corpus. Concerning the question whether humans are able to annotate
the data reliably or not, the former is the still case despite the problematic
nature of the data, as shown by the resulting inter annotator agreement of
78.89%. This measure can also be regarded as the relative human performance
introduced in Section 3.2.2 and is shown in Table 3.18.

3.4.3 The Algorithm: Scoring Word-Sense Ambiguities

As before, the classification system performs a number of processing steps as
described in Section 3.2.3: the first preprocessing step is to convert each SRH
into a concept set (C). For that purpose the system’s lexicon can be used,
which contains either zero, one or many corresponding concepts for each entry.
A simple vector of concepts - corresponding to the words in the SRH for which
entries in the lexicon exist - constitutes each resulting set. All other words with
empty concept mappings, e.g. articles, are ignored in the conversion. Due to
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Table 3.19: Example mappings of forms to concept labels

Linguistic Forms Labels of Concepts
Ich Person
bin StaticSpatialProcess

SelfIdentificationProcess
NONE

auf TwoPointRelation
Philosophenweg Location

Table 3.20: Example alternative concept sets

C1 {Person, StaticSpatialProcess, Location}
C2 {Person, StaticSpatialProcess, TwoPointRelation, Location}
C3 {Person, SelfIdentificationProcess, Location}
C4 {Person, SelfIdentificationProcess, TwoPointRelation, Location}
C5 {Person, TwoPointRelation, Location}
C6 {Person, Location}

lexical ambiguity under scrutiny herein, i.e. the one to many word - concept
mappings, this processing step yields a set I = {C1, C2, . . . , Cn} of possible
interpretations for each hypothesis.

(24) Ich bin auf dem Philosphenweg
I am on the Philosopher’s Walk

For example, the words occurring in example utterance given in Example 24
feature the word-specific mappings to the nodes of the domain model that are
shown in Table 3.19. Herein all forms with a single mapping - in this example
they are Ich (I), auf (on) and Philosophenweg (Philosopher’s Walk) - are not
considered as markables. Only forms with multiple mapping such as bin consti-
tute markables to be tagged with the respective concept labels as the attribute
word sense. In this case bin is mapped either to StaticSpatialProcess - which is
the appropriate sense - it is also mapped to SelfIdentificationProcess and None
meaning it is understood as a self referential as in Ich bin Robert (I am Robert)
or as a grammatical marker, e.g. marking perfected processes in German.

The task of the scoring algorithm presented in Section 3.2.3 is to assign a
domain context-specific value to each possible interpretation in the set I. If the
highest scoring concept set Cs contains the correct sense of the ambiguous form
as defined by the gold standard, then a correct classification of the word sense
has been performed. Due to the multiple concept mappings for the form bin the
resulting set of concept representations I for Example 24 is shown in Table 3.20.
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Please note that the individual concept representations can consist of a dif-
ferent number of concepts, as the mapping to None is not represented in the
individual conceptual representations. As mentioned above, the mapping None
is assigned to lexemes which constitute potential functional grammatical mark-
ers, however, this is not to say that there no other potential senses, than the
mappings specified for the SmartKom domains. As a matter of fact, numerous
other senses - stemming from other domains - could be added and - due to lan-
guage use and change - new mappings can arise dynamically and become more
or less entrenched in a community of speakers [Langacker, 2000] as well as in
communities of language learning agents [Steels, 1998a, Steels, 1998b]. Never-
theless, since the collected language data that produced the corpus WSD1, con-
tains no out-of-domain utterances or require novel construals in the in-domain
ones from the point of view of the domain model used to classify the meanings
that occur in the data, it would hardly make sense to include them or allow for
their dynamic inclusion at this point.

As in the previous experiments, the classification system converts the do-
main model, i.e. the ontology described in Section 3.1.3, into a directed graph
with concepts as nodes and relations as edges. In order to find the shortest
path between two concepts and score their semantic connectivity the algorithm,
shown in Section 3.2.3, was employed and also fitted with a new addition. Please
note again, that the ontology employed for the evaluation bases on a generic
top-level ontology and a modeling of Processes and Physical Objects as a kind
of event that is continuous and homogeneous in nature, The semantic relations
base on the frame semantic analysis used for generating the FrameNet data
[Baker et al., 1998]. The hierarchy of Processes is connected to the hierarchy
of Physical Objects via slot-constraint definitions herein referred to as semantic
relations.

Given the importance of semantic relations for calculating their degree of se-
mantic connection in this approach and the fact that these relations are modeled
in a so-called slot-hierarchy themselves, it is possible to assign different weights
to the individual relations found by the algorithm, depending on their level
of granularity within the relation hierarchy. That means, for the top relation
has-role a weight of 0 is assigned, for all direct sub-relations of that relation
a weight of −1 is assigned, consequently the weight is decremented by 1 for
each further decent down the relation- or slot-hierarchy, i.e. a weight of −2 the
sub-sub-relations of the top one, −3 for the sub-sub-sub-relations and so forth
until the lowest branch of the tree has been reached. For example, a broad
level relation such as has-theme, as found in the class statement of Process, is
weighted with −1 as it has only one super-relation, i.e. has-role, whereas a more
specific semantic relation, such as has-actor, is weighted with −4 because it has
four super-relations, i.e. has-artist, has-associated-person(s), has-attribute and
has-role, in the hierarchy.

As before, the algorithm selects from the set of all paths between two con-
cepts the one with the smallest weight, i.e. the cheapest. The distances between
all concept pairs in CR are summed up to a total score. Note, that more specific
relations subtract more then less specific ones from the aggregate score. The
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set of concepts with the lowest aggregate score represents the combination with
the highest and most specific semantic connectivity with respect to the domain
model. Following an assessment of the baseline performance for this task, I will
present the classification results gained by employing both the original scor-
ing approach employed so far as well as the approach including the described
weights for the semantic relations found between the concepts.

3.4.4 The Results: Word Sense Disambiguation

For this evaluation of algorithm the dataset of corpus WSD1 - presented in
Table 3.17 was employed. Based on the double human annotations - presented
in Table 3.18 - for the given classification task, a corresponding gold standard
was crafted via inter-annotator negotiations. Given this gold standard mark-up
for the Tasks Disambiguation (TD), a corpus-based computation of a baseline
metric has again become feasible, as I will describe below.

Task D: Baseline Performance

In order to stay consistent with the methodological framework employed herein,
a proportional majority class baselines can be computed as described in Sec-
tion 3.2.4 . Hereby, all markables in the gold-standards were counted for com-
puting the total number of values for a markable as defined as in Formula 3.6.
Based on this the most frequent attribute for that markable is computed as
shown Formula 3.8. Finally, it is possible to compute the task-specific pro-
portional baseline as defined in Formula 3.9 This approach, then, yields the
percentage of correctly chosen concepts by means of selecting the most frequent
meaning without the help of a system as described in Section3.2.4. This ap-
proach manages to tag 52.48% of the markable correctly, as defined by the gold
standard, resulting in a baseline performance of ≈ .52 for corpus WSD1.

Task D: Classification Performance

The percentage of correctly disambiguated lexemes from both systems is calcu-
lated as given in Formula 3.10.

R =
g + n

w ∗ 100
(3.10)

Where R is he result in percent, g the number of lexemes that match with the
gold-standard, n the number of not-decidable ones and w the number of total
lexemes. As both systems never score not-decidable, any chosen concept is scored
positively for these cases equally for all approaches. Again, for this evaluation
a score was computed for each concept set in I using Formula 3.4 with the, by
now, standard setting of discarding hypotheses whose word-to-concept ratio is
above 3. The concepts in the highest ranked set are considered to be the ones
classified as the correct word sense in this context by the system.

Keeping in mind that in this approach the relations between two concepts
are weighted Dmax for solely taxonomic relations among concepts and 1 for each
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Table 3.21: Results Word-Sense Disambiguation - Classification Experiment

classification majority domainO domainV relative
task on class baseline algorithm algorithm human
corpus WSD1 precision precision precision precision
Disambiguation ≈ .52 ≈ .64 ≈ .65 ≈ .79

semantic relation connecting them. The alternative approach described above
assigns each relation an individual weight according to their level of general-
ization. Compared to the gold-standard of task TD, the first approach already
classified 63.76% of the markables correctly, yielding a precision of ≈ .64. Ad-
ditionally a similar gain over the baseline can be reported for the alternative
approach, which classified 64.75% of the markables correctly, yielding a precision
of ≈ .65. While the alternative approach brought only a slight gain by inter-
preting about 20 lexemes more - out of the 2225 ambiguous ones contained in
the data - than the original version, both the original domainO and the variant
domainV systems managed to exceed the baseline performance of ≈ .52 by .12
and .13 points respectively, as shown in Table 3.21. Again, these classification
results fall .15 and .14 points short of the relative human performance of ≈ .79.

Analyzing the Performances

Looking at these results as an additional examination of the contribution of
contextual domain and discourse knowledge as compared to an informed ma-
jority class baseline, it is possible to add these classification and baseline results
to the respective samples A and B for which a statistical significance test has
been performed and described in Section 3.3.4. Given these increased samples of
performances, i.e. those presented in Table 3.13 and Table 3.21, a calculation of
the corresponding unpaired t-test results in t = −3.52, given now 14 degrees of
freedom, which means that the probability of these gains drops even below that
of p = 0.011 reported for the hypotheses verification gains alone to p = 0.003.

At the end of Section 3.3.4 I posed several question that constituted the onset
of this examination. The first concerned the amount of correct word to concept
mappings found in the best scoring concept set, which - as described above -
can be considered significantly above the majority class baseline performance
seen together with the prior already significant gains of this approach. Having
examined this first questions, the next question in line concerns the amount
of correct semantic relations found in the network connecting the individual
concept pairs of the best scoring concept set. This second specific question will
be examined in the next section of this chapter, i.e. Section 3.5 below, followed
in Section 3.6 by an analysis of the more general question concerning the role
of the domain model that serves as a representation of that type of context for
the experiments presented herein as well as vice versa.
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3.5 Using Domain Context for Relation Extrac-

tion

The findings presented in Sections 3.2, 3.3 and 3.4 based on an approach to
employ domain- and discourse context to rank alternative form representations
of a speaker’s utterance - presented to the system as multiple speech recognition
hypotheses of that utterance. Hereby, each hypothesis was mapped to multiple
concept sets as a result of lexical ambiguity. As described above, the system
employed for ranking of sets of concepts bases on the average path length be-
tween all concept pairs as defined in Formula 3.4, whereby the best scoring
concept set for a given hypothesis is taken as the representative set for that
hypothesis. As pointed out this implicit selection of a representative node set
for the individual lexical forms contained in the hypothesis can be regarded
as performing a semantic disambiguation task of the ambiguous forms at hand.
Concerning the corresponding question of the system’s performance on this task,
an examination thereof has been presented above in Section 3.4 yielding results
that reinforce the significance of the gains achieved in the experiments on noisy
speech hypothesis when put together in an unpaired t-test.

Nevertheless, I have also noted that, next to the specification of an appropri-
ate concept mapping, the semantic relations that hold between the individual
concept pairs are extracted from the ontology thereby creating the noted seman-
tic paths that consist of nodes connected via the extracted semantic relations.
This, in turn, poses the corresponding performance question when assuming
this as a relation extraction task for the system, given that a corresponding
disambiguation - as discussed above have taken place. Additionally, looking at
these specific questions concerning the adequacy of the node concepts and the
relational arcs between them a more general question concerns the dependencies
between the domain model and the algorithm and its performance results. Es-
sentially, this general question can be paraphrased by asking what if the domain
model employed would have featured other conceptual class divisions and cor-
responding mappings to lexical forms or if other semantic relations would have
been modeled. In other words one can even ask what it say about the domain
model, i.e. the formal knowledge representation [Gruber, 1993] of the contextu-
ally evoked domain, that some incorrect concept mappings and - as I will discuss
below - some incorrect relations are found in the best scoring semantic paths.

In the following, I will, therefore, first present an examination of relation
extraction and the corresponding system performance in addition to the dis-
ambiguation and the noise-related classification tasks discussed above. Then,
concluding this analysis of domain and discourse context, I will examine the
question how these results reflect back onto the given model of domain and
discourse knowledge. Furthermore, as I will discuss below, this reflection of the
faults of the model - seen in the mirror of the obtained performance results - in
turn raises the more general question if such task-specific evaluations could also
be employed to the benefit of the given representation of the context at hand.
While the first question can be approached on the basis of the methodology
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employed before, the latter one requires new methodological and analytic con-
siderations, which I will present after discussing the remaining task of relation
extraction, as Task E in the following section.

3.5.1 The Task: Relation Extraction

The task of extracting the semantic relations from a domain model that are then
regarded to hold between the entities denoted by the given forms, is compara-
ble to work on role-labeling [Gildea and Jurafsky, 2002, Màrquez et al., 2008].
Moreover, in the case of the initial work performed by Gildea and Jurafsky
(2002), the set of role labels used corresponded to so-called frame roles found in
the annotated FrameNet corpus [Baker et al., 1998], which, as described in Sec-
tion 3.1.3 also served as a role model for the relation hierarchy employed herein.
Role-labeling has meanwhile also been employed to support other natural lan-
guage processing tasks, ranging from coreference resolution to question answer-
ing [Ponzetto and Strube, 2006, Shen and Lapata, 2007]. Additionally the task
discussed herein features similarities to the scenario template task of the Mes-
sage Understanding Conferences [Marsh and Perzanowski, 1999]. In this case
predefined templates are given, e.g. is-bought-by(COMPANY A,COMPANY
B), which have to instantiated correctly, e.g. in the phrase such as given in Ex-
ample 25 the specific roles, i.e. Polygram as COMPANY B and Island Records
as COMPANY A have to be put in their adequate places within the overall
template.

(25) Polygram has bought Island Records (BNC:A1E 465)

Relation extraction, as such, primarily refers to corpus- and pattern-based
approaches for extracting semantic- [Hearst, 1992, Cimiano et al., 2005] or taxo-
nomic relations [Rosenfeld and Feldman, 2006, Blohm et al., 2007] from natural
language texts for, by and large, semi-automatic ontology learning. Again, con-
text in these approaches bases on co-occurrences of lexical items and syntactic
parse trees [Gildea and Jurafsky, 2002, Zhou et al., 2007] available for textual
data. Given the semantically annotated data described above, stemming from
multimodal interaction with a Wizard-of-Oz-based conversational multi-domain
dialogue systems, it is possible to perform parts of the empirical evaluation
experiments as undertaken above. This examination will, again, include a cor-
responding annotation- and classification experiment as a further performance
evaluation of the contextual computing approach as a relation extraction sys-
tem.

3.5.2 The Data: Collection & Annotation

For this annotation task only a tenfold of the WSD1 data set was employed.
These 10% were taken from the hypotheses that had been identified as being the
best - given the approach described in Section 3.2.1. This provided 977 non-
taxonomic semantic relations posited between the concepts contained in the
respective sets as markables extracted by the system. Please note, that - as in
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Table 3.22: Domain Corpus - REL1

Corpus Name REL1

Data Collection Wizard of Oz Test
Best Speech Hypotheses Annotated - 200
Initial markables - Relations 977

the case of Example 26 below - there can be a chain of relations connecting two
given concepts, the ramification of which I will discuss below in Section 3.5.3.
An overview of the resulting corpus, REL1, and the initial markable set is given
in Table 3.22.

For these utterance-based representations of the semantic relations that
predicate the concepts that are part of the ontology’s event hierarchy the ques-
tion arises concerning an appropriate annotation scheme for labeling the se-
mantic relations. As I will discuss below, incorrect relations could be ones that
are extracted instead of the correct one, ones that are missing and ones that
are superfluous. Also, let me note the first, but not the last, of the differences
in this examination, which stems from the fact that the annotators were given
the relations extracted by the system as markables, instead of annotating raw
data with the same values as the system will. As this also has a methodological
bearing for measuring the corresponding system performance, I will introduce
the annotation scheme devised along with its consequences for the evaluation.

Methodological Metric

For evaluating the performance of the system I defined three types of values
for labeling incorrectly extracted relations and one for correct ones. The four
resulting values to be attributed to the markables were:

• deletions, i.e. missing relations in places were one ought to have been
identified;

• insertions, i.e. postulating any relation to hold where none ought to have
been;

• substitutions, i.e. postulating a specific relation to hold where some other
ought to have been;

• identifications, i.e. if the correct semantic relation (role) was extracted by
the system for the corresponding concept pair.

The first three values, deletions, insertions and substitution constitute a
transfer of the word error rates employed in speech recognition. Since they were
described in Section 2.5 I will proceed to exemplify their application in this
domain.
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Table 3.23: Task TE Extraction - Annotation Experiment - REL1

Data Source Corpus REL1

Task Classification Values Human Performance
TE {substitution,deletion,insertion}- precision ≈ .80

identification
.

An example of a substitution error in this task-specific annotation scheme is
given the hypothesis shown in Example 26.

(26) wie komme ich von hier zum Schloss
how come I from here to castle

In this case the sense disambiguation - described in Section 3.4 was accurate,
so that the two ambiguous entities, i.e. kommen (to come) and Schloss (castle),
were correctly mapped onto a MotionDirectedTransliterated-process and a Sight-
object - the remaining concept Person resulted from an unambiguous word-to-
concept mapping for the form ich (I). The error in this case was the substitution
of the appropriate has-goal relation with the extracted relation has-source, as
depicted in Figure 3.6.

As a special case of substitution the annotators were instructed to count
those cases as inaccurate where a relation chain was selected by the algorithm.
While in principle such chains, e.g. metonymic chains are possible and in some
domains not infrequent, in the still relatively simple and short dialogues that
constitute corpus REL1 they do not exist. Therefore cases, such as the semantic
path between WatchPerceptualProcess and Sight shown in Example 27 were also
counted as substitutions, because simpler ones should have been extracted or
modeled, as shown in Figure 3.7.

(27) ich will das Schloss anschauen
I want to see the castle

The annotators were instructed to mark deletion errors in such cases where
a gold standard annotation of all concept pairs should have extracted a relation,
e.g. if no semantic path and WatchPerceptualProcess and Sight in the case of
the Example 27 would have been extracted as depicted in Figure 3.8 . This
mark-up requires the same understanding of the domain-specific meaning of
the utterances as in the opposite case, where annotators had to mark insertion
errors, i.e. where any semantic path, e.g. between [Agent] and [Sight] in Exam-
ple 27, were extracted by the system as shown in Figure 3.9. The inter-annotator
agreement on this task amounted to 79.54%, shown as the relative human per-
formance in Table 3.23 given the values substitutions, deletions, insertions and
identifications.
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Table 3.24: Results Relation Extraction Experiment

extraction majority domain relative
task on class baseline algorithm human
corpus REL1 precision precision precision
Extraction not applicable ≈ .76 ≈ .80

3.5.3 The Results: Relation Extraction

The data for this evaluation was produced by the system described in Sec-
tion 3.4.3 from which a subset was turned into a gold standard for this experi-
ment, using the annotation scheme described above. Other than in the previous
settings the creation of a gold standard through corrective annotation using this
scheme slightly changed the number of markables. This is the case as each dele-
tion error calls forth an - as of yet unspecified - semantic path as a markable
that could be a correct identification, which was left blank by the system. On
the other hand semantic chains that were conflated in the annotation into a
singular relation, as in the case of the substitution error given in Example 27,
reduces the number of markables. As a result the gold standard corpus con-
tains four markables less than given in Table 3.22 displaying the initial count
of semantic relations extracted by the system, due to the fact the there were
four more conflations than deletions, as I will show below. The performance
data, therefore, is based on 973 markables, representing - as before - the ideal
solution.

As compared to this gold standard 76.31% of the relations extracted by
the system correctly identified the semantic relation between the concepts -
using the system and settings described in Section 3.4.4. In 23.69% of the
cases one of the three extraction errors was found by the annotators. I will
discuss and examine the distribution of these specific error types in Section 3.6.
For concluding this specific examination of the relation extraction performance,
another difference in this evaluation as compared to the previous ones needs
to be noted first. This difference concerns the calculation of a corresponding
baseline. In the case of TaskE a computation of a corresponding majority class
baseline has been thwarted, as this baseline approach requires to compute how
many markable tokens assume the most frequently given value as compared
to the rest of the tokens. In this case, the annotators were deliberately not
asked to determine alternative semantic relations for the incorrectly extracted
ones, which would have involved delving deeper into the given ontology and its
engineering principles, than feasible for an annotation task. Given the difficulties
in calculating the needed token-based frequencies and determining the markable-
specific values, in terms of specific alternative relations and their distribution,
this performance result of a precision of ≈ .76, as shown in Table 3.24 cannot
be included in the statistical analysis of the respective gains over majority class
baselines presented in Sections 3.3.4 and 3.4.4.
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Performance Reflection

However, both the performance of the system in this task as well as that of
the annotator be seen especially encouraging in several respects. For one it
shows, that over three quarters of the semantics paths - on which the algo-
rithm described in Section 3.2.3 substantially bases its computation as shown
in Formula 3.4 - are reliably regarded to identify the correct semantic relation
between the given concepts in that context. While direct comparisons with the
prior experiments might be misleading due to the differences inherent this ex-
perimental setting, a more intriguing perspective arises in the analysis of the
remaining quarter, which - as stated above - is motivated by the corresponding
question how much these specific errors reflect shortcomings of the model used
in the evaluations rather than in the algorithm for scoring the sub-graphs ex-
tracted from that model. In the following Section 3.6, I will, therefore, discuss
this final question regarding the explicit formal model used to represent domain
and discourse context below in Section 3.6 before concluding this chapter.

3.6 Evaluating Domain Context

The reliance on an existing ontological model of domain knowledge - as pointed
out above - on which the findings presented in Sections 3.2, 3.3, 3.4 and 3.5
hinge, raises the question of how to evaluate such representations of domain
context. I, now, address this question providing new methodological and ana-
lytic considerations regarding the possibility to evaluate the quality of a given
explicit context model.

