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Abstract—Reinforcement learning suffers from inefficiency 
when the number of potential solutions to be searched is large.  
This paper describes a method of improving reinforcement 
learning by applying rule induction in multi-agent systems.  
Knowledge captured by learned rules is used to reduce search 
space in reinforcement learning, allowing it to shorten learning 
time.  The method is particularly suitable for agents operating 
in dynamically changing environments, in which fast response 
to changes is required.  The method has been tested in trans-
portation logistics domain in which agents represent vehicles 
being routed in a simple road network.  Experimental results 
indicate that in this domain the method performs better than 
traditional Q-learning, as indicated by statistical comparison. 

Keywords-intelligent agents, simulation, rule learning, 
reinforcement learning 

I.  INTRODUCTION 

An attractive approach to handling complex and 
computationally hard situations is through their 
decentralization.  Decentralized systems tend to be more 
robust and adaptive in changing environments.  One 
important class of decentralized problem solving is based on 
multi-agent systems. In complex or dynamically changing 
environments it is difficult, or sometimes even impossible, to 
design all system details a priori. To overcome this problem 
one can apply machine learning methods, which allow 
adapting the system to the environment. Application of 
learning in a multi-agent system requires choosing a learning 
method that fits to the problem. Among many machine 
learning algorithms used in multi-agent systems, the most 
popular are those based on reinforcement learning or 
evolutionary computation.  

In both, reinforcement learning and evolutionary 
learning, feedback from the environment about quality of the 
last action executed is sufficient to learn the strategy.  In 
contrast, rule induction is a supervised learning method that 
requires training data in a form of labeled examples. In many 
cases learning agents are able to generate training data using 
their experience. Symbolic knowledge representation has 
several advantages, particularly unordered sets of 

attributional rules which correspond to the human way of 
expressing knowledge [10]. Therefore, knowledge in such 
forms generated by intelligent agents can be understood and 
verified by human experts. This feature, often ignored in 
autonomous systems, is particularly important in critical