The need for the establishment of evaluation methods that can measure
respective improvements or degradations of ontological models, e.g. yielded by
a precursory ontology engineering stage - be it manual development or automatic
learning - is undisputed. I will, therefore, present an methodological framework
that - in principle - allows to evaluate a number of different domain models in
terms of their performance on specific tasks.

The resulting task-based approach for quantitative ontology evaluation also
opens the door for a bootstrapping approach to ontology engineering. This ap-
proach relies on the fact that tasks commonly feature a so-called gold-standard
defining perfect performance, as discussed above. By selecting ontology-based
approaches for the respective tasks, the ontology-dependent part of the per-
formance can, theoretically, be measured. Following a general presentation of
this approach, I will how the results of the prior experiment, discussed above in
Section 3.5.3, can be re-cast as an evaluating of the context model used.

Moreover, as the employment of ontologies has gained in importance for
the development of intelligent systems, services and applications, questions con-
cerning their evaluation also moved correspondingly into the foreground. In
the area of natural language processing alone, for example, ontologies have suc-
cessfully been used to represent pertinent domains of interest and to provide
knowledge for variety of tasks as described in Section 3.1, including - now -
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those described in Sections 3.2 through 3.5. Broadening the perspective, such
formal model have also been used for authoring natural language processing sys-
tems, e.g. for defining interface specifications of multi-domain dialogue systems
[Gurevych et al., 2003a].

Even higher up, ontologies constitute an integral part of the Semantic Web
[Berners-Lee et al., 2001] and numerous other projects. I have discussed their
formal properties and benefits in Section 3.1.1. Yet, many well-known problems
remain. Two critical issues concern:

• the knowledge-acquisition bottleneck, where ontology learning and popu-
lation come into play [Buitelaar and Magnini, 2005],

• the lack of formal means for evaluating the fitness of a given ontology or an
ontology improvement in light of the task at hand [Gangemi et al., 2005].

The next and last task, therefore concerns the contribution of the work presented
above on assessing the fitness of the underlying domain model for a given task.

3.6.1 The Task: Evaluating Ontological Fitness

For this task, I will follow the general distinction between qualitative and quan-
titative ontology evaluation [Brewster et al., 2004] and between descriptive and
revisionary ontologies [Gangemi et al., 2001]. In the proposed framework to
perform quantitative evaluations of descriptive domain models9, which can also
serve in ontology engineering as a form of incremental ontology improvement.

The underlying question in the proposed quantitative evaluation can be ex-
pressed by asking how fit a given ontology is for a well-defined task. In the
same vein, any ontology change, which transforms an ontology from a state 0n

into On+1, can only be considered successful if the resulting ontology On+1 is
fitter than On in some tangible respect, which - as argued herein - can be an
ontology-dependent task performance. Herein fitness is, therefore, employed in
a straight-forward sense: if an ontology is to be used for a given task, e.g. scor-
ing based on domain context as described in Section 3.2.3 - it can be used to
perform better or worse, being fitter or less fit for it in a measurable way.

In order to measure different degrees of fitness, possible in case where the
performance depends on the ontological model, the algorithmic side of the equa-
tion ought to be constant throughout an evaluation. A specific evaluation suite
should therefore, be selected such that the measurable output concerning the
given task depends as much as possible on the ontology used. It is important to
point out that the type of ontology evaluation proposed herein can be carried
out only with respect to a given task at hand, which the specific ontology has
to solve. A task-independent automatic evaluation still remains an elusive goal

9In principle, the framework introduced herein should also be applicable to revisionary
ontologies, but the experiments as well as the corresponding foci have rested on descriptive
ontologies so far.
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for which a general solution awaits discovery [Guarino and Welty, 2002].10 The
central methodological focus of this evaluation, therefore, lies on examining the
feasibility to test and incrementally augment - i.e., successfully increase their
fitness - ontologies given a well-defined problem based on a evaluation gold-
standard. It is also feasible to elevate the test to a higher level of generality, by
crafting benchmark tasks that are representative of a specific classes of problems.

The general evaluation framework introduced herein can encompass all of
the ontological levels introduced below. Specific evaluations, however, could
also examine an ontology on one or more of the following three basic levels
independently:

• the fit of the vocabulary, i.e. usefulness of the ontology classes or concepts;

• the fit of the taxonomy, i.e. the usefulness of the isa hierarchy;

• the fit of the non-taxonomic relations, i.e. the usefulness of the semantic
relations.

In principle, aggregate evaluations combining the various levels are also pos-
sible. More importantly, however, for this work is the proposal that meaningful
transfers of the commonly used error rates - i.e. insertions, deletions and sub-
stitutions - exist for the domain of evaluating and populating ontologies, as
discussed above in Section 3.5.1. As described in Section 2.5, these error rates
are commonly used in automatic speech recognition [Jurafsky and Martin, 1991]
and have been proposed as well as for evaluating the performance of concept-
and relation taggers [Higashinaka et al., 2002, Gildea and Jurafsky, 2002].

The need to develop a clear set of evaluation methodologies is also widely
acknowledged [Guarino, 1998], whereby the qualitative type of evaluations ba-
sically relies on user or expert judgments [Gomez-Perez, 1999]. Hereby it is
left open whether ontology engineers, system users or domain experts ought to
be the judges. Additionally, to judge ontologies in terms of the principles on
which their design has been based also bases on criteria defined by the external
semantics which, again, has to be evaluated by human experts. There are even
more general problems have been discussed that arise from such principle-based
approaches [Wilks, 2002].

Since the concern of this section is on quantitative evaluation for mea-
suring the performance of an ontology for a given task, I will not discuss
the valuable work on measuring similarities between ontologies [Hovy, 2001]
or evaluating a given ontology against a pre-defined ontological gold-model
[Maedche and Staab, 2002]. However, as I will discuss below, the potential on-
tology improvement that - in a sense - falls out of this evaluation is comparable
to prior approaches to ontology learning and population with respect to the ba-
sic levels proposed above [Stevenson, 2002a], since it also enables an evaluation

10Task-independent evaluations might even be impossible in principle, as it is widely ac-
knowledged that ontology engineering and employment has many task-dependent features and
constraints, which can be considered as taking an interactional point of view in the sense of
Dourish (2001).
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of the fitness of ontological models for each level respectively and is independent
from the automatic or manual means by which the ontology was crafted. The
work presented herein is, moreover, in principle related and in perfect agreement
to that of Brewster et al. (2004), who state that:

The establishment of a clear set of simple application suites which
would allow a number of different ontologies to be slotted in, in
order to evaluate the ontologies would be an important research
step. [Brewster et al., 2004]:2

In this work, they provide a data-driven approach that enables an ontology
evaluation against given textual corpora. Employing this promising approach
they also arrive at a measure for ontological fit. This constitutes a measure
of vocabulary overlap between the concepts contained in a given ontology and
the terms extracted, by means of a latent semantics-based clustering algorithm
[Foltz et al., 1998], and expanded by means of a two step hyponym WordNet
look-up. The necessary alignment or mapping between concepts and terms
is performed by manual annotation11. For measuring the taxonomic fit the
authors employ WordNet distances [Stevenson, 2002b], thereby, hitting on the
so-called tennis problem [Hayes, 1999], that refers to the finding that some terms
in WordNet are further apart than expected due to their dispersal by type.

On top of that, an ontology provides more than a vocabulary of entities
and their generalization hierarchy. A substantial amount of its expressive and
inferential capabilities (at least for natural language processing applications -
as shown above - lies in the non-taxonomic relations that hold between the
concepts. For evaluating this aspect of an ontological model no solution has
been proposed so far. I will, therefore, examine the feasibility to fill this gap by
the proposed performance- or task-based evaluations that can yield measures
of how fit the vocabulary, taxonomy and the non-taxonomic relations are for a
given task at hand.

Methodological Framework

In the following, I will sketch out the necessary elements that are needed for
TaskF examining the fitness of given domain models. That is, to define the
scope of the experiments, a metric for evaluating ontologies and a list of in-
gredients for performing corresponding ontology evaluations. As shown in Ta-
ble 3.25, the classical scope of ontology learning and population approaches can
be regarded as constructive learning, wherein new concepts and relations are
learned. Employing the error rates introduced herein, this surmounts to reduc-
ing the amount of deletion errors. In prior work an additional distinction is
made between ontology learning and population in case of learning instances.
In both cases iterative additions are made - by means of some learning approach
- to an initial ontological state On and a resultative state On+1.

11Unfortunately, the authors do not provide a measure for inter-annotator agreement on
this task, which, as the data presented in Section 3.4.2 show is also not a trivial task.
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Table 3.25: Scope of ontology learning (X denotes coverage and O the opposite)

levels - errors insertion errors deletion errors substitution errors
vocabulary O X O
isa relations O X O
semantic relations O X O

More importantly, however, I propose regard ontology improvement to in-
clude not only forms of constructive learning, but also - what could be considered
- destructive learning for removing superfluously inserted entities and corrective
learning operations for substitutions as well. Correspondingly, the scope of on-
tology learning and population is not limit to that of inserting new entries, but
also can include acts of deleting existing parts and performing corrective substi-
tution operations. An appropriate general term that covers additive, subtrac-
tive and other substitutive operations might be ontology crafting. Regardless of
naming conventions an expressive metric is needed for evaluating ontologies or
the potential improvements brought about by specific crafting operations.

Evaluation Metric

In the past different learning and population approaches were applied respec-
tively for the three basic levels of vocabulary (level 1), taxonomy (level 2) and
(non-taxonomic) semantic relations (level 3), as shown in Table 3.26 . In much
the same way these levels have been subject to independent evaluation ap-
proaches (for an overview see also Table 3.26). For the evaluation and popu-
lation framework described herein, I propose that the notion of error rates -
common in evaluations of automatic speech recognition performance as word
error rates [Jurafsky and Martin, 1991], but also known from previous work on
concept tagging as concept error rates [Higashinaka et al., 2003] and discussed
in Section 2.5.2 and applied in Section 3.5 - can, furthermore, be transferred for
evaluating each of the ontological levels displayed in Table 3.27.

Therefore, the results of a task-based evaluation should display the following
shortcomings:

• insertion errors indicating superfluous concepts, isa- and semantic rela-
tions;

• deletion errors indicating missing concepts, isa- and semantic relations;

• substitution errors indicating off-target or ambiguous concepts, isa- and
semantic relations.

Given appropriate tasks and maximally independent algorithms operating on
the ontology in solving these tasks in conjunction with task-specific evaluation
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Table 3.26: Approaches to OLP and Ontology Evaluation approaches

Level L1

concepts learning
vocabulary [Pereira et al., 1993, Stevenson, 2002a]

evaluation
[Brewster et al., 2004, Gomez-Perez, 1999]

Level L2

hierarchy learning
granularity [Widdows, 2003b]

evaluation
[Stevenson, 2002a]

Level L3

semantic learning
relations [Gildea and Jurafsky, 2002, Ciaramita et al., 2005]

evaluation
see Section 3.6.3

and [Porzel and Malaka, 2004a]

gold-standards, one can calculate the error rates corresponding to specific onto-
logical shortcomings. The general semantics of the level-specific error types are
given in the overview of the proposed transfer of these error rates to the three
basic ontological levels displayed in Table 3.27.

With this, I can provide performance measures that can:

• evaluate one or more ontologies in terms of their performance on a given
task (ideally to measure only the ontology-specific aspect of the perfor-
mance),

• quantify the respective gains and losses of the insertion, deletion and sub-
stitution errors,

• populate (re-craft) the ontology as derived from the individual error type
specific results, and

• re-evaluate the respective performance in- or decreases resulting from the
crafting operations.

By applying this evaluation scheme one can, therefore, test and measure
the respective improvements that are brought about by individual learning and
population approaches that target the individual levels. Furthermore, one can
also categorize and compare these approaches as shown in Table 3.26.
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Table 3.27: Task: Ontology Evaluation: Levels & Error Types

level insertion deletion substitution

1 irreverent concepts omitted concepts ambiguous concepts
2 isa too coarse isa too fine isa too polygamous
3 irreverent relations missing relations indirect relations

The Evaluation Ingredients

Next, I will specify the minimal elements and their specific constraints that
are necessary for a task-based evaluation of an ontology and its entire range of
relations. An overview of such a generic task-based evaluation suite is given in
Figure 3.5.

A Task: The task, certainly, needs to be sufficiently complex to constitute a
suitable benchmark for examining a given ontology. Especially if the target of
the evaluation is to include non-taxonomic relations as well, it is necessary to
find tasks where the performance outcome hinges substantially on the way these
relations are modeled within the ontology.

One (or more) Ontologies: This almost goes without saying, at least one
ontology is needed for the type of evaluation proposed herein. However, note
that one is sufficient, i.e. as an ontology is evaluated in terms of its fitness
for a given task, this can be done as a single ontology evaluation as well as
an evaluation of how one ontology fares on the specific task as compared to
another. It bases, therefore, in principle on the same paradigm as applied in
the TREC, MUC or SENSEVAL evaluations.

An Application: As an application one specifies the specific algorithm that
uses the ontology to perform the task at hand. To foreshadow, in part, the con-
clusion of this experiment, the untangling of algorithmic and ontology-related
factors constitute the most difficult issue in this approach and it is vital that
the algorithmic side is kept constant within an evaluation suite.

A Gold-Standard: In order to evaluate the performance of any algorithm
that produces so-called keys, whether they be part-of-speech tags, word senses or
extracted ontological relations, a given set of answers is needed. I have referred
to this perfectly annotated solution or corpus of answers a gold-standard.

3.6.2 The Data: An Evaluation Suite

In the following, I describe how this evaluation framework for measuring onto-
logical fitness in terms of the proposed error rated is instantiated in TaskF .
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Figure 3.5: Test Suite Setup with a single task, an application, a gold-standard
and one or more ontologies

A Sample Task: For this trial evaluation suite, I will refer back to the task
of extracting the semantic relations that hold between nodes of the ontology.
This mark-up can be gained from the relation extraction system described in
Section 3.5.1 and constitutes a form of semantic labeling system, whereby the
specific markables correspond to items from the ontology’s inventory of semantic
relations. As described above this task can be thought of as an extension of the
work by Gildea and Jurafsky (2002), wherein the tagset is defined by entities
corresponding to the annotated FrameNet corpus [Baker et al., 1998]. Addi-
tionally, the task discussed herein features similarities to the scenario template
task of the Message Understanding Conferences [Marsh and Perzanowski, 1999].
In this case predefined statements are given - as shown in Example 25 in Sec-
tion 3.5.1. Again, the task of concept has to be considered solved successfully,
i.e. all lexical items that have ambiguous word-to-concept mappings, such as
given in Example 24 in Section 3.4.3 have been disambiguated correctly. In this
experimental suite I can, therefore, employ the specific TaskE of semantic rela-
tion extraction - i.e. to label all previously disambiguated and concept-tagged
words with non-taxonomic relations, such as shown in Figure 3.28 - for this
more general TaskF .

A Sample Ontology: The ontology used is this experiment is the one de-
scribed in Section 3.1.3. Note that the hierarchy of semantic relations aligns with
the frame semantic analysis used in the FrameNet project [Baker et al., 1998].
The taxonomic structure of the semantic relations itself also reflects the general
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Table 3.28: Extracting ontological relations has-channel and has-broadcast for
the set of concepts Broadcast, Channel, and RecordTapeDevice

Concept Set Score of Formula 3.4 Concept-Word Ratio
Broadcast

C1 Channel S′(C) = 0.81 C
W

= 0.5
RecordTapeDevice
Concept Relation Concept
ri: Broadcast has-channel Channel
rj : Channel has-broadcast Broadcast
rk: RecordTapeDevice has-broadcast Broadcast
rl: RecordTapeDevice has-broadcast Broadcast
rl: Broadcast has-channel Channel
Concept Set Score of Formula 3.4 Concept-Word Ratio
Broadcast

C2 Channel S′(C) = 0.43 C
W

= 0.67
RecordTapeDevice
TwoPointRelation
. . . . . . . . .

intention to keep abstract and concrete elements apart. A set of most general
properties has been defined with regard to the role an object can play in a
process: has-agent, has-theme, has-experiencer, has-instrument (or has-means),
has-location, has-source, has-target, has-path. These general roles applied to
concrete processes may also have subslots: thus an agent in a process of buying
as a TransactionProcess is a buyer, the one in the process of cognition is a cog-
nizer. This way, slots can also build hierarchical trees. The property has-theme
in the process of information search is a required has-piece-of-information, in
presentation process it is a has-presentable-object, i.e., the item that is to be
presented.

A Sample Application: The performance of relation extraction system de-
scribed in Section3.5.1 depends on the given ontological model as its represen-
tation of domain context, which is employed as described in Section 3.2.3 using
Formula 3.4. The input was constituted by n-best lists of speech recognition
hypotheses from the SmartKom system [Wahlster et al., 2001] computed out of
the ASR word graphs [Engel, 2002] as described in Section 3.5. As described
beforehand, it was evaluated successfully on a number of tasks, i.e. Tasks A
through D for computing a numerical ranking of alternative SRHs and thus
providing an aid to the task spoken language understanding, by resolving noise
and ambiguities. More precisely, the tasks have been to evaluate the best SRH
suitable for further processing, as discussed in Section 3.3, or the best concept
mapping, examined in Section 3.4, it in terms of its context-dependent repre-
sentation within the domain and discourse model

Please also note again the distinction between the kinds of direct relations
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- that can connect two nodes (concepts) in ontological models - i.e. isa and se-
mantic relations. The weights of the direct relation in the underlying algorithm
- described in Section 3.2.3 - are 0 for isa relation is set to an 1 for semantic
relations. The algorithm selects from the set of all paths between two concepts
the one with the smallest weight, i.e. the cheapest. Thereby determining a se-
mantic relation chain between all concept pairs in a given conceptual contextual
representations, excluding those that are solely connected via the isa hierarchy
and scored with the maximal distance DMAX .

A Sample Gold-Standard: For this I can employed the annotation-based
gold standard of concept tagged data set consisting of speech recognition hy-
potheses that had already been identified as being the best ones. For these
utterance representations the ontological relations that hold between the con-
cepts that are part of the ontology’s process hierarchy and the concepts that
are part of the ontology’s physical object hierarchy had to be identified.

As this is quite a difficult task and requires substantial knowledge of both the
relation inventory and its semantics, as described in Section 3.5 two annotators
were trained for this task to examine if their inter-annotator agreement was
sufficient to conclude that this is a task that human annotators can reliably
undertake. The resulting inter-annotator agreement on this task amounted to
79.54% as shown in Table 3.23. This shows that the relation tagging task is
executable by humans with a satisfying degree of reliability. The corresponding
gold-standard was, again, produced by means of the annotators agreeing on
mutually satisfactory solutions for the cases of disagreement.

3.6.3 The Results: Ontological Fitness

For evaluating the fitness of a given domain model I proposed and described
the semantic relation error types listed in Table 3.27 above. Also, I defined a
correctly identified relation if the non-taxonomic relation chosen was labeled as
accurate. Inaccurate ones featuring these relational errors, which are manifested
either by:

• deletions, i.e. missing relations in places where - according to the annota-
tors - a relation ought to have been identified,

• insertions, i.e. postulating any relation to hold where none ought to have
been, or

• substitutions, i.e. postulating a specific relation to hold where some other
ought to have been.

An example of a substitution in this task is given with the corresponding
utterance in Example 26. Again, in this case the concept disambiguation was
accurate, so that the two ambiguous entities, i.e. kommen and Schloss, were
correctly mapped unto a MotionDirected process and a Sight object - the concept
Person resulted from an unambiguous word to concept mapping from the form
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has−sourcePerson

MotionDirectedProcess

Sight

has−trajector

Figure 3.6: Substitution Type A: The gold-standard relation has-target was
substituted with the relation has-source

Town

WatchPerceptualProcess

Sight

has−object

has−watchable−object

Figure 3.7: Substitution Type B: The gold-standard relation has-watchable-
object was linked indirectly via the concept Town with the relation has-object

ich (I). An extracted example of relations for this case is given in Figure 3.6. In
this case the relation has-source does not fit to the gold-standard one has-goal.
This, of course, is due to missing syntactic and word information.

Those cases shown in Figure 3.7 (Type B) also were counted as a special
case of substitution, they accounted for about 50% of all substitution errors as
discussed in Section 3.5.3. The gold-standard produced by human annotation,
as discussed in Section 3.5.2, therefore, contained cases as inaccurate where a
relation chain was selected by the algorithm instead of a direct relation. These
cases, such as the connection between WatchPerceptualProcess and Sight shown
in Figure 3.7, were considered substitution errors, because a direct relation was
indicated as a substitution in the gold-standard.

As a deletion such cases were counted in which the gold-standard containing
a specific relation - such as WatchPerceptualProcess has-watchable-object Sight
- was not tagged at all by the system, as shown in Figure 3.8. On the opposite
side an insertion was counted where any relation, e.g. between Agent and Sight
in Figure 3.9, was tagged by the system.
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SightWatchPerceptualProcess
has−watchable−object

Figure 3.8: Deletion: The gold-standard relation has-watchable-object was not
tagged by the system

Sight
any−relation

Agent

Figure 3.9: Insertion: Any relation was tagged where gold-standard

An Evaluation of the Evaluation Experiment

An overview of the percentages of substitutions, deletions and insertions of all
relations extracted is shown in Table 3.24. Please note again, that the relations
under consideration were extracted by the system described in Section 3.5.3,
which employs these semantic paths for scoring the distance between two nodes
given a formal and explicit domain context model. A closer examination shows
that not every error can be mapped directly for improving the fitness of the
ontological model at hand. For example, in cases of substitutions of Type A
the appropriate conceptual instrument exists in the model. In this case, ei-
ther role has-target and has-source was available and could have been chosen.
The selection of the erroneous relation, therefore, was caused by the applica-
tion/algorithm and not due to a shortcoming in the ontological model.

All substitutions of type B as well as deletions can, theoretically, be used
for populating the ontological model with new or better instruments. The term
instruments, as I use it here, denotes that not only concepts are/can be added
but also semantic relations that are missing or modeled inefficiently. This,
however, is not to say that each corresponding change automatically leads to
an improvement in fitness, i.e. the specific task-performance. In my mind, a
tenable expectancy for corresponding experiments is that a specific percentage
of the corresponding changes in the domain model will uncover new errors,
which will have to be examined - employing the paradigm proposed above -
again. In theory, his can lead to an iterative quantitative evaluation approach
not only for estimating the fitness of domain models employed as contextual
representations, but for other tasks as well. Alternative applications for such
a task-based evaluation are constituted by sense tagging and discovering set-
ups or learning experiments [Pantel and Lin, 2003]. While these can lead to
concept population or concept generalizations [Widdows, 2003b], the task of
evaluating and improving an ontology’s non-taxonomic relations has been out
of their scope.

The population fall-out of our framework, in this case, derives its content
from the gold-standard that was merged from the doubly annotated data. This
manual input is still required and without it the task of improving the se-
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Table 3.29: Results Ontological Fitness Experiment

fitness substitution deletion insertion
task on errors errors errors
corpus REL1′

Fitness 15.32% 7.11% 1.26%

mantic relations automatically is still an open challenge for ontology learning
approaches. The result of this evaluation makes it more feasible to measure our
progress along the path to better performances and better ontological models
as they clearly indicate several shortcomings in the ontology used:

• The 7.11% deletions indicate clear cases where a pertinent (at least for
this task) relation was not modeled in the ontology,

• about 50% of the substitution errors showed inefficiencies in the model
(the rest were a result of the algorithm’s shortcomings), and

• the - however - small percentage of insertions can be regarded as super-
fluously modeled relations.

It would now be possible to go back to the model and undertake the corre-
sponding changes and run the evaluation again iterating this process until the
accuracy approaches a desired value. While this optimization of an ontology
for a given task is not within the scope of this work, it is nonetheless impor-
tant obtain validated explicit context models that are fit for the task. Further
challenges and research questions that arise with this a task-based approach to
ontology evaluation concern ways to make the proposed framework more general
and scalable [Porzel and Malaka, 2005, Gangemi et al., 2005]. Nonetheless, this
examination of the fitness of this specific contextual representation, will be con-
sidered as concluded with the results obtained and discussed above. Following
a final look at the contributions achieved vis à vis the work presented in this
chapter, I will turn to face the remaining two context types and the final task
type from the list given in Table 3.1 at the end of Section 3.1.5.

3.7 Summing-up

In the examinations I have presented in this chapter formal and explicit rep-
resentations of domain- and discourse-context were employed on a number of
tasks, specifically those listed below:

Task Accurate - classification of speech recognitions hypotheses in terms of their
semantic accuracy;

Task BestOf - classification of the best speech recognitions hypothesis from a
set;
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Table 3.30: Overview of Domain and Discourse Context Results

majority contextual gain relative
Task class baseline computing over human

precision precision baseline precision
Accurate ≈ .52 ≈ .65 .13 ≈ .80
cum discourse ≈ .52 ≈ .66 .14 ≈ .80
BestOf ≈ .64 ≈ .84 .20 ≈ .95
cum discourse ≈ .64 ≈ .88 .24 ≈ .95
Coherent ≈ .63 ≈ .70 .07 ≈ .80
cum discourse ≈ .63 ≈ .71 .08 ≈ .80
Disambiguation ≈ .52 ≈ .64 .12 ≈ .79
cum weights ≈ .52 ≈ .65 .13 ≈ .79
Extraction n.a. ≈ .76 n.a. ≈ .80

Fitness ≈ .15 ≈ .07 ≈ .01
(error type) (substitutions) (deletions) (insertions)

Task Coherence - classification of speech recognitions hypotheses in terms of
their internal coherence;

Task Disambiguation - classification of word sense by resolving multiple word
to concept mappings;

Task Extraction - extracting contextually appropriate semantic relations for
individual concept pairs;

Task Fitness - evaluating the context representation itself.

The underlying contextual computing approach has been based on ontology-
based representations of domain and discourse context that are evoked by given
processed spoken input. In the task-specific examinations of the contribution
of adding such explicit context models to help understanding what was said
and meant significant gains where achieved over the task-specific majority class
baselines in Tasks A through D. An aggregate overview of all results reported
in this chapter is provided in Table 3.30. Where applicable, I also presented a
calculation of the probability of these gains having arisen by chance, i.e. their
statistical significance - calculated by means of a corresponding unpaired t-test
results in p = 0.011 for Tasks A through C and p = 0.003 for Task A through
D.

The results of this contextual computing approach thereby confirm the value
of identifying the semantic relations that hold between the entities evoked by
the linguistic forms for understanding their meaning. Consequently, an under-
standing of the roles which the entities play in a given context goes a long way
towards determining corresponding semantic specifications, which, therefore,
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constitutes the core task in analyzing the meaning of a natural language ut-
terance [Chang et al., 2002, Bryant, 2003, Feldman, 2006]. The results gained
also show - more specifically - that this knowledge can also assist in increasing
robustness against noise and in cases of semantic ambiguities.

However, although it can be seen as quite an achievement to approximate
the output of a semantic parser to such an extend, obvious shortcomings are
caused by missing linguistic information. Including this information for finding
the best-fitting semantic specification has also been successfully performed on a
corpus of spoken child-directed utterances in Mandarin Chinese [Bryant, 2008].
Therein, language-specific constructional forms are analyzed to specify the roles
of explicit and implicit entities against the backdrop of explicitly modeled con-
ceptual schema as discussed in Section 2.7.2. Given recent modeling instru-
ments, that will be discussed in the next chapter, it is also feasible to incorporate
both linguistic information and the ensuing conceptualizations in ontological
models in both more traditional morpho-syntactic approaches or constructional
ones [Buitelaar et al., 2006, Porzel et al., 2006b].

Before concluding this chapter, I want to point out that the system de-
scribed above in Section 3.2.3 has been implemented also in a context mod-
eling component which is employed by the SmartKom multi-domain spoken
dialogue prototype. There it is applied for the task of scoring n-best lists
of alternative noisy and ambiguous utterance representations of spoken ut-
terances, thus producing a score expressing how well the evoked conceptual
sub-graph fits with respect to the given domain and discourse context. Further-
more, such representations - based on formal ontologies - will be reintroduced
in Chapter 4.2 in light of the completely ontology driven SmartWeb system
[Reithinger et al., 2005, Cimiano et al., 2004].

As noted in Section 1 an additional challenge for natural language process-
ing - in addition to noise and ambiguities - concerns underspecification. This
problem of underspecification goes beyond the field of traditional semantics into
the domain of pragmatic interpretation as discussed in Chapter 2. A prototype
example being that of so-called conversational implicatures, where the function
of the utterance is more implied in that explicated in the utterance. As will be
discussed in greater detail below, this problem domain features some notable
differences. One methodological difference, for example, lies in available anno-
tated data and ensuing baseline computations. I will return to the question of
how to annotate what is not there in Section 4.2. However, underspecification,
which occurs frequently in unrestricted dialogues, is at hand whenever some
implicit information needs to be explicated in order to draw the necessary infer-
ences. The information left implicit can, however, and must be recoverable by
recourse to context. That is not to say that contextual observation alone suffices,
but that they are certainly needed to run corresponding stochastic simulations
or set the values in observation nodes of graphical models or as instances of
the corresponding pragmatic ontological models as will be discussed below in
Section 4.3.

It is important to note at this point, that this implicit information was pro-
vided the by the specific speaker in a particular situation. Via these context
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types, i.e. the interlocutor and the situation as the remainder of the modality of
context - information can be provided, for example, about the actual geographic
position of the speaker, i.e. being at a given place at a certain time. While
changing the focus from domain and discourse knowledge to that concerning
the interlocutor and the situation, the question and research focus remain on
assessing the benefits of taking context into account. I will assume a perspective,
encompassing the whole modality of context, in the final discussion of the con-
textual computing approach presented herein in Chapter 5, but for now invite
the reader to switch their focus on more pragmatic matters.

3.7.1 Roadmap

The classification, extraction and evaluation experiments presented in this chap-
ter showed how contextual computing can be performed by recourse to ontolog-
ical representations of domain & discourse knowledge and evaluated the ensuing
performance several tasks followed by an evaluation of fitness of the central se-
mantic resource employed in these examinations. Now, as the road approaches
the interlocutor and situation at hand the scope also broadens as it inclines
towards the field of pragmatics. There, I will take a closer look at the specific
types of knowledge concerning the speaker and the situation that have been
examined in the past in Section 4.1. I will then examine the case of resolving
pragmatic ambiguities in natural language understanding in Section 4.2, before
presenting the corresponding formalization thereof in Section 4.3.



Chapter 4

User and Situation

Studies on context in human language were not predominant in the influential re-
search direction that bases on an assumed autonomy of syntax [Chomsky, 1965]
and that explicitly excluded performance related issues as out of scope of their
analysis [Chomsky, 1981]. These analyses focused on linguistic competence as
well as innate structures and -mechanisms for the acquisition of such a (universal
or core) grammar [Chomsky, 1995]. Noting the omission of semantic - let alone
pragmatic or contextual - considerations by the so-called East-Coast linguistic
school, the so-called West-Coast school proposed an alternative point of view
[Langacker, 1987] that flourished under several headings, e.g. cognitive gram-
mar or functional grammar [Givón, 1995], but is essentially usage-based. Here
linguists started to take into account that actual utterances are addressed at
someone - the interlocutor(s) and that they actually happen in real situations.1

The following sections I will, therefore, discuss how contextual factors that
concern properties of the interlocutors and the situation critically influence spo-
ken language understanding and production. As before, I will present and em-
ploy empirical data and methods to examine their influences on the process-
ing of natural language utterances embedded in this approach to contextual
computing and its corresponding methodological framework. As stated in Sec-
tion 1.1 speakers may not always be aware of the potential ambiguities and
underspecifications inherent in their utterances. They leave it to the context
to disambiguate and specify the message, i.e. to decontextualize in the sense of
McCarthy or, to put it linguistically, to resolve ambiguities and to specify elided
information. Speakers must, therefore, trust to some degree in the addressee’s
ability to perform such context-specific leap from the utterance to arrive at the
illocutionary function that they wanted to elicit [Katz, 1980]. In order to inter-
pret context-dependent utterances correctly the interlocutionary partners must
also share - or at least have access to - the same interlocutionary and situational
context as well as to the domain and discourse context discussed in Sections 3.1

1A little of the surprise diminishes when considering that decades of so-called armchair-

linguistics have dealt with written sentences self-assembled by the respective linguist in his or
her armchair and that real situations and dialogs are difficult to create in laboratory conditions.
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through 3.6.

4.1 Modeling User and Situation

For explicit contextual computing approaches this sharing of context entails
access to several knowledge models as well as corresponding information re-
garding the actual instances thereof as described in Table 2.7. Moreover, the
need to include this set of contextual knowledge stores for natural language
processing increases as speakers anticipate the employment of these interpre-
tative resources[Branigan and Pearson, 2006]. It is, furthermore, economic and
increases dialogical efficiency when speakers as well as systems - anticipate the
employment of these resources and construct the utterance knowing that cer-
tain underspecifications as well as other forms of alignment are possible, since
the hearer can infer the omitted information or can resolve referents despite
ambiguities faster then it takes to explicate them.

Generally speaking, this critical anticipation of the interpretative resources
of the dialog partner - whether it be a human or an artificial interlocutor -
is based on the speaker’s mental model of the dialog partner. I employ the
term mental model here in the more general human-computer interaction-
sense of Norman (1988) [Norman, 1988]. The process of tailoring any form of
linguistic behavior or output towards the recipient of that output has been la-
beled variously as listener-, user- or partner-modeling [Levelt, 1989, Paris, 1993,
Glatz et al., 1995].2. I will, therefore provide an corresponding overview of per-
tinent and representative findings and approaches first for modeling the inter-
locutor in Section 4.1.1 and then for modeling the situation in Section 4.1.2.

4.1.1 Modeling the User

The modeling of interlocutionary context has been the subject in various areas
of scientific scrutiny, for example in textual semiotics this context type has been
labeled as the role of the reader [Eco, 1984] and in socio-linguistics as the role
of the listener [Krauss, 1987]. In artificial intelligence research, e.g. in the area
of intelligent user interfaces [Maybury and Wahlster, 1997], user modeling has
been the predominant heading under which research has been performed in
order to pave the way towards more user-adaptive interfaces. Therein, adaptive
models of the user have been examined and employed for various purposes. In
work on multimodal systems user and situation models have been employed
for modality fission and presentation management [André, 1999, Elting, 2002,
Reithinger et al., 2003]. Note that for multimodal systems - as discussed in
Section 2.4.2 - modality fission constitutes the output pipeline that determines
the modality-specific forms to be employed in conversing with the user.

2Computationally, the term User Modeling has traditionally been employed, e.g. in the
special issue on User Modeling published by the Journal of Computational Linguistics (Volume
14, 3) already in 1988.
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Congruently, in the area of natural language processing interlocutionary con-
text - as user modeling - has been implemented in natural language generation
systems [Jameson and Wahlster, 1982, Paris, 1993, Bateman and Zock, 2003].
These systems include user-models as well as dialog-specific discourse models
and representations of the domain knowledge as discussed in Section 3.1. On
the other side of the coin specific design choices can be used to evoke specific
linguistic behavior by the user [Branigan and Pearson, 2006]. Their common
goal is to enhance the context-adaptive capabilities of these systems, e.g. to
generate or elicit appropriate linguistic expressions for or from different users
by employing interlocutionary models.3

Regardless of the terminology employed the proposed interlocutionary mod-
els all assume domain-specific knowledge, which I have discussed in Chapter 3,
empirical findings both suggest modality-specific preferences [Elting et al., 2002]
and register-specific preferences[Fischer, 2006] specific to the interaction with
artificial multimodal systems. Such situation-specific and interlocutor-specific
preferences, therefore, constitute additional contextual factors to be consid-
ered. Such empirically derived data - in a sense - spells out the content of
the often vague and arbitrary employed category of user preferences that pop-
ulates most models referenced above. Most models, e.g., the one employed
by Paris (1993), assume knowledge of the user’s goals and plans as well other
contexts such as beliefs, interests and numerous physical attributes of the user
(Ibid:17f.). Nevertheless, adaptation to the user has been implemented and for-
malized for modeling goals and plans [Anderson et al., 1995], epistemic factors,
such as prior knowledge [Paris, 1993], and for situational factors for generation
of multimodal output based on models of user-dependent multimodal prefer-
ences [Elting, 2002].

In general, context-dependent selection, composition and construction of in-
formation has been implemented where the adaptation and alignment hinges on
knowledge about the interlocutor. The corresponding (interlocutionary) con-
text models have been discussed as listener-, user- or partner models and are
of central importance for intelligent multimodal interaction. Moreover, empir-
ical studies, as, for example, conducted by linguistic research [Fischer, 2006,
Branigan and Pearson, 2006], can shed some light on how these mental models
of our interlocutors are constructed in context-specific conversations.

A substantial amount of empirical work exist for the specific context of
spatial language, employing various types of utterances within the domain of
space, such as instructions - e.g., in the form of spatial directions - and local-
izations - e.g., in the form of descriptions - which I will also discuss for the
experiments presented in the following Section 4.2. Beforehand, I will present
the prior work on models of interlocutionary and situational context in the
domain of spatial language as specific forms of user-specific alignments, e.g.
the empirical studies performed on spatial perspective taking in conversations
[Schober, 1993, Herrmann and Grabowski, 1994]. The general necessity of the

3The ensuing generation problems includes all the referential problems inversely,
e.g. when to employ an anaphora or produce an ellipses [Jameson and Wahlster, 1982,
Strube and Wolters, 2000].
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inclusion of interlocutionary context has been discussed before and seems undis-
puted at the moment, since without recourse to the contextual knowledge store
of a partner model several well known empirically observable phenomena cannot
be explained.

Already in 1987 socio-linguists, such as Robert Krauss, broke with tradi-
tional ’context-free’ sender-receiver models by stating that:

the traditional separation of the roles of participants in verbal com-
munication into sender and receiver, speaker and addressee, is based
on an illusion — namely that the message somehow belongs to the
speaker, that he or she is exclusively responsible for having gener-
ated it, and that the addressee is more-or-less a passive spectator
to the event. I am not denying that the speaker is responsible for
the physical act (...). But (...) the addressee is a full participant in
the formulation of the message — that is the vehicle by which the
message is conveyed — and, indeed, may be regarded in a very real
sense as a cause of the message [Krauss, 1987]:96

The interlocutor subsequently has been regarded in usage-based empirical
approaches to play an essential part in the causation of speech production in a
dialogical setting. Moreover, to ignore the interlocutionary context during the
execution of a dialog can be costly in terms of dialogical efficiency and task
completion. Studies on the dynamics of alignment in dialog started with work
on back-channeling4, which labels a linguistic side of the multimodal alignment
phenomenon much as the work on entrainment [Garrod and Anderson, 1987,
Brennan, 1996, Brennan, 2000] constitutes another side of linguistic alignment.
In a multimodal light, gestural and other non-linguistic forms of back-channeling
a form of alignment that has been examined under the heading of behavioral
mimicry including mimics and body movements have been examined in human-
human settings [Sweetser, 2003, Sebanz et al., 2006] as well as in interactions
with artificial agents [Kopp et al., 2004, Kraemer et al., 2007].

The effects of alignment and non-alignment to the interlocutor have been
examined in the field of human-human conversation showing that dialogical
efficiency can be influenced by back-channeling which either enhanced effi-
ciency by reducing redundancies of words and phrases or decreased efficiency
by causing lexical and phrasal repetitions [Krauss and Weinheimer, 1964]. In
the event of back-channeling also more economical shorthands, e.g. abbrevi-
ations and phrase-reductions, become employed alongside other forms of en-
trainment. Visual back-channeling also increases the efficiency of the discourse
[Krauss et al., 1977]. The efficiency-effects of dialog-structuring particles on
turn-taking strategies in human-human interaction have also been examined
thoroughly [Duncan, 1974, Sack et al., 1974, Weinhammer and Rabold, 2003].
More specific findings for (non-)alignment comes from psycholinguistic research

4This term denotes verbal and para-verbal responses of the listener [Yngve, 1970], which
occur during the dialog manifested by specific linguistic forms such as yes, hmmm, I see,
uh-huh.
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on perspective-taking in the spatial domain, e.g. work on the production of spa-
tial descriptions [Schober, 1993, Herrmann and Grabowski, 1994]. In the latter
experiments the principle methodology employed was to create situated inter-
action keeping the domain context - a spatial state of affairs - and discourse
context - a given communicative task - constant while changing interlocutory
and situational context; where they varied the interlocutors position, social sta-
tus, assumed cognitive competence. For the most frequent case, i.e. perspectival
non-alignment, additional research on perspective-taking in the domain of spa-
tial descriptions has demonstrated that localizations aligned to the interlocutors
position in space demand more cognitive resources than non-aligned (egocen-
tric) localizations [Bürkle, 1986], which is congruent to empirical findings con-
cerning cognitive efforts in mental rotation tasks [Shepard and Metzler, 1971,
Shepard, 1975]. Please note, that in another context, i.e., the one created by
Branigan and Pearson (2006), lexical alignment constituted the default and
lower levels of entrainment were induced by changing interlocutionary context
in the interaction with an artificial dialog system.

Looking at the computational side only some prior work exists concerning
the turn-taking strategies of dialogue systems in human-computer interaction,
e.g., for the case of conversational computer-mediated communication aids for
the speech and hearing impaired [Woodburn et al., 1991] or for turn negotiation
in text-based dialogue systems [Shankar et al., 2000]. It has been noted be-
fore, that that problems, such as turn-overtaking, -handling and -repairs, have
not been addressed by the research community [Wooffitt et al., 1997]. Also
in the context of the research performed in the SmartKom context, studies
show both the drastic effects of ignoring the interlocutors turn-taking signals
[Beringer, 2003] as well as specific effects of these interlocutionary signals on
dialogical efficiency [Porzel and Baudis, 2004].

There is also a general discussion about the status of the discourse con-
text in regards to the interlocutionary context. As pointed out in Section 3.3
the discourse model contains the discourse-protocol or -history, i.e., at least a
representation of the referents already introduced into the discourse and the
statements made about them. The ensuing discussion deals with the problem
that, when a statement about something has been made, say proposition p
about the domain d has been uttered, then p becomes part of the user’s do-
main knowledge about d and needs to be included in the information contained
within the user model as common ground. The influence of common ground, i.e.,
the shared knowledge, shared associations, shared sentiments, and shared de-
faults, between speaker and listener has been identified before [Kingsbury, 1968,
Krauss et al., 1977, Clark and Marshall, 1981] The amount of common ground
influences the lexicalizations preferred by the speaker, for example what kind
of words to use, whether to describe objects more figuratively or literally. Fur-
thermore, it influences the type versus token ratio in the speakers’ discourse.5

5In experiments tailored towards the identification of contextual-dependencies also neg-
ative findings are equally important for finding, for example, that type-token ratio is not
influenced by interlocutionary information supplied via the aforementioned feedback channels
[Porzel and Baudis, 2004].
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Clark and Marshall found also that length and specificity of descriptions are
demonstrably influenced by common ground between the interlocutors, which
raises further research questions for conversational interfaces to artificial systems
[Wilson, 1997, Cassell, 2001, Shneiderman and Plaisant, 2004, Dourish, 2007].

Generally, effects of the user’s estimations concerning properties of the sys-
tem influence formalization greatly, which is known from examining the charac-
teristics of computer-directed language [Zoeppritz, 1985, Wooffitt et al., 1997,
Darves and Oviatt, 2002]. More recently, dedicated empirical studies on align-
ment and non-alignment in language and other modalities have been performed
[Garrod and Anderson, 1987, Brennan, 1996, Brennan, 2000], Additionally, it
has been shown that context-dependent constraints can be imposed by the situ-
ation, e.g. lawyers choosing not to entrain on critical terms [Brennan, 1998], or
that subjects can be induced to adapt their amount of entrainment depending
on the assumed features of the computer system [Branigan and Pearson, 2006].
Again, this exemplifies how interlocutory and situational context affect align-
ment depending on interlocutionary perspectives [Fischer, 2006]6 as well as on
the constructed mental models [Norman, 1988].

Research teams have increasingly mounted evidences that lexical and phrasal,
i.e. constructional, choice within a dialogue is dependent also on the epistemic
stance adopted, which is seen as interlocutor-specific and, therefore, context-
dependent. To adopt the interlocutors perspective - e.g. through linguistic
hedging - two interlocutors adopt each other’s terms. The variability - counter-
parting the ambiguity discussed in Section 3.4- in constructional choice is huge
in any domain. On the lexical level, it has been called the vocabulary problem
[Furnas et al., 1987]. Although usage-based corpora clearly show there are no
real synonyms, i.e. two words that in all contexts could be used interchange-
ably, speakers still have numerous context-dependent options when referring to
an object, i.e. to find a form for a given meaning. For instance, in the user
study conducted by Furnas et al. different subjects used delete, change, remove,
spell or make into to denote the same, situationally given, event.

Another acquisition bottleneck exists for systems seeking to adapt their be-
havior to their users. They must be provided with the means for acquiring
corresponding user models. A description of the problem is provided by Chin
(1993), who also provides an overview of approaches to circumvent the invasive-
ness problem [Chin, 1993]. Generally, dialog systems score higher in user satis-
faction measures, which are able to involve user-specific adaptation by means
of direct questioning or observation throughout a session [Walker et al., 2000].

Before moving to models of the situation, I want to note that interlocution-
ary context encompasses both interlocutors, e.g. a human user and an artificial
agent. The model of the artificial system itself, i.e. the system’s topical self
model, is important as well. The given representation of the system’s state can
influence, for example, via dedicated profiles, the output generated by the sys-
tem can depend on a given device configuration, network bandwidth or compu-

6This can be seen to constitute a linguistic analogue of the classic framing problem
[McCarthy and Hayes, 1969].
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tational load, as in quality of service approaches [Mammeri, 2004]. For the case
of multimodal systems, system models have been employed for device-dependent
modality fission and presentation management [Malaka et al., 2006].

4.1.2 Modeling the Situation

On the one hand - looking back at the models of domain-, discourse- as well as
the empirical findings regarding the interlocutionary context, that I presented
above - it is notable that for natural language processing systems, e.g. those
presented in Section 2.4.1, prior research on contextual computing more or less
excluded situational context. In earlier dialog systems, such as TRAINS or
TRIPS, the situation was given as a hypothetical usage scenario and, therefore,
in a sense hard-coded implicitly into the system, consequently, the system’s be-
havior was not effected by the actual location where it was used or demonstrated
or how the real weather was at the time. Certainly, hardware issues, such as
desktop size, processing resources and power supply restricted earlier dialog
systems to stationary applications that were exhibited in enclosed laboratory,
conference or trade-fair settings.

As I have noted in my introductionary remarks, the advent of mobile com-
puting brought forth first mobile prototypes in domains such as tourism, ge-
ographic information systems and other more-specific location-based services,
e.g. involving hotel, restaurant or cinema reservation systems [Johnson, 1998,
Johnston et al., 2002, Malaka and Porzel, 2000, Wahlster et al., 2001]. Since
then, mobile incarnations of dialog systems have added numerous domains
which was facilitated on the one hand by coupling ontological representations,
such as the ones described herein, to the morpho-syntax of web service descrip-
tions [Oberle et al., 2005]. This enables mobile multimodal systems, such as the
SmartWeb system to access information regarding the topical situation at hand
in their own ontological vocabulary [Wahlster, 2004], as I will discuss below in
Section 4.2.

Research on multimodal systems consequently included mobile scenarios in-
volving the spatial domain as a suitably complex challenge for an intuitive
conversational natural language processing system, as described in my dis-
cussion of the state of the art in Section 2.3. Employing these situation-
aware systems, mobile users can ask for directions or localizations of places
or sights [Johnston et al., 2002, Malaka and Porzel, 2000, Wahlster et al., 2001]
using deictic expressions such as from here, which will be resolved and grounded
by the location-aware natural language processing system. The resulting pro-
totypes - i.e. mobile tourist information systems that guide users through
cities, can provide detailed spatial, architectural and historical information
as well as topical information from hotel, entertainment and weather services
[Coors et al., 2000, Oberle et al., 2005].

In the field of artificial intelligence several approaches have sought to model
the semantics of situations explicitly ranging from model-theoretic approaches
via ones employing modal logic [Barwise and Perry, 1983] to more recent ones,
which were motivated also by ontology engineering perspectives within the se-
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mantic web framework [Gangemi and Mika, 2003]. As the focus of this work
will return to the formal approaches pertinent to describing contextually con-
strued situations in Section 4.3.1 and - as their formal properties and short-
comings have been introduced in Section 2.2 - I will conclude this overview
by pointing at the important work on situation models in cognitive and lin-
guistic approaches. This work ranges from finding prototype situation models
[Zwaan and Radvansky, 1998] and categorizations [Rosch, 1983] to modeling the
resulting cognitive prototypes [Lakoff, 1987].

4.1.3 Pragmatics in SmartKom

I have discussed in Section 2.4.1 how contextual considerations in early dialog
systems were restricted to low-level processing [Bunt, 2000] and by and large
excluded pragmatic analyses. Additionally, they encompassed small domains
and featured a pre-defined modular processing of the spoken input that pro-
duces a formal representation of the given input as described in Section 2.3.
This representation, then, becomes equated with the user’s intention. Start-
ing with the VerbMobil project the dialogical situations grew more challenging,
which lead to a discourse-sensitive mapping of the parsed speech input to spe-
cific utterance types, e.g. confirmation or question [Reithinger and Maier, 1995,
Alexandersson et al., 1995], that represent the set of speech-acts [Austin, 1962,
Searle, 1975] encountered in the VerbMobil domain. Still, the VerbMobil speech-
to-speech translation system featured a single domain and desktop scenario,
moreover, the resolution of deictic, anaphoric or underspecified expressions was
ultimately left to the other human interlocutor and the system itself did not act
as a dialog partner.

Nevertheless, continuing research on dialog systems brought forth several
multi-domain prototype systems that are set in a mobile computing context
[Malaka and Porzel, 2000, Malaka et al., 2006, Ankolekar et al., 2006]. Conse-
quently, first corpora of more conversational computer-directed speech in out-
door situations - ranging from pedestrian to car and even motorcycle drivers
[Schiel et al., 2002, Kaiser et al., 2006, Mögele et al., 2006] - have become avail-
able. Before addressing the additional challenges encountered in going from a
multi-domain system to an open domain one in Section 4.3, I will start this
examination with the contextual computing tasks afforded by multi-domain
systems, such as DeepMap or SmartKom, where linguistic expression are found
in the data that are underspecified and ones that can be understood in multiple
ways.

As noted before, the human enterprise of answering or responding to conver-
sational speech input in a suitable and felicitous manner, it is not solely based
on the ability to recognize what was said by the questioner, but also requires the
ability to infer information that is left implicit by the questioner and to estimate
what constitutes a useful and felicitous answer. The realization of such abilities
poses a formidable challenge in the development of conversational and intuitive
dialogue systems with more than one domain, modality, or situational context.
The SmartKom system, for example, has to deal with contextual dependencies
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as well as cross-modal references based on the system’s symmetric multimodality
[Wahlster, 2003]. Moreover, it has been designed to handle multiple requests in
different domain contexts and features three overall scenario-specific situational
contexts.7

Faced with underspecified utterances that leave some information implicit,
some form of decontextualization is needed to resolve the arising contextual
ambiguities [McCarthy, 1986, McCarthy, 1990]. In the case of restricted and
controlled single domain systems, the problem of contextually implicit infor-
mation can be solved by generating full paraphrases out of the underspecified
user utterances [Ebert et al., 2001]. In systems with - in that sense - multiple
contexts, such as DeepMap or SmartKom, additional knowledge sources, algo-
rithms and dynamic contextual observations are needed as I will describe below
as well as in Sections 4.2 and 4.3.

In many cases the task of resolving underspecifications and indexical ex-
pressions, e.g. spatial or temporal deixis, requires frequent recourse to both
discourse and situational context. While situational observations and con-
text are bound to one actual specific situation, which can ground deictic ex-
pressions such as there or noon, discourse context can override the default
groundings, by establishing a prior context in which the meaning or some par-
ticular mapping is specified otherwise, e.g., as in the poetic expression mid-
night’s noon, where some part of the default meaning - middle of the day -
is in a sense inhibited, as it is overlaid with a different meaning evoked by
the prior discourse context. In the SmartKom system, discourse contextual
influences are handled by default unification, implemented as an overlay op-
eration [Alexandersson and Becker, 2001, Löckelt et al., 2002], which employs
the hierarchical schemas which were automatically created from a reductionis-
tic ontology and, therefore, reflect the hierarchical make-up and non-taxonomic
structures of the input ontology [Gurevych et al., 2003a].8

As I will show in the examples given below, one can find situations where
multiple types of context sources, given the categorization proposed in Ta-
ble 2.7.1, contribute pertinent information. Where, so to speak, the individual
contexts as input modalities in their own regard are interwoven with each other
in much the same way as the multi-modal system-directed input streams from
the user, e.g. speech, gaze and gesture, can be. Such an integration of domain
and discourse models together with their respective interlocutionary and situ-
ationally given contexts constitutes a formidable hurdle to be crossed in order
to achieve adaptable and scalable natural language understanding systems that
facilitate felicitous cooperation and intuitive conversational interaction.

Let me note once more, that in contextually restricted dialog systems, such

7These scenarios encompass indoor employment with a personal device, e.g. at home or in
an office, employment as a public device, e.g. in a kiosk or communication both, as well as
mobile usage with private handheld- and on-board car devices.

8The SmartKom domain model has been described in Section 3.1.3, it was addition-
ally employed to create the interface specifications of the system’s components, thereby
enabling some of them to perform their operations directly on the resulting XML schema
[Gurevych et al., 2003b, Porzel et al., 2003b].
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as train schedule or help desk systems [Aust et al., 1995, Gorin et al., 1997], this
does not constitute a problem, since conversational phenomena can be avoided
by means of the appropriate dialog design [Dix et al., 2004]. In a multi-domain
system that faces diverse usage contexts, e.g. at home or in a mobile context,
conversational phenomena such as underspecifications and pragmatic ambigui-
ties add to the challenge of understanding the user’s often multi-modal input.
This input can refer to various types of discourse objects that play different roles
that depend not only on the course of events, but also on situational parame-
ters, such as time or place, as well as domain- and discourse-related parameters,
such as what is (and has been) talked about. A comprehensive understanding
of naturally occurring discourse and of the often implicit questions embedded
therein still has many unsolved issues in pragmatics and computational linguis-
tics alike.9

In the following, I will provide some initial examples of the kind of under-
specifications and implicit information encountered in the domains at hand,
followed by a respective empirical and computational examination thereof in
the light of the contextual computing approach introduced herein. The primary
focus of this work thereby remains an explication of the contribution of includ-
ing contextual observations and explicit knowledge for enabling conversational
dialog systems that face multiple contexts to realize the required understanding
capabilities. Considering a question, such as given in Example 28, that can be
encountered in a pedestrian setting, when a user is asking for directions.

(28) How do I get to the powder tower

Looking at corresponding human-human interactions, e.g. as described in
field experiments described in Section 4.2, passerby’s responses to such questions
are hardly ever followed by questions where and when the spatial instructions
should start. More likely, immediate directions will be - and were - given if
the desired object is known to the interlocutor. But, as the collected field
data, presented in Section 4.2.2 shows, the felicity of spatial instructions is also
dependent on contextual factors such as distance, mobility of the questioner or
weather. Information concerning time or place, for example, is rarely explicated
when given default settings, based on common ground [Krauss, 1987] hold. If
not, however, such information is very likely to be expressed explicitly. In
some cases, which are commonly labeled as indirect speech acts or pragmatic
ambiguities, however, we are not only faced with implicit information, but also
with implicit intentions.

In responding to such a seemingly clear instructional request, the DeepMap
system, for example, upon recognizing the goal object directed the interlocutor
to that point on the modeled road network, which was closest to the center
of the goal object. This, however, lead to a dead-end alley, where one could
approach the particular tower of the castle of Heidelberg, but neither see nor
enter it. Moreover, in this case there are three different routes depending on

9As made evident by misunderstandings, this comprehensive understanding can be a chal-
lenge for human dialog partners as well.
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Figure 4.1: A visualization of the routes to enter (1), approach (2) or view (3)
the castle tower

whether one wanted to enter, view or approach the goal object as shown in
Figure 4.1. The question whether the user’s goal is to enter, view or approach
the mentioned goal object could hinge on a multitude of contextual factors, such
as object type, accessibility or it being currently open or closed, that constitute
part of the situational context. Generally speaking, due to the common ground
established, a situated conversational dialogue occurring in a shared context is
consequently composed of utterances based upon the pertinent knowledge of
that context.

In order to find what factors are pertinent out of the diverse kinds of contex-
tual information imaginable studies and experiments, for example of the type to
be described in Section 4.2, need to be conducted to determine the individual
factors and to capture their situation-specific influences formally. The task of
finding out what matters can, in my mind, only be undertaken in the light of the
specific question at hand. Looking at the domain of spatial information alone
one can also imagine a multitude of additional questions that need to be posed
in order to enable a dialogue system to produce felicitous responses. Next to
the question, discussed above, whether the user wants to enter, view or just ap-
proach the goal object, one can ask if the user wants to take the shortest, fastest
or nicest path there. Naturally, the questions regarding the mode of transporta-
tion, e.g. walking, driving, cycling or by means of public transportation, are
extremely relevant to answering instructional requests felicitously.

In many cases, like the ones noted above, solving underspecifications cor-
responds to automatic context-dependent generation of more specified para-
phrases. That is, to explicate the information that was left linguistically im-
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plicit, e.g. to expand an utterance such as How do I get to the castle depending
on the situational and interlocutionary context into How do I get to the cas-
tle by bicycle on a not so steep route. As stated before, what constitutes a
felicitous answer can hinge on a number of contextual features, including also
ontological factors, e.g. object type and role, situational factors, e.g. weather
and environment, discourse factors, e.g. referential status, as well as interlocu-
tionary factors, e.g. tourists or business travelers as questioners and their time
constraints, may constitute significant factors.

4.1.4 Modeling Implicit Information

An attempt to model which information matters pragmatically in a given situ-
ation should firstly accommodate the empirical data, e.g. collected in situated
field experiments as described in the following section. As I will show hereafter,
based on such data the pertinence of the recorded factors can be assessed. In
many cases, it will be necessary to combine observations from multiple heteroge-
neous information sources, which are not always perfectly accurate or failsafe.10

Based on empirical studies and implemented in a robust manner one can
differentiate the following contextual computing tasks:

• to classify the situationally observed information with respect to the prag-
matically relevant knowledge modeled therein, which I will discuss further
in Section 4.3;

• to evaluate competing semantic specifications - as potential intentions or
intention-hypotheses - using appropriate models of the pertinent pragmatic
knowledge, which will be described in Section 4.2;

• to augment individual semantic specifications with hitherto implicit infor-
mation, i.e., to spell out the underlying context-dependent underspecifi-
cations, which I will discuss subsequently.

Summarizing, an implemented context model can be employed in the clas-
sification, evaluation and explication of situationally implicit information. In
order to align these contextual computing tasks with the ones discussed in the
previous chapter, I will sketch out the basic correspondences in the following:

• In much the same vain as the domain model discussed in Section 3.1 pro-
vides the vocabulary of terms to classify the modality-specific input, given
as instances of the linguistic- or gestural forms at hand, a pragmatic model
can provide vocabulary for classifying the user- and situation-specific input
given as instances of the situation and interlocutor.11 This classification

10Robustness against missing and uncertain information constitute additional constraints
that need to be heeded, as some contextual features may not always be observable, e.g. in
case specific information streams of the system such as positioning sensors or external data
servers are currently offline.

11Please note, that throughout this work, I propose to view context-specific information
sources to constitute a modalities in their own right, requiring both a recognition of the
context-specific input as well as an understanding thereof.
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task, therefore, comes with the analogous engineering challenges and ac-
quisition bottlenecks as one finds in the previous approach that requires
the construction of a shared conceptualization of the given domain.

• In many respects the task of evaluating different intention hypothesis cor-
responds to that of ranking speech recognitions hypothesis, as described
in Section 3.2. In both cases external models of contextually pertinent
knowledge are employed to select the contextually best-fitting semantic-
or pragmatic specifications. While the formerly presented experiments
sought to elicit the contribution of the pertinent domain- and discourse
knowledge, the ones to be presented shortly, do so for pertinent pragmatic-
and social knowledge.

• The remaining task of augmenting a given semantic representation - in
the approach proposed herein - corresponds in several respects to the
relation extraction task described in Section 3.5. As described therein,
frame semantic relations hold between frame elements specific to the given
course of events. A correct identification of the semantic frame can, in
some cases, contain frame elements that have hitherto been left implicit,
but have been associated to it and the corresponding domain model.

The latter explication task concerns the provision of knowledge specifying
what belongs to a given situation, but was omitted as a result of a shared
context. Let me emphasize, once more, that - the omission notwithstanding - the
associated knowledge must matter for the task at hand. It is somewhat obvious,
that one constantly omits an infinite number of things with every statement,
since they do not matter at the moment.

This explication task also subsumes the grounding of indexical expressions
- such as the deictic temporal or locative examples discussed above in Sec-
tion 4.1.3. This grounding becomes necessary, for example, when inserting a
real instance of a location in the pragmatic gap left by the omission of a start-
ing position in Example 28. As many commercial mobile devices today, also
the research prototypes employed in this work, use a global positioning system
to supply the current location of the user which is observed and classified by
the context model. Again, it is important to note that this type of situation-
awareness is a necessary prerequisite for context-dependent analysis and that,
for example, the task of determining the right level of granularity in classifying
the position of the user is not a trivial one and context-dependent itself.

As a starting point, I will sketch out how this explication is realized in the
multi-domain setting of the SmartKom system, where frame semantic collection
and ontological modeling of the domains enable corresponding insertions directly
on the domain objects models [Porzel et al., 2006a]. These individual domain-
specific common ground models provide knowledge, which prevents, for example,
a human travel agent from checking room vacancies without knowing the specific
instances of at least an arrival date and the intended duration. This holds across
several domains, as also a theater agent cannot reserve tickets without knowing
the user-specific price range, location and date. In the following example - where
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<informationSearchProcess>
<entertainment>

<performance>
<cinema>

<contact>
<address>

<town>
here

</town>
</address>

</contact>
</cinema>
<time>

<beginTime>
<at>

now
</at>

</beginTime>
</time>

</performance>
</entertainment>

</informationSearchProcess>

<contact>
<x> 70.345 < /x>
<y> 49.822 < /y>
<town>

Heidelberg
</town>

</contact>
<time>

<at> 19:00:00T26:08:03 </at>
</time>

Table 4.1: Context-specific insertions into a sample intention hypothesis result-
ing from the interpretation of a speech recognition hypothesis

the user is situated in a specific time and place, e.g. walking through the city of
Heidelberg and initiates the exchange given Example 29, additional turns, e.g.
asking the user to specify time and place, are avoided by decontextualizing the
question and providing the answer given in Example 30.

(29) Was läuft im Kino
What is showing in the cinema

(30) Hier sehen Sie was heute in den Heidelberger Kinos läuft
Here see you what is running in Cinemas of Heidelberg

As specified above, the context model implemented in the SmartKom system
enables the system to provide - hitherto implicit - knowledge concerning what is
talked about.12 The simplified structures given in Table 4.1.4 show insertions -
given in bold face - into an SmartKom intention hypothesis made by the context
model in the case of a question such as given in Example 29. In this case the
explications inserted by the context model are threefold. Firstly, the cardinally
required place node, corresponding to the range of a semantic relation such
as has-place, was inserted into cinema object - as was the time inserted into

12Please note that, as discussed above, discourse context can - and does - override
these structures, whenever prior utterances had already specified this type of information
[Alexandersson et al., 2006].
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the performance object. Secondly, corresponding object-specific instances are
given as indexical defaults. These indexical placeholders are, then, contextually
resolved. Here, the topical resolution of instance labels here and now enable the
system to produce a suitable response, e.g. to display a map of the cinemas of
an actual instance of a place, such as Heidelberg, and to present the specific
performances of that day excluding those for which it is too late. The used
instance labels, such as here and today, are replaced by means of function calls
with actual values supplied by the respective external data providers that specify
local position system and time. Last but not least, the domain-specific models
specify how the received information is to be classified, i.e. how to resolve here
with an appropriate level of geographic granularity, e.g. on a country-, town- or
street-level, in much the same way as today is also replaced with a granularity-
specific temporal region, such as a specific date and time or even just a season,
as I will exemplify in Section 4.3.

By means of explicating such information and providing topical and contex-
tually adequate values, the system as a whole is enabled to retrieve appropriate
information from web sites or databases on what is currently playing in town or
to produce maps featuring cinema locations, without asking the user to spec-
ify time and place. Instead the requested information can be given directly.
Moreover, it also becomes possible to offer further assistance in making seat
reservation or getting there. As mentioned throughout this work, the domain
of spatial data, information and knowledge, especially as it applies to providing
spatial instructions and spatial descriptions, constitutes an integral domain for
the functionality of mobile dialog systems.

Concluding this initial discussion on the challenge of modeling and explicat-
ing implicit information faced in understanding conversational speech, I will now
turn to the task of evaluating competing semantic specifications or intention-
hypotheses, using empirically derived models of the pertinent pragmatic knowl-
edge. This experimental setting is situated in the spatial domain and will be
introduced together with its empirical data and performance results in the fol-
lowing Section 4.2.

4.1.5 Roadmap

I have presented a discussion of interlocutionary and situational effects in conver-
sational dialogs and exemplified the problem of underspecifications in computer-
directed speech given the tasks and domains of the mobile research prototypes
employed. In Chapter 3 I presented a set of experiments on speech recognition
noise and semantic ambiguities in which this contextual computing approach
relied on the contextually appropriate domain- and discourse models. In the
following, I will present a corresponding empirical examination of the problem
of pragmatic ambiguity, whereby, I will again seek to elicit the contribution of
including contextual factors in this approach, only this time these factors relate
to properties of users and situations, i.e. they become pertinent as the inter-
locutors of these systems are situated in a given real-world context. After this
empirical examination given in Section 4.2, I will assemble the individual pieces
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introduced herein into a model of pragmatic patterns in Section 4.3.

4.2 Using Situational Context for Underspecifi-
cation

As stated before, usually unaware of the potential ambiguities inherent in their
utterances, speakers let the shared context bear the burden of disambiguating
and fully specifying their messages. Furthermore, they trust in the addressee’s
ability to extract that meaning from the utterance that they wanted to con-
vey. Therefore, in order to interpret the utterance correctly, the addressee must
consider pertinent contextual factors. The speakers, again, anticipated this
and constructed the utterance knowing - quasi habitually - that certain under-
specifications are possible since the hearer can infer the missing information
and that ambiguities are resolved by recourse to the shared common ground
[Krauss, 1987].

In the following I will present findings from experiments tailored towards
identifying and learning contextual factors that are pertinent to understanding
a user’s utterance in a mobile conversational dialogue system. Such systems
frequently supply touristic and spatial information [Malaka and Porzel, 2000,
Johnston et al., 2002, Wahlster, 2003, Ankolekar et al., 2006]. In the data col-
lected in the course of the corresponding research [Porzel and Gurevych, 2002,
Schiel et al., 2002, Kaiser et al., 2006, Mögele et al., 2006] one can find instances
of phenomena labeled as pragmatic ambiguity.

In a way these examples constitute bona fide cases for contextual interpre-
tation after phonological and semantic processing has been concluded. Before
showing how further natural language analysis can incorporate specific situa-
tional factors, based on models derived from the empirically collected data, I will
provide the standard linguistic differentiations made for the showcase ambigu-
ity examined below. The aim, again, is to enable a context-dependent analysis
of the given utterances in such as way that it increases the conversational ca-
pabilities of dialogue systems, by letting them respond in a felicitous manner
more frequently than without this type of contextual computing. Considering
the two different kind of responses given in Examples 31 and 32, one finds that
the first constitutes a spatial instruction, while the latter is considered a spatial
description [Klabunde et al., 1999].

(31) In order to get to the cinema you have to turn right and follow the
Hauptstrasse

(32) The Cinema Gloria is near the marketplace on the Hauptstrasse

A spatial instruction as in Example 31 instructs the interlocutor how to get
from one location/object to a different location along a specific path, which can
be for example the shortest, nicest or fastest possible. A spatial instruction
is a felicitous response to a corresponding instructional request. Furthermore,
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natural language generation and spatial planning systems exist that can pro-
duce incremental spatial instructions for mobile users [Kray and Porzel, 2000,
Jöest et al., 2005]. A spatial description, as in Example 32, tells the interlocutor
where an entity to be localized is situated with respect to one more reference
entities via appropriate spatial relations. A spatial description constitutes an ap-
propriate response to a corresponding descriptive request. For natural language
generation systems localizations can be formulated for various object configura-
tions ranging from small scale objects [Wazinski, 1992] to environmental ones,
where also contextual factors, stemming from the user and the situation to be
described are considered [Peters, 1993, Klabunde and Porzel, 1998].

One can, therefore, say that a spatial instruction is an appropriate response
to an instructional request and a spatial description, e.g. a localization, consti-
tutes an appropriate response to a descriptive request. Responding with one to
the other does not constitute a felicitous response, but can be deemed a mis-
construal of the questioner’s intention or an intention misrecognition. In all di-
alogue systems cases of intention misrecognition decrease the overall evaluation
scores, since they harm the dialogue efficiency metrics, as the user is required to
paraphrase the question, resulting in additional dialogue turns. Furthermore,
satisfaction measures decrease along with perceived task ease and expected sys-
tem behavior.13

4.2.1 The Task: Pragmatic Disambiguation

Having introduced these different types of responses - localizations and instruc-
tions - I will now examine the type of question, presented in Example 33, to
which they constitute possible answers.

(33) Where is the cinema Europa

As one can see by looking at the empirical data - presented below in Sec-
tion 4.2.2 - in real situations seemingly simple questions, such the one given
in Example 33, cannot be understood by means of always construing them
in one specific way. To do so - when there are at least two different observ-
able ways of responding to it - means misconstruing either all instructional
requests as descriptive ones or vice versa. As it is possible to misconstrue
the intended meaning of a lexical item, e.g. whose meaning has been coerced
[Hobbs et al., 1990, Michaelis, 2001],14 one can misconstrue the overall intention

13Unfortunately, in the PARADISE dialogue quality metrics are not directly effected by
intention misrecognitions, as they are not counted as such [Walker et al., 2000].

14A set of lexical phenomenon, that have correspondingly been discussed in Section 2.7.2,
occur do some degree in the data stemming from more conversational systems. They concern,
by and large, lexical ambiguities, as examined in Section 3.4. Other forms of coercions,
such as in bridging expressions are found infrequently, while metonymies and metaphors are
not found in the data examined herein. Nevertheless, both theoretical and computational
work on texts featuring these phenomena exist [Lakoff and Johnson, 1980, Hobbs et al., 1988,
Markert, 1999, Gedigian et al., 2006]. Among these out of scope phenomenon for the systems
at hand, are also hypotheticals, counterfactuals and other mental spaces [Fauconnier, 1985,
Faucounnier and Turner, 1998], even though computational progress therein has also been
driven by constructional approaches to language understanding [Mok et al., 2004].
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of the utterance, and thereby the function of the entire declarative or interrog-
ative utterance at hand.

Therefore, to say that asking, for example, whether a where interrogative
is construed as an instructional or a descriptive request corresponds to finding
out if the questioner seeks to receive a spatial instruction or -localization as an
answer. As I have stated above and will examine below, speakers habitually
rely on shared contextual information and common pragmatic knowledge to
be employed by their interlocutor to resolve the intention behind the produced
speech-acts appropriately [Allen and Perrault, 1986, Perrault, 1989]. There are,
again, two possible ways of approaching this task in natural language processing
systems:

• One is to ignore it, viable for those cases where the application domain
features a fixed set of singular construals, for example, when it suffices
for a system to understand one type of request per interrogative. As a
consequence systems become inherently single-domain and therefore un-
scalable in that respect. Also the input needs to be restricted to a less
conversational one, e.g. by adopting controlled dialog strategies.

• The other is to attempt to resolve such functional construals appropriately,
as in the contextual computing solution proposed below, thereby making
systems more scalable and more capable of dealing more robustly with
conversational language.

As in the classification tasks examined above, a set of attributes and values
need to be defined in order to classify the individual markables. In this task the
value for each utterance, serving as markables, is constituted by the construal
of its pragmatic function, i.e. to determine what is requested in this situation.
Attributes for such a value as construal can be found by means of firstly col-
lecting and categorizing the responses one receives to these utterances in real
situations. For example, if two types of responses, e.g. localizations and instruc-
tions, are given in response to the where-interrogative featured in Example 33,
then the corresponding attributes for the value construal are descriptive-request
and instructive-request. Once the attributes are given one can seek to find the
best-fitting pragmatic construal given the observed context at hand.

4.2.2 The Data: Collection & Annotation

In the following I will present the empirical data and experiments conducted
to collect situated utterances and determine the pertinent contextual factors
that enabled the speaker to be pragmatically ambiguous and the addressee to
construe the intended meaning correctly.

Collecting Questions

In an initial data collection American native speakers - who were abroad in
Germany - were asked to imagine that they are tourists in Heidelberg equipped
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Table 4.2: Instructional request types and occurrences in Corpus ASK1

Type Example # %

(A) How interrogatives, e.g., How do I get to the Fischergasse 38 30%
(B) Where interrogatives, e.g., Where is the Fischergasse 37 29%
(C) What/which interrogatives, e.g., What is the best way to the castle 18 14%
(D) Imperatives, e.g., Give me directions to the castle 12 9.5%
(E) Declaratives, e.g., I want to go to the castle 12 9.5%
(F) Existential interrogatives, e.g., Are there any toilets here 8 6%
(G) Others, e.g., I do not see any bus stops 3 2%

with a small, personal computer device that understands them and can answer
their questions. Among tasks from hotel, train and restaurant domains subjects
also had to ask for directions to specific places. The resulting set of recorded and
transcribed utterances, i.e. Corpus ASK1, features 128 instances of instructional
requests out of a total of approximately 500 requests from 49 subjects. The
types and occurrences of the corresponding linguistic categories are presented
in Table 4.2.

As can be seen from the almost equal distribution of How- and Where-
interrogatives in the corpus, the subjects were as likely to express an instruc-
tional request using the ambiguous form of Where-interrogatives, which - this
potential construal notwithstanding - still constitutes the most frequent form for
expressing a localizational request. For example, numerous instances of Where-
interrogatives requesting spatial localizations can also be found in other corpora
such as the Map Task Corpus [Anderson et al., 1993].

The research prototypes that sought to handle more conversational speech
and serve as experimental platforms for this work, specifically the DeepMap
[Malaka and Zipf, 2000] and the SmartKom [Wahlster, 2003] systems, had im-
plemented semantic parsers capable of interpreting some utterances as instruc-
tional request and others as descriptive ones. In the Deep Map system the utter-
ances were analyzed using a semantic grammar [Gavalda, 1999] that produced
individual speech acts by unifying typed feature structures [Carpenter, 1992],
while SmartKom relied on a production system approach [Engel, 2002]. The re-
spective grammars identified categories A, C, D and E as instructional request
and Where-interrogatives of type B as localizational request. Obviously, since
all Where-interrogatives look alike form wise, regardless of they where intended
to be construed, extra-linguistic knowledge is needed to differentiate - or classify
- them according to the actual request type at hand.

Taking the corpus of instructional requests presented in table 4.2, this state
of the art results in recognizing roughly 63% of the instructional requests con-
tained in the corpus as such. Changing the grammars to treat type B as in-
structional request would consequently raise the coverage to 92%. However,
as stated above, Where-interrogatives do not only occur as requests for spatial
instructions but also as requests for spatial descriptions, i.e. localizations of the
named entity.

The problem faced is that, given only the linguistic forms without additional
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context, the parser grammars can either interpret all Where-interrogatives as
descriptive requests or as instructional requests. This implies that both sys-
tems can either misconstrue 29% of the instructional request from the corpus
as descriptive requests or misconstrue all descriptive request as instructional
ones. The corpus data therefore provides a performance-based baseline, as dis-
cussed in Section 2.6.2, of a precision of .63 in classifying instructional requests.
Also, as a result of the experimental set-up, these utterances are predominantly
discourse initial. This means that, even if discourse context could provide suf-
ficient information to disambiguate such interrogatives correctly, it could only
do against the backdrop of cohesive sequence of prior utterances and not when
the user initiates the dialog by asking such a question.

Collecting Answers

As stated above, after defining the task-specific values and their attributes one
needs to examine what factors might differentiate situations where one or the
other construal ought to be favored. Or, to put it bluntly, but in the appropriate
order, for science, having found and defined the problem, one can research possi-
ble solutions for it. As discussed above, additional information must be consid-
ered when one seeks for an appropriate construal of a given Where-interrogative.
As the data discussed below show, an approach solely based on domain context
alone, where primary distinctions regarding the object-type of the named entity
are given reductionistically, e.g. whether the form is an instance of a building
or a street, will not always suffice to solve the problem.

Given this task of finding out what could possibly matter for this question
and other questions, an new experimental design was applied to gather empiri-
cal data in a situation that is as unperturbed by the experiment itself as possible.
In this so-called Field-Operative Test, a set of operatives where hired, who went
around in the city of Heidelberg an we asked people on the street specific ques-
tions, including the slightly more polite form of the Where interrogative as given
in Example 34.

(34) Excuse me can you tell me where the Cinema Europe is

As any kind of audio- or video taping of the passerby’s answers would have
required their explicit consent, thereby changing the situation significantly, only
contextual factors describing the operative’s situation were manually logged to-
gether with a linguistic classification of the responses received by the operative.
More specifically, the operatives kept track, as in a so-called diary study, of the
following information, that can be inserted paradigmatically into variable [slots]
of the sentence:

On the specific [day], in the [time of day], I [operative], asked the
[interrogative] with the [named entity] when this [proximate] to it.

Hereby, the slots where to be filled with the type of information presented in
Table 4.3, which included also marking the gender of the person they asked and if
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Table 4.3: Contextual Information about the Situation and Interlocutor

Situational Slots Instance Fillers
day ← the actual date of the experiment
time of day ← morning, afternoon or evening
named entity ← the castle, the train station, a specific hotel,

a specific square, a specific cinema,
an cash machine and a toilet

precipitation ← rainy, overcast, sunny
temperature ← colder (< 10 degrees), medium (10 - 20 degrees)

and warmer (> 20 degrees Celsius)
accessibility ← open, closed
Interlocutionary Slots Instance Fillers
passerby gender ← male, female
passerby age ← younger (< 25 years), medium (25 - 50 years)

and older (> 50 years of age)
operative id ← the id of the field operative
operative proximity ← near (< 5 minutes-), medium (5 - 30 minutes-)

and far (> 30 minutes walking distance)
operative props ← none, with bags, with bicycle,

that person seemed to be of younger, middle, or older age to them. Analogously,
they recorded how the weather was at the time, in terms of precipitation and
temperature judgments, if the named entity was open or closed and whether
the they (the operatives themselves) were carrying bags, pushing a bicycle or
not. Last, but not least, they noted what type of answer they received and - for
some cases - indicated special features of the individual responses as free text.

In this experiment, the types of interrogatives were limited to types A, B
and F, i.e., How-, Where- and Existential-interrogatives as exemplified in Ta-
ble 4.2. Despite its low frequency in Corpus ASK1, Existential-interrogatives
were included, as questions of the type presented in Example 35, constitute a
classic example of an indirect speech act [Searle, 1975].

(35) Gibt es hier eine Bäckerei
Is there a bakery here

Over the course of several weeks two operatives collected the contextual
information presented in Table 4.3 and classified responds types to 364 ques-
tions posed. Together, 167 How-interrogatives, 128 Where-interrogatives and 69
Existential-interrogatives can be found in the resulting Corpus ASK2. In terms
of the text types received as a response to these questions, the operators classi-
fied 263 instructions, 79 localizations and 22 cases where the interlocutor gave
both text types in one hybrid response.
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Table 4.4: Types of Questions and Answers by Field Operative
Question Type A (How) Type B (Where) Type F (Existential)

Op1 117 100 31
Op2 50 28 38

Answers Instructions Localizations Hybrid
Op1 174 50 22
Op2 89 29 0

Table 4.5: Types of Answers by Questions
Question Instructions Localizations Hybrid Total
Type A (How) 165 0 2 167
Type B (Where) 60 54 14 128
Type F (Existential) 38 25 6 69

Learning What Matters

Unsurprisingly, instructions constitute the most frequent value in the corpus
ASK2, as there is hardly any other response to the most frequently asked How-
interrogatives. From those 167 interrogatives asking explicitly for directions
to places only four were not answered by instructions, but by means of the
aforementioned hybrid form. A further examination unveils that these hybrid
responses to Where-interrogatives are exclusive to situations where the goal
object was a toilet. This was also the goal in most of the 25 cases where an
Existential-interrogative was answered by means of a localization, which, given 6
hybrid responses, also means that - taking the remaining 38 cases - instructions
were also the most frequent response to this indirect speech act. Furthermore,
the corpus contains 128 responses to Where-interrogatives, which consisted of
60 instructions, 54 localizations and 14 hybrid forms. The operator-specific
distribution of the questions posed and responses received is given in Table 4.4
and I also provide an overview of the response types gathered per question type
in Table 4.5.

These data, therefore, support the previous finding regarding the prag-
matic ambiguity of Where-interrogatives and other forms, such as Existential-
interrogatives. Furthermore, they indicate that, in these situations, the employ-
ment of How-interrogatives was - on a functional level - practically unambiguous.
A more fine-grained analysis shows that additional observations, made by the
operatives, show differences in the fleshing-out of the particular instructions
given, e.g. suggesting alternative transportation or questioning some aspect
about the actions proposed. I will return to this type of underspecification in
the following Section 4.3.

As stated above, this corpus of questions and answers together with the con-
textual information collected in the field contains 128 instances of the operatives
asking the showcase Where-interrogative presented in Section 4.2.1. I have also
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provided a discussion in Section 2.4.2 on the importance of determining what
is context-variant and what is invariant for the given task at hand in natural
language processing systems. This is especially, true when looking for pertinent
contextual factors in the light of the richness of unrestricted language use in real
situations. One feasible approach to finding potential factors that contribute to
the underlying construal decisions made by the interlocutors - and can therefore
be used to predict when it is contextually more appropriate to construe a given
Where-interrogative as an instructional or locational request - is to perform
an information theoretic examination of the gathered dialogical and contextual
data [Porzel and Strube, 2002].

For this, each instance of the gathered data can be turned into a vector
format, that represents the interlocutionary and situational context - using the
attributes listed in Table 4.3 - that was observed when the interrogative was
asked together with the received response, as the correct answer. Employing the
entropy-based c4.5 machine learning algorithm [Winston, 1992], one can analyze
which factors separate the different responses and to what degree they do so.
Such an analysis, performed on the data gathered and described above, yields
several noteworthy findings, that are contained in the decision trees produced
by the learning algorithm, that relate individual contextual factors to the way
the pragmatic ambiguity was resolved.

For example, next to the fact that the object type of a toilet seem be a kind
of outlaw, which may be due to - still implicit - social factors, also permanently
accessible places, such as public squares are not localized, but serve as the goal
of spatial directions. However, objects that are currently closed, e.g. a cinema
in the morning, are answered by means of localizations, whereby a few subjects
explicitly asked the operative whether she actually wanted to go there at that
time, and hardly by instructions. Nevertheless, if the object is currently open,
e.g. a store or cash machine in the morning, people responded with instructions,
unless the goal object is near and can be localized by means of a reference object
that is within line of sight or when it happens to be in sight itself. In this case
responses, as given in Example 36, were received, which - in terms of their text
type - are localizations.

(36) Es ist da drüben
It is over there

Looking at the problem of finding an appropriate construal and, conse-
quently, a felicitous response, for a given Where interrogative, one can see al-
ready that, depending on the combination of several contextual features, i.e.
the object type, its accessibility and the given proximity to it, responses were
either instructions, localizations or clarification questions. However, please note
that by means of introducing additional contextual variations, e.g. having the
operative dress as a craftsperson carrying buckets of paint, one could find more
instructions to objects such as discotheques or cinemas even if they happen to
be closed at present. This, as stated before, is a crucial challenge for contextual
processing approaches, i.e.:
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• to select the contextual data to monitor, as the background of the frame,
e.g. the positions of the interlocutors or the situational accessibility of the
individual named entities;

• to include them in the construal process, of what is in the foreground of
the frame, e.g. a given utterance.

As noted throughout this work, what matters contextually for a given dialogical
situation depends greatly on the specific task at hand, which, in turn, defines the
domains about which specific contextual information and pragmatic knowledge
is needed. This question will also become pertinent again when seeking for a
way of describing situations formally, which I will discuss in Section 4.3. Before
doing so, I will conclude this section by describing how such dynamic contextual
observations and their consequences have been implemented in the SmartKom
framework and what the ensuing results of applying this contextual approach are
for scoring alternatives construals of the showcase ambiguity discussed above.

4.2.3 The Algorithm: Scoring Construals

Prior to casting these contextual considerations into the light of formal knowl-
edge representation, I will present how employ graphical models can be em-
ployed to relate the contextual observations made in the experiment described
above to the construal decision at hand. In this way contextual analysis can
be performed by means of including correlations and their strength observed in
the gathered data as conditional probabilities in a so-called Belief- or Bayesian
networks employing a generalized version of the variable elimination algorithm
[Cozman, 2000, Bryant et al., 2001]. Together the model’s nodes, arcs and con-
ditional probabilities represent the factors and their empirically observed re-
lations to the decision at hand. Thus, they can be employed to compute the
posterior probabilities of the decision at hand.

Generally speaking, graphical models are well-suited for combining heteroge-
neous, independent and competing input to produce discrete decisions and are
used as mathematical abstractions to model specific cognitive processes underly-
ing the way speakers process natural language [Narayanan and Jurafsky, 1998].
The simplest network possible estimating the likelihood of whether a given
Where interrogative is preferably construed as an instructional or descriptive
request, consists of three observation nodes. These nodes observe whether a
Where interrogative is at hand, the goal object is open or closed and its prox-
imity to the user. Additionally, there is one decision node connected to each
of the observation nodes - when queried this node decides whether a spatial
localizations or spatial instructions constitute a better fitting response.

As in the case of the multimodal system employed herein, interfaces to
external sensors and services provide that contextual information. For ex-
ample, within the DeepMap system [Malaka and Zipf, 2000], several relational
databases, e.g. the Tourist-Heidelberg-Content Base and a geographic informa-
tion system supply information about individual objects including their opening
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and closing times. By default, objects with no opening times, e.g. streets and
squares, can be considered always to be open, unless made inaccessible by con-
structions or other circumstances. Additionally, a positioning system supplies
the current location of the user, which is handed to the geographic information
system that can computes the respective distances and routes to the specific
objects. This, again, is an opportunity to note that this type of context moni-
toring is a necessary prerequisite for context-dependent analysis, as this enables
contextual computing approaches to make dynamic observations of the factors
determined as pertinent by the empirical data collected.

As stated before, these observations, captured by the monitoring modules
need to be converted into a contextually adequate representation. For graphical
models, corresponding nodes, such as accessibility, and their attributes, such
as open or closed, can be specified together with their conditional probabilities
using an extensible mark-up language, such as the Bayes Interchange Format
[Cozman, 1998]. Together with a given representation of the utterance to be
construed in some way, e.g. a parser’s output, they constitute the input sources
for the showcase model described herein. The resulting output constitutes a
measurement of what the given utterance should be construed as, i.e. the con-
textual fit of the possible alternative construals. This list of ranked construals,
e.g. a list of two decisions for a given Where-interrogative with their correspond-
ing scores.

The individual scores represent the probability of the questions being con-
struable as an instructive request given the evidence as well the probability of
the questions being construable as an descriptive request given the evidence.
This can then be employed to enable the system to respond with the contex-
tually better fitting type of answer. For this, the original parser output has to
be converted into the dialog system-specific representations of instructional or
localizational requests.

4.2.4 The Results: Pragmatic Ambiguity

As I have shown in Section 4.2.2 for the case of Corpus ASK1, the possible perfor-
mance baseline systems, such as the aforementioned DeepMap and SmartKom
system, misconstrue 37% of the instructional requests of this initial data set.
More specifically, due to the way the specific grammars are defined, all requests
of type B and E as presented in Table 4.2, will incorrectly be interpreted as
localizational requests and type F is not recognized at all and instances thereof
would cause the system to indicate non-understanding. In terms of performance
measures, used throughout this work, this corresponds to a precision of p = .63
on corpus ASK1.

Based on the interlocutionary and situational context data gathered as part
of Corpus ASK2, a context-sensitive approach, as discussed above, can enable
natural language understanding systems to construe Where interrogatives to
distal but accessible places as instructional requests. In the case of the original
set of Where interrogatives, found in Corpus ASK1, which had been uttered by
native speakers instructed to ask for the way, this corresponds to a lowering of
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the percentage of misconstruals to 8%. The corresponding performance gain of
.19 or precision of p = .82 can be considered quite an improvement. Addition-
ally, if one employs the data gathered for Existential Interrogatives in a similar
fashion, there is room for an additional coverage of 6%, which would leave only
2% of the initial data set as unanalyzable for the system.

I stated that the implementation of such a model needs to represent and in-
tegrate the diverse information- and knowledge sources necessary for the type of
context-dependent natural language analysis proposed herein. I have also exem-
plified - using the phenomenon of pragmatic ambiguity as a showcase problem -
how a contextual computing approach can contribute to decreasing the amount
of misconstruals or intention misrecognitions in conversational dialogue systems.
Such an enhancement of the systems’ performances hardly goes unnoticed in
user satisfaction evaluations. While it is quite easy to imagine that having the
misconstrual rate drop by 35% would be beneficial to several PARADISE crite-
ria15, it is unlikely that such a consistently picture perfect performance can be
cashed out directly from the showcase system described herein. This can be the
case for several reasons:

• additional contextual factors that were not considered herein, but are
nonetheless pertinent;

• unforeseen trade-offs with other construal decisions, both in terms of gen-
erating false positives as well as true negatives in the corresponding clas-
sifications;

• additional construals of Where interrogatives that have not been recorded
or are novel in that context.

These remaining grains of salt notwithstanding, as the approach described
herein results in a ranked list of possible construals for a given utterance together
with their estimated probabilities, one can define more than the two types of
responses described above, even without changing the network itself. This can
be achieved, for example, by introducing a minimum distance that the winner
must have from the second in line, for cases where the posterior probabilities
can be considered too close to each other. If, for example, the difference of the
posterior probabilities of the instruct - localize decision is smaller than a given
amount, the system could respond by asking the user a clarification question as
provided in Example 37.

(37) Do you want to go there or know where it is located

As stated in Section 4.2.2, this is also a type of response found in the field oper-
ative tests. This, in turn, would also enhance the conversational capabilities of
dialogue systems next to increasing their understanding capabilities and robust-
ness. I have also shown that in cases of pragmatic ambiguity the whole utterance

15This can be the case for aspect of dialog quality, such as task ease and expected behavior
as well as for dialogue metrics, due to a decrease in the number of turns necessary to achieve
task completion.



4.3. MODELING WHAT MATTERS 139

form looks alike and that, therefore, additional information and corresponding
knowledge is needed to enable dialogue systems to pick the most appropriate
reading. I have also exemplified how this can be realized employing situational
and interlocutionary factors learned from empirical contextual data of the sit-
uation and the interlocutors at hand. Such an approach is also congruent to
parsing approaches that seek to resolve ambiguities that arise during semantic
interpretation by allowing for radial categories as well as probabilistic analyses
[Bryant, 2008]. This constructional approach also includes contextual consider-
ations, focusing on discourse context as a context builder, e.g. space-building
expressions [Fauconnier, 1985].

Discourse, naturally, constitutes the central context one needs to consider
for evaluating the cognitively motivated system against empirical data stem-
ming from reading time experiments. Within this general research framework,
that is based on understanding human language before formalizing and imple-
menting the corresponding computational systems at various levels of granu-
larity [Feldman et al., 1996, Feldman, 2006], proposals have been made to in-
clude situation- and domain-specific information in the formalized knowledge
needed for a deeper understanding that goes beyond shallow parsing approaches
[Bryant et al., 2001, Porzel and Bryant, 2003].

In the final section to come, before concluding this work as a whole, I will
re-cast the question of construing underspecified utterances - as it was posed
in the beginning of this work16 and examined in an empirically driven man-
ner in the Sections above, in the light of seeking to formalize the knowledge
needed for making dialog systems more conversational. I will, therefore, focus
again on representational issues, starting - in a sense - where the discussion on
domain models stopped in Chapter 3. An additional research challenge, that
provides additional motivation therefore, stems from enlarging the scope of the
system from a multi-domain to an open-domain scenario, as in the case of the
aforementioned SmartWeb project [Wahlster, 2004].

4.3 Modeling What Matters

In this section two fundamental, but notoriously tricky, notions for multimodal
dialog systems, such as presented in Section 2.4.2, will be re-examined as one
of the central problems facing both applications in artificial intelligence as well
as in natural language processing. These, often conflated, notions are those
of context and pragmatics. Indeed, in many ways both notions are inseparable
from each other if one defines pragmatics to be about the encoding and decoding
of meaning, which, as shown in Sections 3 through 4.2, is frequently context-
dependent on many levels of analysis.

This entails that pragmatic inferences made in the process of pragmatic inter-
pretation, or pragmatic analysis [Bunt, 2000], are impossible without recourse

16Sections 1.1 and 2.7 contain the respective motivation and modeling challenge for which
the specific natural language processing tasks are displayed in Table 3.1 in Section 3.1.5.
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to contextual observations. The specific sources for these observations, in the
terminology used and proposed herein, provide contextual information that is
based on the data they monitor. The information alone - while necessary to
have - does not express what this information means for understanding and
responding to the given situated utterance that triggers the ensuing inferences.
In more metaphorical words, any given cake of contextual information does not
specify how it wants to be cut.

As I have stated above, the distinction between pragmatic knowledge, which
is learned and stays relatively stable, and contextual information, which is
observed and can change rapidly, is important for designing scalable context-
adaptive systems, which seek to interact with human users and to collaborate
intelligently with them. Having discussed and examined the role topical contex-
tual information in the explication task presented in Section 4.1.4 as well as for
the showcase of resolving pragmatic ambiguities in Section 4.2, I will now return
to the modeling challenge of capturing the needed pragmatic knowledge of how
these observed things matter. At the same time, the focus of the discussion
will stay on the task of understanding conversational utterances, which become
almost chronically underspecified in the open-domain scenario of the SmartWeb
project.

As mentioned in the introduction, advances in mobile hardware, communi-
cation and sensing technologies and the evolving web technologies set the stage
for entirely semantics-driven approach to connect mobile multimodal human-
computer interfaces, such as presented above, to web-based services. Brought
together in one ontological framework these interfaces and services provide con-
versational interfaces for interacting with and accessing semantically described
information. Based on these developments the SmartWeb project seeks to re-
alize part of the vision of ubiquitous interaction by laying the foundations for
multimodal user interfaces to access distributed and composable Semantic Web
services. In the following I will present and motivate the ontological choices
made in constructing the representational backbone of the system, especially
where they are motivated by the need for describing the pragmatic knowledge
pertinent for situated questions about - more or less - anything.17

4.3.1 Ontological Choices & Patterns

Both for theoretical reasons, to be discussed below, as well as a response to
issues regarding (re-)usability, interoperability and scalability, recent efforts in
ontology engineering are based on clearly defined modeling principles, explicit
ontological choices and the employment of modeling patterns.18 One such prin-

17In this work, I will not describe on the statistical question answering pipeline that is
employed in the absence of corresponding domain knowledge [Ankolekar et al., 2006], and
only point out that the continuous addition of specific independent domain ontologies and
the parallel work on extracting semantics from web information and textual data, support
the view that, by making the appropriate ontological choices, scalability and portability of
semantic technologies increases.

18This lead to corresponding recommendations by the world wide web consortium’s Seman-

tic Web Best Practice Group, specifically the Ontology Engineering and Patterns Task Force
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ciple choice concerns the basic nature of the ontology to be developed, i.e.
whether it is descriptive or revisionary. While revisionary ontologies attempt to
develop models of the world-as-is, descriptive ones intend to model the world-
as-perceived by embodied humans. Since the latter consequently look at human
language and cognition, they are populated by ontological categories that are
independent from evidences stemming from other areas such as physics and
astronomy.

A revisionary ontology, however, by and large ignores linguistic and cognitive
aspects to avoid ontological assumptions that would be considered debatable on
scientific grounds. To provide a borrowed example [Cimiano et al., 2004], that
looks the common notion to make a descriptive differentiation between things
that are in space and events that happen over time. In a revisionary setting
time can be only another dimension for objects, e.g. based on relativity theory.
Consequently, the common sense distinction between things that are and things
that happen should be abandoned for a view according to which everything
extends in space and time.

Another central ontological commitment, is to make the ontology reduction-
istic or multiplicative [Masolo et al., 2003]. This question in a sense extends the
Type-Role distinction discussed in Section 3.1.4. The choice hereby is either to
allow for an entity in space and/or time to be more than one type of thing, i.e. to
be multiplicative, or to disallow it and to be reductionistic. In the reductionistic
case an entity can, for example, either be a building or a hotel, but not both,
while multiple isa relations to both building and hotel are possible in the mul-
tiplicative case. I will motivate the choices made in the SmartWeb framework
below, after pointing out that it constitutes a descriptive and reductionistic
ontology.

Even more recently the notion of ontological design patterns has quickly be-
come a central issue in ontology engineering research. In its original form the
first type of pattern, so called logical patterns specifies ways of solving standard
ontology modeling problems, such as how to model n-ary relations or how to
employ subsumption makros [Gangemi, 2005]. The second type, so called con-
tent patterns feature applications of logical patterns, and as an instance thereof
is composed of logical patterns and combinations thereof. Content patterns are
concerned with specifying ways of representing everything that is not given by
the logical vocabulary itself, while, for example, isa relations come with the
logical inventory, part-of relations do not and are, consequently, part of the
domain-specific content of the ontology.

4.3.2 Foundational and Ground Knowledge

Another central aspect in ontology engineering, for which I presented an ini-
tial exemplification in Section 3.1.3, is the choice of a foundational layer, which
is primarily used to guarantee harmonious alignment of various independently

[W3C-OEP, 2005] as well as by other international ontological standardization efforts, e.g.
with the WonderWeb project [WonderWeb, 2003].
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crafted domain ontologies and, moreover, to enable future re-usability. This
foundational layer provides the basic ontological distinctions, axiomatizations
and design patterns for the development of further domain-independent and
domain-specific layers of ground ontologies as well as additional layers of de-
scriptive ontologies, which I will discuss in Section 4.3.3 below. This important
distinction is primarily motivated as a corresponding ontological separation en-
ables an ontology engineer to express reified contexts [Rast, 2007] at the level
of concepts or relations.

That means one can employ the same modeling instruments, including logical-
and content patterns, for describing entities as one employs for modeling ground
entities. This, in turn, circumvents the need to resort to other logical instru-
ments for describing these entities, such as to formulate so-called theories about
the ground model. As exemplified in Section 2.2, including theories about possi-
ble worlds or - in a weakened form - modal propositions about possible situations
[Barwise and Perry, 1983], requires universal algebra to express the semantics
of the logical forms [Whitehead, 1898].

As stated above, the alternative approach, pursued herein, provides to pos-
sibility to employ the logical-patterns, i.e. the specific logical vocabulary, of
the given foundational ontology, in the same way one does for the ground part.
This approach, consequently, requires the employment of a foundational layer
for linking the ground and descriptive branches of the integrated ontology, as
depicted for the solution taken in the SmartWeb project in Figure 4.2. In this
case the foundational layer of the SmartWeb Integrated Ontology (SWIntO) is
based on the highly axiomatized Descriptive Ontology for Linguistic and Cog-
nitive Engineering (DOLCE) [Masolo et al., 2002, Gangemi et al., 2002]

DOLCE features various pattern-based extensions called modules, e.g. an
ontology of plans, an ontology of information object as well as module for ex-
pressing reified contexts - or descriptions - called Descriptions and Situations
[Gangemi and Mika, 2003], which will be described more closely in the following
section. Additional to this foundational and descriptive layer, a ground domain-
independent layer is included which consists of a range of branches from the less
axiomatic Suggested Upper Merged Ontology (SUMO) [Niles and Pease, 2001],
which is known for its intuitive and comprehensible structure. Additionally, the
SmartWeb integrated ontology features several ground domain ontologies, i.e.
a SportEvent-, a Navigation-, a WebCam-, a Media-, and a Discourse-Ontology
[Oberle et al., 2006].

4.3.3 Logical- and Content Patterns

As discussed above, the DOCLE module Descriptions and Situations provides
a logical- and content pattern for representing reified contexts and states of af-
fairs [Gangemi and Mika, 2003]. In contrast to ground entities, such as physical
objects or events, the extension of a descriptive ontology to include different
conceptualizations of these entities poses a challenge to the ontology engineer.
The reason for this circumstance is the fact these that conceptualizations are
taken to assume meaning only in combination with some other entity. Accord-
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Figure 4.2: Foundational, Ground and Descriptive Ontological Layers

ingly, as discussed above, their logical representation is generally set at the level
of theories or models and not at the level of concepts or relations.

In order to avoid potential terminological conflations and express is formally
a descriptive statement is about something, e.g. it represents the meaning of
some thing in a given context, while a ground statement is about the thing itself,
e.g. for classifying instances within a given domain. In this modeling framework
a situation is, consequently, clearly defined as a set of instances: For example, a
situation could be constituted by the instances of a specific person, e.g. Rainer
Malaka, a specific motorcycle, e.g. his African Twin, and a specific country
road, e.g. the B3 in Germany, at a specific time, e.g. a certain day when it
was sunny and 22 degrees Celsius. When seeking to describe this situation one
would somehow like to express that Rainer was a motorcyclist, the motorcycle
was the means of locomotion and the road was the path that he took on a nice
day. In some other context however, e.g. that of an accident - where one might
seek to describe him as the victim and the motorcycle as the means of injury -
or in an environmental description - where he might be the culprit changing the
weather, as the victim, by means of burning gasoline while driving on the B3.

In any case one would seek to refrain from simply multiplying the ground isa
relations to express that, next to being a person, he is also a motorcyclist, vic-
tim, culprit and so on. Alternatively, employing the type role distinction applied
in Section 3.1.3 leads to an explosion of roles for each domain-specific type that
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would range over potentially all domain ontologies in a truly conversational open
domain system. This approach, next to the fact that the roles proposed origi-
nally [Russell and Norvig, 1995] where not intended to serve as an instrument
for describing the various context-dependent construals or conceptualizations of
one entity that all hold true for it at the same time.

Next to avoiding these issues, employing a dedicated descriptive pattern
for a context-dependent reification of ground entities, that is based on the
foundational logical patterns for the contextual computing approach pursued
herein yields additional engineering advantages. For example, the employ-
ment of design patterns, even by means of refactoring existing ontologies into
pattern-based ones, has been shown to be beneficial for ontology quality when
measured in terms of performance on a given task, e.g. ontology alignment
[Svb-Zamazal et al., 2008]. Most importantly, however, a descriptive pattern
for context-dependent reification, i.e. a coding of the functional meaning of
some thing expressed in the dialogical terminology, introduced above, is to rep-
resent a pragmatically analyzed situation. It, therefore, enables the ontology
engineer to express that, using the example provided above, someone is playing
the functional role of a motorcyclist, who driving on a country road, that plays
the role of the path on a day where the actual weather featured values that
made it relatively nice.19

In the following I will consequently introduce the logical- and content pat-
terns employed for capturing the pragmatic knowledge describing, for example,
the functional roles that ground entities can play in given construed course of
events which features contextually pertinent parameters whose values are part
of the ground model in much the same way as courses of events are linked
to ground processes and functional roles to objects. Before this, I will point
out that - in its motivation - this approach to model non-physical concep-
tualizations not at the level of theories or models but at the level of con-
cepts or relations [Gangemi and Mika, 2003], i.e. in the same way as phys-
ical objects and other first-order entities, is also based the neurological in-
sights concerning embodiment and cognitive linguistic insights showing how
we manipulate conceptual entities, as mental models, quite similarly to the
way we manipulate physical entities as embodied beings. This, in turn, be-
comes relevant when seeking to flesh out what matters as discussed in Sec-
tion 2.2. Pragmatically speaking, also in many cases even the relations and
axioms modeled and applied for ground physical entities are also valid for non-
physical context-dependent conceptualizations thereof. As shown in linguis-
tic analyses of metaphorical and metonymical mappings between either the
physical source and conceptualized target domain or different mental spaces
[Lakoff and Johnson, 1980, Fauconnier, 1985, Mok et al., 2004].

19As is it bad practice to employ the term relative without specifying what it is relative
to, let me add that it is precisely what is being captured by the over all pattern, i.e. that
some specific observed values can mean good weather for motorcycling or bad weather in some
other context.
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Figure 4.3: Model for the description ”Locomoting”

The Description and Situation Patterns

As stated and motivated above two additional modules of DOLCE were added to
the integrated SmartWeb ontology, i.e. the Descriptions and Situations module
and the Ontology of Information Objects, which both can be seen as part of
a larger undertaking to model tasks [Guarino, 2006, Gangemi et al., 2004]. In
the form employed herein the Descriptions and Situations framework provides
an ontological model of reified contexts that comes in the form of an ontology
module. As explained above, it can be considered an ontology design pattern
for domain ontologies that require contextualization.

The specified logical- and content patterns of the Descriptions and Situations
module feature three descriptive entities, i.e. the classes Courses of Events,
Functional Roles and Parameters [Gangemi and Mika, 2003]. These classes are
linked by means of relations, which specify that:

• Parameters are requisite-for their functional roles and Courses of Events;

• Functional Roles are the modality-targets in the conceptualized Courses
of Events.

Finally, the classes can be linked to the ground entities they describe, via the
following relations:

• Courses of Events are sequenced-by Perdurants, i.e. processes within the
ground ontology, such as Motorcycling;

• Functional Roles are played-by Endurants, i.e. objects within the ground
ontology, such as of type Person;

• Parameters are valued-by Regions, i.e. phenomena that are sensed on
scales, such as Temperatures.

For endowing the ground ontologies with a pragmatic layer of context-specific
descriptions, this elementary pattern was employed to construct an underlying
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model of pragmatics patters as shown in Figure 4.3, describing how the ground
entities partaking in a situation are reified in their specific contextualized scene.
In order to further illustrate and show the model at work, I will present indi-
vidual showcase applications thereof within the SmartWeb open domain dialog
system.

4.4 Pragmatic Patterns

As stated above, especially for mobile multimodal dialogue system contextual
information is of central importance as the user expects the offer of topical
services, e.g. while navigating through a dynamically changing environment
that features changing precipitation- and temperature levels and/or traffic- and
road conditions. This alone makes the adequate inclusion of contextual factors
intertwined with the corresponding pragmatic knowledge inevitable for the task
of natural language understanding.

The necessity to couple extra-linguistic situative information with pragmatic
knowledge in the domain of spatial navigation has been demonstrated above
as well as in other domains, such as sports [Loos and Porzel, 2005]. In the
spatial domain of instructions I showed how underspecified information, was
systematically explicated and considered in responding to situated interrogatives
as given in Examples 4 and 33. If, for instance, the contextualized question-
answer data, gathered as described in Section 4.2.2, indicates that public means
of transportation are included in the spatial instructions when it was raining and
walking there when it was dry, the corresponding pragmatic knowledge should
explicate that walking can play the functional role of means of locomotion as a
modality target for a given course of event, such as getting to some place, when
the weather permits, i.e. the requisite parameters describing the environment
are given. Analogously, one can express that public forms of transportation,
such as busses or trams, can play that role when it is raining.

As already exemplified above, in the case where the means of transportation
is given, such as when someone on a motorcycle requests directions to some
place, the same requisite environmental parameters can serve to explicate that
in one context curvy country roads can play the functional role of a path in
dry and warm conditions instead of straight highways in case of cold or wet
situations. While these common sense examples may illustrate some striking
cases, a closer examination of question-answer dialogs shows that virtually every
utterance becomes underspecified in an open-domain context.

Looking, for example, at the questions shown in Examples 38 and 39, one
can find that - taken out of context, e.g. without knowing the even the domain
at hand, i.e. which type of sport or entity - is talked about, it is hardly possible
to answer these questions directly.20

20In a side experiment students were asked a given set of completely underspecified ques-
tions, such as the ones. Despite the variety of answers received, there were some frequent
common answers, for example almost all of the German students responded with Schumi to
the question Who is the fastest?, referring to the current Formula I champion at the time.
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(38) How often was Germany world champion?

(39) Where is the Albatross?

As I have noted throughout this work, such a problem can be handled by
either restricting natural language understanding systems to a pre-specified do-
main and hard-coded mappings that reflect the implicitly assumed context of
the system. One could also shifting the pragmatic explication and specification
task back to the user, e.g. by requesting to further descriptions of what ground
entity is referred to. This, again, produces less efficient, more cumbersome und
not very conversational dialogs.

It is important, again, to keep in mind that while it is necessary for context-
adaptive systems to access services that provide up-to-date weather and traffic
information or to keep track of the current discourse domain, it is not sufficient
to solve the problem. Returning to our example it would, of course, be trivial
to configure a system such that a hard-coded mapping guarantees that the
question’s meaning is mapped to the domain of soccer or that Albatross must
always refer to a bar in Berkeley.21 However, such approaches neither scale
nor are applicable for open-domain systems. The solution proposed in this
approach to contextual computing is to providing an explicit descriptive model
of capturing the pragmatic knowledge of what is talked about.

4.4.1 Implementing Pragmatic Patterns

One implementation choice that arises hereby concerns the question of how
fine-grained such a description and relation hierarchy should be that links the
corresponding descriptive entities, i.e. courses of events, roles and parameters,
to elements of the ground ontology. Hereby, also the classic trade-off between
modeling and axiomatization comes into play. In the latter case, i.e. if a cor-
responding axiomatization should bear the burden of differentiating the prag-
matically described entities at their respective level of granularity, then a cor-
responding axiomatic pattern for any description of type SituationDescription
(SD) via the predicate is-pertinent (isp) to the respective descriptive entities, as
given in Axiom 4.1.

∀(x)→ SD(x)→ (4.1)

isp(SD, Region)∧

isp(SD, FounctionalRole)∧

isp(SD, CourseOfEvents)

Alternatively one can shift the burden to the modeling side an specify individual
relations for each pragmatic description of a situation, which can be achieved
by encoding the class label of the specific pragmatic pattern into the relations

21And even that Berkeley describes the town of Berkeley in California, if one wants to be
explicate, what is left pragmatically explicit even further.
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it features to the ground entities [Loos and Porzel, 2005]. In either case this
application of the Descriptions and Situations module for explicating implicit
information extends the notion of deriving an instance - in this case a situation
- from a description by modeling a pattern of pragmatic knowledge.

For example, in describing the ways in which context of what is talked about
can influence what constitutes an appropriate ground entity, for example for
grounding the expression world champion. As all that is given so far is that
it plays a functional role of a rheme in a corresponding utterance, where the
theme is implicit. The linguistic notions of Thema and Rhema, employed here as
defined by so-called Prague School of linguistics, which concerned itself with the
communicative pragmatic structures of sentences [Ammann, 1928], correspond
to the notions of topic and comment in examinations of information structure
[Lambrecht, 1994]. Applying this approach to expressing what is, somehow,
contextually given, as the theme, i.e. what is known - and expressing what is new
as the rheme for reifying questions can be seen as an attempt to find descriptions
for underspecified phrases. This effort has also becomes more feasible than
before - not because language-use and situations did not happen together before
- but since contextually pertinent information can be observed and classified as
it happens together with a given question.

Again this classification can either be informed by empirically gathered and
analyzed data, as shown in Section 4.2, or by expert knowledge and includes -
next to situational and interlocutionary context includes also observing domain-
and discourse context as discussed in Chapter 3. Together these types of con-
textual information can serve to situate a given utterance, such that is become
a question of finding the appropriate descriptive pragmatic pattern. As for
the question given in Example 38, if one regards the functions of Thema and
Rhema as complementary, where one needs to find the theme, the implicitly
known, given the new rheme that is in the foreground. Note, that no discourse
element is a priori a theme or a rheme. Furthermore, this may change with
every new utterance; i.e. rhemes usually become the themes of subsequent ut-
terances. Speakers in an everyday situations can also employ context-dependent
pragmatic knowledge about what’s known and what’s new, when asked to spec-
ify it in given utterances [Loetscher, 1984].

In our Example 38 the theme - i.e. what is already known - is the discourse
domain, which could be the ground entity Soccer or any other sport. As it
is not explicitly expressed in the utterance, it must be inferred by recourse to
context; in this case a prime supplier of information is the discourse context, but
also situational factors, as when the interlocutor location is in a specific sport
facility. The rheme is world champion, which is the new (unknown) element of
the utterance. Using the descriptive patterns one can now describe that when
someone asks a question - for which a description modeling Interlocating as a
course of event which sequenced by the ground real world process of Questioning.
The descriptive entity that plays the functional role of the Rheme, in this case, is
contextually dependent on the instantiation of the parameter Theme. In short,
what the user actually wants know depends on the context of what is assumed
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to be known.22

As this example shows, one can capture a seemingly simple piece of prag-
matic knowledge, i.e. that what a person wants to know can depend on what
is already known in a given situation, on a very general level. Moreover this
model scales for both multi-domain or open-domain systems, as it allows any
domain to value the parameter of Theme, any object to play the functional role
of the Rheme in a course of events which sequences Interlocating, which then
describes the process of asking a question.

4.4.2 Applying Pragmatic Patterns

As mentioned above this model of pragmatic knowledge and the corresponding
component for context-dependent processing seek to enhance the conversational
understanding capabilities of dialog systems. As question such as How often was
Germany world champion? poses a challenge to conversational open-domain
dialog systems, since the theme of the utterance is not made explicit by the
utterance. As the application of the needed pragmatic knowledge should - in
contrast to controlled dialog systems - enable the user to be able to make ut-
terances in any domain of interest without placing the burden of explicating
the pertinent contextual factors and of describing the situation on him or her.
Therefore, a systematic and scalable way of using the pragmatic knowledge so
that a correct or felicitous answer to such questions can be found and to do
what any intelligent interlocutor has to do, keep track of the shared context
and make the appropriate inferences.

In order integrate this knowledge with actual contextual observations, which
as expressed in the second statement and can be regarded as an observational
task assigned to the implemented context model. Nevertheless, as discussed in
Chapter 2 most systems assume an implicitly given domain context or employ
various shortcuts to deal with problems of underspecification. One reason is,
simply, that takes quite an effort to keep track and make sense about what is
happening and what is being talked about or, in our terminology, to observe the
given ground instances of descriptive parameters, whether they be an utterance
specific theme observed as discourse-specific information or the weather condi-
tions as situational-specific information, which - as all contextual information -
can change dynamically and even rapidly.

Fortuitously, in a mobile dialog system contextual information is of high
significance for various reasons, as a user expects the offer of topical services,
while navigating through a dynamically changing environment, that involved
changing precipitation-, temperature or gasoline levels as well as traffic- and
road conditions. This makes the adequate coupling of pragmatic patterns and
contextual information both feasible - and, as discussed herein, necessary for

22Please note that this does not have to be discourse context alone, as such a question in
a discourse initial position must be decontextualized by the other context types, e.g. both
interlocutors are watching a soccer game on TV or - if no contextual clues are available -
would, most likely, prompt a sort of what do you mean? reply unless some other evoked
default context is chosen.
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enabling context-sensitive processing that produces more conversational and fe-
licitous interaction. The motivation for coupling contextual information with
pragmatic knowledge in the domain of spatial navigation has been discussed
above in Sections 4 and 4.2. Existing navigation ontologies contain ground
route models [Malyankar, 1999], which do not capture contextual dependencies.
Given a single application-specific context, e.g. guiding only pedestrians -always
on foot and always on the shortest path, one can employ context-free ground
ontologies. However, already if the system seeks to make use of the interfaces
offered by today’s route planning and navigational web services, one must pro-
vide the means to describe what the right settings are depending on the actual
situation at hand. Moreover, one wishes to do so in the least invasive way, i.e.
by minimizing the amount of parameters and specific settings that have to be
obtained by bothering the user.

Obtaining Utterances in Context

In order to allow systems such as the SmartWeb prototype to employ a wide
range of internal and external services and information providers a seman-
tic layer was implemented that extends the ontology of information objects
[Oberle et al., 2005], which itself is used to express descriptions by means of
some form system. The context model used for observing contextual informa-
tion is implemented as a module within SmartWeb’s dialog manager. It inter-
acts with the dialog manager’s middle-ware. As stated above, in the entirely
semantics-driven approach also the internal communication format in SmartWeb
is based on RDFS, which I introduced in Section 3.1.1, and, therefore, consists
of corresponding RDF instance-documents. The employed RDF schema was
based on the world wide web consortium’s proposed standard for representing
multiple interpretations of multimodal input, it constitute, therefore, an onto-
logical version of the extensible multimodal mark-up language (EMMA), which
is called SWEMMA [EMMA, 2004, Reithinger et al., 2005].

In a SWEMMA document, as a collection of RDF instances, which are also
called triples, the actual input and the possible interpretations are consequently
represented as instances of the discourse- and a respective domain ontologies.
Within the dialog manager these documents are stored as assertions. All dialog
components can access these assertions via pointers to the root instance of an
interpretation provided by the middleware. Each dialog component then adds
its own interpretation to the EMMA document.

As described above, the context model receives the semantic interpretation
via the middleware, after it has been processed by the modality specific recog-
nizers, e.g. for speech and gesture, and their respective analyzers. The task for
the model is to change the semantic representation in such way that context-
sensitive explications are formally represented, as if the user would have done
so explicitly.

As I have stated before in a mobile dialogue system contextual information
is of central importance and makes the adequate inclusion of contextual factors
to be intertwined with the corresponding pragmatic knowledge necessary for the
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achieving the task of responding felicitously to the user’s input in a way that
scales to more than one type of situation. Before, showing how the modeled
pragmatic patterns are matched against the observed contextual information,
I will present the range of data and information available to the implemented
context model.

Adding Context to the System

The interface to the sensor data encapsulates so-called context sources. These
context sources are identified by respective hierarchically organized concepts
from the ground ontology and provide the context information as instances of
these concepts. In other words, this design pattern for representing contextual
information provides a set of instances together their ground conceptualization
as an anchor. Below, the set of sources encapsulated in this way are given:

• A global position system is connected to the user device and delivers cur-
rent location data to the dialog manager, from where it is passed as a
message to the context model in regular intervals. This spatial context
source employs also an external web service to resolve the exact address
using inverse geocoding.23

• A weather service context source encapsulates and polls a web service for
current weather conditions depending on the current location or any other,
e.g. as intended goal locations specified by the user.

• A traffic service encapsulates and queries a web service for current road
conditions, depending on the source and goal locations specified by the
user or the system.

• A time context source encapsulates time information from the real time
clock

• A set of external sensors in vehicles, such as featured in the prototype car
and motorcycle provided by the respective manufacturing project part-
ners, are encapsulated as context sources. They observe information, for
example, concerning gasoline levels, whether the tires are spinning or not
as well as additional warnings.

• A discourse and domain context source provides pertinent information
from current discourse- and domain context, as discussed in Section 4.1.3
in the light of the experiments presented in Chapter 3.

Again, let me note, that calling this input information implies that the raw
data monitored has been cast into some - more or less - structured representation
that classifies it. As in the case of the SmartWeb system, this frequently entails
mapping an existing representational format, such as specified by the web service

23To avoid unnecessary network and computational load, this information can optionally
be cached and updated only if the location has changed significantly.
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description language [WSDL, 2001], into the corresponding system’s ontological
vocabulary [Oberle et al., 2005]. As in the case of ground entities of type Region,
the ontological model can provide the corresponding classifications, which, in
turn, then constitute the ontological ranges of the valued-by relations of the
descriptive pragmatic patterns featuring the corresponding parameters.

As the information from the context sources are represented as classes from
the ground ontology it provides instances of these classes or subclasses thereof.
For example, the location context source specifies a SpatialRegion and delivers
instances of City as a descendent of this ground region. I will, in the following,
present, how these ground representations and descriptions are employed by the
context model.

Adding Pragmatics to the System

For finding the appropriate pragmatic descriptions, the context model performs
two passes over the instances contained in the SWEMMA documents found via
the middleware, as discussed above. As these instances are part of the ground
ontology and are logically connected to the respective descriptive entities via
the aforementioned relations:

• sequenced-by that features the logical range of ground Perdurants, e.g.
processes within the ground domain ontology, such as Motorcycling;

• played-by that features the logical range of ground Endurants, e.g. objects
within the ground domain ontology such as CountryRoad;

• valued-by that features the logical range of ground Regions, e.g. phe-
nomenon within the ground domain ontology such as Temperature.

As defined in the core design pattern, described in Section 4.3.3, these rela-
tions are associated to the respective descriptive entities featured in the prag-
matic patters, which are of type CourseOfEvent, FunctionalRole or Parameter.
These axiomatically or associatively connected entities provide a set P of situ-
ation descriptions, SD1 . . . SDn, as discussed and exemplified in Section 4.4.1.
Consequently the entire set P , then, constitutes the descriptive pragmatic on-
tology, which I labeled PrOnto in Figure 4.2. As each descriptive entity Ei

serves as the domain for the one of the set of relations listed above, it has - as
its range - a specific ground entity Gi connected to it. As implemented herein,
an individual typed ground entity Gi can evoke as many individual descriptions
from the set P as the number of connections it features.

To give an example, supposing a ground entity Gx is modeled as the range
of two valued as relations to two different descriptive entities Ex and Ey of type
Parameter, which are contained in two pragmatic patterns SDx and SDn of
type SituationDescription, then Gx can be said to evoke the pragmatic patterns
SDx and SDn. The number of potentially pertinent pragmatic patterns, which
consist of descriptive entities and their relations, therefore, can be defined as
the number of times where the ground entity is found in at least one of the
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ranges featured by one of the descriptive entities contained in the patterns. In
other words, if the ground object does not serve as the range of any descriptive
entity featured in a specific pragmatic pattern, it does not evoke that pattern,
because it neither sequences a course of event, plays a functional role, or values
a parameter in the context-specific model. If it does so, however, then it might
indicate the context-specific type of situation at hand, because it could sequences
a course of event, play a functional role, or value a parameter in it.

In the first pass, all correspondingly evoked descriptions are collected and
put in an active patterns pool. If no pragmatic patterns are applicable the
set of assertions that represent the multimodal input are not modified and the
message is returned to sender via the middleware without any changes. As
defined above, for a pragmatic description to be applicable means that any of
the ground entities contained in the SWEMMA document has been connected
to a descriptive entity of type CourseOfEvent, FunctionalRole or Parameter via
the respective relations sequenced-by, played by or valued by.

This now sets the stage for the contextual processing operations needed for
the last two of tasks that I presented and specified as contextual computing
tasks in Section 4.1.4, and which are listed again below:

• selecting the best-fitting description

• explicating hitherto implicit information

In discussing these final tasks, I will re-cast, the problem of pragmatic under-
specification and -ambiguity, in the light of the presented pragmatic model and
its application in the SmartWeb project.

Finding the Best Descriptions

Returning one more time to the showcase of pragmatic ambiguities, as given
in Example 33 and discussed in Section 4.2, it is now possible to express two
distinct descriptions:

SDi for describing an situation featuring a InstructionalInterrogative as a sub-
class of the more general description for Interrogative situations, as ex-
emplified in Section 4.4, which itself is a subclass of the core descriptive
entity CourseOfEvents described in Section 4.3.3.

SDl for describing an situation featuring a LocalizationalInterrogative, which
also constitutes a subclass of Interrogative and CourseOfEvents.

If in both descriptions the classes InstructionalInterrogative and Localiza-
tionalInterrogative are the domain of a sequenced-by relation that features the
ground entity of a WhereInterrogative from the corresponding discourse ontology
as their range, both descriptions are consequently evoked as exemplified above.
Unlike each other, however, the descriptions posited here feature distinct ranges
for the pertinent classes of type Parameters. As types of Parameters, such as
Accessibility or Proximity can feature different ranges in individual descriptions
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- either as a result of the employed logical pattern exemplified in Axiom 4.1
or the corresponding content pattern discussed in Section 4.4.1 - they can be
valued-by different ground regions. The individual ground entities of type Re-
gion that serve as individual ranges, can be determined and classified based on
learning experiments, as in the case of finding the values for the attributes acces-
sibility and location, as discussed in Section 4.2.2, or determined and classified
based on domain expertise. Analogously, as I will discuss further below, they
can feature classes of type FunctionalRole which describe the roles the modeled
objects play and what ground objects they range over, e.g. Cinema or even
Toilet. Moreover, they do so whether the entities are explicitly mentioned or
not.

Having these two distinct descriptions in the pool of active patterns, in other
word means a situationally observed ground entity that was classified as an
instance of a WhereInterrogative by means of the modality-specific analyzers
can be construed as one or the other, making it pragmatically ambiguous. The
next logical step, then, is to check which type of Interlocating can be specialized
given the individual range restrictions of the descriptive entities contained in
them, against the contextual information observed and mapped unto the ground
vocabulary as described above in this section. The general notion behind this is
that the more specialized a potential active pattern can become - depending on
what instances of ground entities can actually be observed as real participants
of the situation, the more pertinent contextual evidence there is for the most
specializable description being a plausible description of the situation.

In this implementation a sequential collection of all possible specifications for
all still specifiable active patterns is performed, by selecting one participating
ground entity after the other and checking it against the range of the yet unspeci-
fied descriptive entities in the active patterns pool. As a result an underspecified
descriptive entity can, consequently, become specified or stay underspecified in
the process. After all participants’ restrictions have been checked, the remain-
ing underspecified descriptive entities can be considered unspecifiable given the
contextually observed information at hand and all specifiable ones have been
specified.

While checking each participant’s restrictions - albeit in a sequential manner
- all active pragmatic patterns are taken out of the pool and returned to it after-
wards. Each of the competing patterns thereby remains active as long as there
are other pertinent participants to be checked.24 If there are no more specifiable
descriptive entities this then also means that all participants’ restrictions have
been checked against the active patterns, which include can also alternative
specifications of the same pragmatic pattern. In all case a specific amount of
each pattern’s descriptive entities has been specified more or less specifically,
which provides the context model the means of selecting the most specified one

24In order to determine this pertinence the graph is traversed inversely matching the given
range restriction’s type, i.e. its super-class against the ground branches of the respective
domain ontologies to find potential fillers that are, then, included in the set of pertinent
participants, which can lead in some cases to multiple ways of grounding a descriptive entity
[Babitski, 2004].
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- or the most active one as the best-fitting pragmatic pattern for describing the
given instance of a situation at hand. This pattern can, then, be considered as
the most plausible SituationDescription or the winner of the set P .

In several ways this procedure is analogous to the approach for scoring alter-
native semantic representations presented in Section 3.2.3, only this time one can
speak of alternative pragmatic representations. Please also note that the seman-
tic representations contain ground entities while their pragmatic counterparts
contain descriptive entities. As there are also multiple ways of implementing
the corresponding scoring approaches presented herein, there are also multiple
alternative approaches feasible. One can, for example, adopt a semantic-density
based approach [Bryant, 2003] for a corresponding measurement of pragmatic
density or even re-use the graphical models described in Section 4.2.3, which can
be achieved by means of linking ontologies to Bayesian networks [Ding, 2005].
Before returning the these alternative approaches and corresponding experimen-
tal examinations thereof, analogous to the ones performed for the algorithms
employed herein, I will conclude the description of this implementation, by the
last step in the contextual processing pipeline, i.e. the explication that ensues
with selecting a most plausible pragmatic pattern.

Augmenting the Ground Representations

In this last step, triples representing the specified ranges of the other descrip-
tive entities of the most plausible pattern, but not given in the corresponding
ground structure already, will be added to the RDF instances of the SWEMMA
document that evoked the winning pattern. This, again, is familiar, as I have
exemplified the corresponding operations, which can also be performed on XML
documents, in Section 4.1. When the context module can apply its pragmatic
knowledge as described above, it will pragmatically enhance the given semantic
representation of the user’s utterance in a context-dependent manner. This is
done by specializing a concept or inserting, hitherto implicit, instances into the
structures representing an interpretation of the user’s multimodal input.

Ultimately the included information arrives via the encapsulated connections
to the individual context sources, that provide situational and interlocutionary
information as well or information about the domain- and discourse-context at
hand. An overview of the employed sources is given in Section 4.4.2.The module,
therefore, communicated with web services for topical weather, road conditions,
and the current position just as can communicates with other components of
the system to obtain discourse-specific information or domain-specific semantic
measurements on ground domain models as discussed in Chapter 3.25 In this
way the module can apply the pragmatic knowledge to enhance the semantic
representation of given input.

25The module is, therefore, connected to other dialog processing modules, i.e. for
speech interpretation, multimodal fusion and dialog management as well as the reaction
and presentation manager and the EMMA Unpacker/Packer that handles communication
with the other multimodal recognizers and the semantic mediator which manages access to
specific knowledge services, within SmartWeb’s multimodal dialog processing architecture
[Reithinger et al., 2005, Porzel et al., 2006c].
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On the implementation part, it can also be noted that the model applied
above featuring various descriptive pragmatic patterns for different domains,
e.g. navigation, discourse or sports. Each description may span over various
domain ontologies, e.g.:

• employing the Navigation Ontology and Discourse Ontology to model
pragmatic patterns involved in understanding spatial requests;

• employing the SportEvent- and Discourse Ontology to model the prag-
matic patterns involved in talking about sports.

These models consequently find employment in understanding navigational re-
quest and context-dependent route planning as well as in understanding ques-
tions about sports.

In order to summarize this implementation the input can be listed as follows:

• the descriptive pattern-based pragmatic ontology;

• the ground results of the SmartWeb semantic multimodal analysis;

• the ground information provided by different context sources.

In those cases where ground objects evoke to pragmatic patterns the module
uses topical information to perform a selection and corresponding decontextu-
alization, i.e. it then returns the ground results of the SmartWeb semantic mul-
timodal analysis augmented with pragmatically inferred ground entities from
the pertinent context sources. In order to evaluate the contribution of this
approach, I will discuss how this can be assessed in the following Section.

4.4.3 Experimental Results: Decontextualization

Evaluations of dynamic context-adaptive processing techniques pose similar
challenges as other means of adaptiveness. This is due to the fact that, given
constantly changing contextual conditions, it is difficult to obtain enough con-
textual snapshots of the world in which a situated dialog takes place and to
craft a corresponding evaluation gold standard. Nevertheless, I have already
presented evaluations of the contributions of including individual types of con-
text into account in the respective approaches proposed and described above.
That is in cases where it was feasible to craft independent experimental training
and test data and to create respective gold standards.

Assessing the potential contribution of the decontextualization procedure
outlined above, however, is also not a matter of adding the individual con-
tributions observed before. Ultimately one would seek to test such a system
in real situations using the final SmartWeb mobile prototypes, which unlike
the SmartKom system was not examined in an end-to-end evaluation, and
only tested for qualitative usability in laboratory conditions throughout the
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project.26 As an alternative procedure to asses the potential contribution in
some metric form one can ask the question if and how context would have mat-
tered in a corpus of questions posed to the system. For cases where the right
answers are only retrievable by recourse to contextual information, one can - at
least - estimate the effect of the corresponding decontextualizations performed
by the context module on dialog efficiency [Walker et al., 2000], by means of
annotation experiments, as I will discuss in the following.

Data Collection & Annotation

For estimating how decontextualization can improve the performance of a dialog
system on various user tasks, a corpus of typed queries was gathered by provid-
ing a web-based interface for people to type in questions they would pose to the
system. The corpus contains 50 questions about soccer, soccer teams, matches
or players, about 10 requests for route directions, cinema and weather infor-
mation and 10 looking for pictures of a point of interest which the SmartWeb
system can answer by recourse to a web cam service. The remaining questions
are from other domains, e.g. as shown in Example 40. In total the Corpus
ASK3 consists of 100 questions.

(40) who invented the radio

As before, different annotators classified the queries as markable whereby
for each context type the attribute Specification had to be annotated with the
values explicit, underspecified or irrelevant. A context type was to be considered
as irrelevant if the annotator cannot find a contextual setting in the respective
type in which this sentence would have a different meaning. For example in
annotating the sentence, given in Example 41 annotators found that situational
context matters - that, depending on the location, different responses would be
expected - while they also assign the value irrelevant to the domain context -
that the answer should not change if talking about sports or entertainment.

(41) which direction to Berlin

Based on this classification one can estimate the number of insertions and addi-
tional turns a dialog system would need to decontextualize a question sufficiently
as discussed below.

Experimental Results

I present the corresponding results of this annotation for the Corpus ASK3 in
Table 4.6 . All numbers are absolute values for the 100 markables contained in
the corpus. As one can see, the domain is always either implicit or not relevant,
which indicates the importance of recognizing and monitoring the domain con-
text [Rüggenmann and Gurevych, 2004b]. Location context, on the other hand,

26This unfortunate state was caused by a combination of the high costs of running the
experiments and the limits of the funding obtained for the project.
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Table 4.6: Annotation of underspecified descriptive entities in the corpus

Context Type Context Context
matters is underspecified

Domain 78 77
Time 86 47

Location 88 63
Weather 4 4

is in most cases not specified but, as expected, crucial for answering navigation
requests. At the same time, in this corpus, actual speech-time was neither rel-
evant nor explicitly given. Also for the open domain questions, the location
context is almost in every case not relevant.

In order to test inter-annotator reliability, the data was annotated twice,
achieving an absolute agreement - where the two annotators agreed on all values
for the attributes of a given markable of 79%. This agreement metric means that
if the annotators disagreed on a single value on any of the attributes annotated,
it was counted as disagreement on the markable. The resulting kappa statistic
[Carletta, 1996], is κ = .72 which can be considered as being quite reliable.

Using this findings one can estimate the bounds for improvement in terms
of dialogical efficiency. In this case to request the missing information from the
user, the task completion on our corpus would require 191 additional controlled
dialog turns. Therefore, we can say that in this case the potential gain in
efficiency lies at 48%. In other words a context-insensitive system controlled
dialog system would require up to 1.9 more turns in average.

Additionally, in evaluating this approach one can examine the computa-
tional cost that comes with such a gain, as the context module itself consists of
several main and auxiliary components, that manipulate ontological structures
and perform graph searches [Cormen et al., 1990] next to observing the context
sources. Using a cache for the observed context information ensures minimal la-
tency for the dialog manager. For associating each instance in the interpretation
of the user’s utterance to the descriptive entities from the pragmatic ontology,
the computational cost of the graph search can be minimized if all pragmatic
relations are modeled in a bi-directional manner. As the concepts representing a
description are linked by relations or axioms, the whole description can, then, be
extracted and put in an active descriptions pool at practically no cost. When-
ever a concept contained in a description ranges over one provided by a context
source, the source will be queried, which can lead to various response times,
depending on internal- or external web operations, which can be addressed by
adaptive caching and pre-fetching techniques. The last iteration over the in-
terpretations, where the instances are modified corresponding to most specific
pragmatic pattern, is also computationally insignificant.

In the following conclusion, I will summarize the individual and aggregate
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contributions made in this work in the light of the aims that motivated it. This
overview will be followed by a discussion of future and ongoing work, which is
concluded by final remarks on what has been made evident through this work.
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Chapter 5

Conclusion

Firstly, I will summarize the results of this work in the light of the specified aims
and intended contributions, as presented in Section 1. Therein, I stated that
the central aim of this work is: ”to present a formal approach for explicating
contextual information and pragmatic knowledge that can be applied, employed
and evaluated in natural language understanding systems”.

Therefore, I specified and described formal and explicit knowledge models
as machine-readable and logic-based conceptual specifications of a domain of
interest [Gruber, 1993] in Section 3.1.1. Thereafter, I have presented contextual
information as instances of observed data that is formally classified in ground
logic-based representations, e.g. in the domain ontologies described in Sec-
tions 3.1.4 [Gurevych et al., 2006] and 4.3.1 [Oberle et al., 2007]. Lastly, I have
described a model of pragmatic knowledge - employing pragmatic patterns, pre-
sented in Section 4.4, and linked them using a logic pattern that connects them
with ground entities as discussed in Section 4.3.3 [Gangemi and Mika, 2003].
I have also showcased how empirical experiments can contribute to the pro-
cess of determining how to link the two in Section 4.2.2 and how the combined
model can be applied computationally in dialog systems as well as other natural
language processing tasks [Porzel et al., 2006a].

In the course of evaluating and assessing the contributions - enabled via the
respective ground domain models, the contextual information observed and the
pragmatic knowledge modeled and their application - several ancillary empir-
ical results were gained via the experiments performed for the individual and
combined context types in:

• Chapter 3 where I presented experimental results of applying domain-
and discourse context for a set of tasks in natural language processing on
corpora SRH1, WSD1 and REL1;

• Chapter 4 where I presented experimental results of applying user- and
situational context for a set of tasks in natural language processing on
corpora ASK1, ASK2 and ASK3.

161
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Figure 5.1: Overview of terms and referents

Motivated by this central aim, I specified ancillary aims, which I will re-
examine in a final summary presented in the following section.

5.1 Aims and Contributions

As one contribution I sought to provide a hitherto missing clear distinction
between contextual information and the associated pragmatic knowledge. As
depicted in Figure 5.1, I have presented how observed user- and situation-specific
data can be classified as contextual information in terms of the vocabulary pro-
vided by ground domain models and associated to pragmatic patterns that con-
stitute models of pragmatic knowledge. Additionally I provided, as aimed for, a
set of evaluated applications of these models within this contextual computing
approach in each of the three steps of processing the user’s natural language
input found in dialog systems [Allen, 1987], i.e.:

• verification of hypothesis after automatic speech recognition in phonetic
interpretation;

• disambiguation of word senses and relation extraction in semantic inter-
pretation;

• decontextualization of underspecified utterances and intention recognition
in contextual interpretation.
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These evaluations provided evidences for the contributions that are possible
by means of putting things into context as proposed herein. The individual
evaluations were presented together with their respective corpus-based metrics,
performance- and baseline results as well as methodological and empirical exam-
inations regarding the issue of measuring the quality of the underlying models
as a whole. Also, a descriptive ontology-based approach for enabling context-
adaptive decontextualization of these interpretations was described and applied
in a real time multimodal prototype system.

I intended to show herein that explicit formal knowledge models and means
to observe a given context are needed to build scalable systems that seek to be
able to handle context-dependent ambiguous, underspecified and noisy input.
The central focus of this work, therefore, was on the development of more robust
and scalable systems that can interact with human users using natural modali-
ties, such as spoken natural language, which - as I have stated in the beginning
have evolved to facilitate efficient communication among interlocutors who share
vast and rich amounts of background knowledge and which is always situated
in given context. In the approach taken herein what is pertinent, i.e. what con-
textual factors matter and which contextual information, therefore, activates a
corresponding pragmatic pattern, depends on the cooperative communicative
task at hand [Tomasello, 2008].

In the case of empirically learning what matters - whether by means of
conducting field experiments or by evaluating the resulting prototype systems
iteratively - the limitation of resources confines what it is experimentally possible
within a thesis. This also means that there is additional possible and - in the
light of the evidences and results presented herein - also feasible and sensible
work to be undertaken, which I will discuss in the following section.

5.2 Future Work

Essentially, the work described above seeks to determine from sets of alterna-
tive forms, meanings and functions the best one by means of employing spe-
cific contextual information- and ontological knowledge sources. While I have
demonstrated that - in doing so - a higher percentage of the best form, meaning
and function can be identified, as compared to the individual gold standards of
annotated data, there are still remaining cases where a better solution was given
in the respective gold standard. In my mind resolving those cases requires an
even deeper understanding of what acting out the resulting alternative scenes -
that can be evoked by the situated utterance - entails and yields. For realizing
this computationally, the inclusion of simulation-based approaches provide suit-
able instruments to enable a system to simulate each alternative and to score
which of the results yielded by the set of simulations constitutes the best-fitting
one, given a suitable scoring function.

I have pointed out before, such an approach has been pursued for un-
derstanding narratives and other declarative texts, e.g. newspaper articles
[Narayanan, 1997, Narayanan, 1999b, Narayanan, 1999a], within the Neural The-
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Figure 5.2: Context-aware multimodal system with simulation

ory of Language project [Feldman, 2006] and seems ideally suited to approach
understanding utterances, as given in Example 42 from Corpus ASK1 - classified
therein as Type G Other in Table 4.2, in addition to understanding Types A -
E as well.

(42) I don’t see any bus stops

Given a way of determining that, in a situation Si, it is best to construe
the declarative utterance given in Example 42 as an instructional request means
assuming that this most plausible construal leads to the most felicitous response.
This can, as stated above, be regarded as the response that, in turn, advances the
involved partners’ cooperative task-specific effort closer to the desired goal state,
i.e. to find the best individual response in the situated joint action at hand.
This is also the approach taken in several fields of artificial intelligence, e.g. in
sequential action learning [Sutton and Barto, 1998] or for incremental language
and event processing [Dominey, 2007]. Akin to all of these approaches is that
individual knowledge sources have to be modeled and linked to the contextual
information observed. A consequential future research effort could, therefore,
seek to employ the models described above as a pragmatic specifications for the
simulations to be performed.

When using the pragmatic- and context-dependent enhancement proposed
herein, the modality of context can be consequentially, be treated as the other
modalities, where form instances are recognized and their meaning is analyzed
with respect to the given knowledge models to yield semantic specifications
thereof, as schematically depicted in Figure 5.2.
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Given the contributions of treating context as a bona fide modality, as I have
proposed and examined in this work using the corresponding representational
instruments and scoring functions, one can expect that simulations can be per-
formed based on both the resulting semantic- and pragmatic specifications. Also
this feasible addition - situated in the context of multimodal dialog processing
- is schematically shown in Figure 5.2.

As in all knowledge-based approaches one has to respond to the general
question how the required knowledge can be obtained, for which - next to ex-
periments of the type discussed in Section 4.2 - also additional learning exper-
iments, beyond the standard machine learning approaches [Winston, 1992] can
also be pursued in future work. The most promising paradigms for this, in my
mind, are:

• the paradigm of language games [Steels, 2001] for agent- and robot-based
self-organized grounded learning of linguistic forms [Steels, 2008] and cul-
tural categories [Puglisi et al., 2008];

• the paradigm of human-based computing [Ahn, 2008] for eliciting human-
made categorizations and form-meaning mappings [Ahn, 2007].1

In line with pursuing corresponding contextually enhanced learning and
acquisition experiments, there certainly is additional work in terms of flesh-
ing out the corresponding models and their connections. This is the case for
the model of linguistic information needed for morpho-syntactic decomposition
[Buitelaar et al., 2006] and its connection to a model of constructional infor-
mation [Porzel et al., 2006b]2 together with their respective descriptive prag-
matic patters. Let me note once more, in this respect, that combing and as-
sociating these knowledge sources in addition to the ground domain knowl-
edge is made possible by means of using a correspondingly axiomatized foun-
dational framework and its modules, as employed herein [Masolo et al., 2002,
Oberle et al., 2007].

I will conclude this section, by stating that both the traditional as well as
the novel learning approaches mentioned above are being pursued at the time of
writing this work [Kahn, 2009, Takhtamysheva, 2009] yielding promising results.
Lastly, there are new challenges for usability testing that arise with adaptive
computing technologies, e.g. ones that enable systems to behave differently in
different situations. As this exploration of how far a representational approach
to contextual computing can be pushed - or, in other words, to attempt to bite
representational bullet - still has to be embedded in an embodied interactional
context, which I will sketch out in the concluding remarks given in the following
section.

1For finding corresponding context-dependent form-function mappings one would have to
extend this paradigm, for example, by adopting mobile gaming techniques for a situated
human-based computing approach [Grüter and Oks, 2007, Eirund and Haalck, 2008].

2Employing the ontology of information objects [Guarino, 2006], which has been introduced
as a DOLCE module in Section 4.3, one can model constructions logically as InformationOb-

jects that express a Description.
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5.3 Concluding Remarks

I will return to the larger issues concerning the so-called representational and
interactional approaches to context [Dourish, 2001] presented in the beginning
of Chapter 2. Therein, I summarized several properties of representational
approaches as discussed in Dourish (2001). These properties will now be re-
examined in terms of how they apply to the work presented herein and what this
entails for situating my approach to contextual computing in the field outlined
by these general distinctions in conclusive manner.

- Representational approaches see context as a form of information, i.e. con-
text is something that can be known, represented and encoded in software
systems.

In a sense, this holds true for this approach, as contextual information consti-
tutes a key component - or informational source - in this approach. However, this
approach, given the terminological distinctions depicted in Figure 5.1, clearly
specifies:

• how contextual information can be known, i.e. by means of observing -
being aware of - pertinent topical data,

• how observed real world data can be represented, i.e. by means of classi-
fying it in terms of a ground domain model, and

• how it can be encoded in software systems, i.e. by means of ontology
engineering approaches, e.g. using suitable design patterns.

Moreover, I have not only shown what contextual information is, but also
what it is not.3 That is, while contextual information constitutes an important
source of information, additional descriptive knowledge is needed to interweave
it with the ground domain models that are employed by the context-aware
system.

- Representational approaches see context as delineable, i.e. it is thought
to be possible to define what counts as context for a specific application
in advance.

This is not the case in this approach, as it does not seek to define a set of rules
where for each pre-defined contextual setting a specific application behavior is
specified in advance. Rather than following this traditional blueprint, this ap-
proach provides a set of logical- and content patterns that model the observable
contextual information as instances of ground domain knowledge. In addition to
employing such domain models for representing domain- and discourse context
as described in Chapter 3, I have also shown how it can applied as a knowl-
edge source, by means of employing the respective cardinalities of the hitherto

3While Dourish (ibid) does not provide a computational definition of information, his
examples are in the scope of what, for example, a xmls:SimpleType could represent.
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implicit semantic relations as exemplified in Section 4.1. As described in the
sections thereafter, this ground ontology was linked to a descriptive model of
pragmatic knowledge, using specific content patterns, e.g. the pragmatic pattern
presented in Figure 4.3 and only logical patterns provided by the foundational
ontology.

Depending on the observed contextual information, these patterns may or
may not become activated, i.e. put into the ActivatedPattern-pool, whereby
the one that fleshes out the given representation of the user’s multimodal input
the most is used to explicate this representation. This can, when more than
one construal is represented in the set of alternative intention hypotheses, lead
to corresponding disambiguation of the underlying pragmatic ambiguity as de-
scribed in Section 4.2. This fleshing out is also not pre-defined, but dependent
on the aggregate set of contextual information observed4, or - in other words
- the pragmatic pattern applied is the one which is the most congruent to the
context at hand.

Moreover, different types of learning approaches for obtaining the required
knowledge can be applied. I have showcased a machine learning-based ap-
proach for finding what matters for finding the best-fitting construal of Where-
interrogatives in Section 4.2, demonstrating that - in cases of pragmatic ambi-
guity - utterances are constructed taking the shared context into account and
can, therefore, also be construed by recourse to that context. I have, addition-
ally pointed at alternative and promising learning approaches one can pursue
in Section 5.2 above.

- Representational approaches see context as stable, i.e. while context may
vary from application to application, it does not vary from instance to
instance of an interaction with an application.

Whether this holds for this approach or not depends on how one defines
an instance of an interaction. If no additional context sources, domain- and
pragmatic knowledge are added during run time and a question about an entity
were to be posed twice - while all four types of context, presented in Table 2.7,
provide the same type of information regarding, the interlocutors, their loca-
tion, the state of the entity as well as regarding the prior discourse, then the
identical explication would indeed be performed and the same construal would
win. However likely this may be - given, for example, the discourse sensitivity
that I presented both in terms of applying the ground model in Section 3.3
and terms of including domain context via the descriptive pragmatic patterns
in Section 4.4 - this might not even be unwanted in the light of expected system
behavior.

Nevertheless, a truly unwanted effect would be to construe an immediate
repetition of an utterance as one would construe the first. Aside from devising
a pattern that captures the corresponding pragmatic knowledge that a repeti-
tion can - in some contexts - mean that the a misrecognition or misconstrual

4Please note, that one still can pre-define required information, e.g. for all reservation
processes in the ground model, using logical cardinalities, as shown in Section 4.1.4 within
this approach.
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took place, one could alternatively seek to classify such events differently by im-
plementing a short term memory, e.g. a so called reservoir as in recurrent echo
state networks [Jäeger, 2003]. Nevertheless, this property of treating context as
stable holds only if an instance of an interaction is to include everything, other-
wise this approach - while seeking to provide robustness and dialogical efficiency
- allows contextual changes to have an effect or to not have one, i.e. a change
only has an effect when enough pertinent evidences are gathered that make the
assumption of a corresponding change of frame more plausible.

- Representational approaches see context and activity as being separable,
i.e. therein context is taken to describe features of the environment within
which an activity takes place but the elements of the activity do not belong
to context itself.

This, certainly, does not hold true for this approach. Not only does it - as
I have noted through this work - all start with a task at hand, which holds
for the dialogical tasks of constructing and construing ground interrogatives
which in can be described as individual interlocutionary courses of events such
as Questioning; as discussed in Section 4.4 or as showcased in Section 4.2 -
using the example of construing Where-interrogatives against the backdrop of
a task-specific contextual frame. In other words, the given task can be said to
provide the viewport on the contextual frame. A specific view can fade-out some
factors - and their respective contextual information - or fade-in other factors -
by virtue of their pertinence for the task.

For describing this one can adopt models of so-called referential movements
in discourse [von Stutterheim and Klein, 1989] for corresponding focal move-
ments in the modality of context, that is:

new - when a hitherto irrelevant factor becomes pertinent;

continuation - when a pertinent factor stays pertinent;

re-entry - when a formerly pertinent factor becomes pertinent again.

Please note that, as depicted in Figure 5.1, contextual factor refers to a type
of topical data that can be observed and represented in types of contextual
information that are computationally encapsulated as described in Section 4.4.2.

As I have sought to treat context as a bona fide modality with distinct
types of information sources, which need to be recognized and analyzed as other
modalities, one can consider them representational as discussed above. Never-
theless, I have sought to provide a computationally feasible approach, which
- as in the case of the other modalities as well - requires knowledge sources
that can be learned and engineered in suitable ways, as I have shown in Sec-
tions 3.1, 4.2.2 and 4.3. Analogously, as the morpho-syntactic and semantic
capabilities of a system remain the same when the employed formal linguistic
grammars and ground ontologies stay constant,5 so do the pragmatic capabili-
ties of a system when the contextual grammars and descriptive ontologies do not

5This holds true, of course for models acquired via offline learning approaches, e.g. ones
based on data annotated by humans.
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change over the course of the interaction(s). For this, however, embodied inter-
action principles, that combine interactional and representational instruments
[Malaka and Porzel, 2009] can be employed as well as self-organized learning
approaches [Baronchelli et al., 2009] that provide the consequential fluid emer-
gence of new forms, meanings and functions.

Taken as a whole, evaluating the individual contributions of treating context
as a true modality in understanding what a given situated utterance means has
shown that it would be feasible to circumvent the baseline parsing systems
employed herein. In doing so one would still produce at least the same amount
of correctly disambiguated formal conceptualizations of the given utterance, by
recourse to contextual information and the associated ground and descriptive
knowledge alone. While it was not the intention of this work to build a parser
that runs on context alone, but to seek to augment natural language processing,
it still goes - in my mind - some ways to make the significance of context evident,
which is vindicated furthermore by the significant context-specific performance
results, as presented, ofr example, in Table 3.30 in Section 3.7.

As intended, however, I have taken the three levels of analyses that occur
in the case natural language processing, i.e. going from forms via meaning
to function, to supply challenging applications for this approach to contextual
computing. More precisely, in each application a specific type of problem, i.e.
noise, ambiguity and underspecification, was examined, as

• in the case of forms I have applied this approach to noisy data in the tasks
of ranking and classifying speech recognition hypothesis;

• in the case of meaning I have applied this approach to ambiguous word
senses and alternative semantic relations in the tasks of disambiguating
correct concepts and extracting appropriate semantic relations;

• in the case of function I have applied this approach to underspecified
semantic specifications in the tasks of explicating implicit information and
construing pragmatically ambiguous utterances.

In all cases I have examined how this application contributes towards providing
the conversational capabilities needed to enable robust, efficient and felicitous
dialogical behavior for the non-human partner in what is supposed to be a coop-
erative joint (inter)action situated in a shared context. I hope the correspond-
ing results povide evidences for the contribution of the contextual computing
approach presented herein together with their empirical data, experimental set-
tings as well as their theoretical and methodological foundations.
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[Rüggenmann and Gurevych, 2004b] Rüggenmann, K. and Gurevych, I.
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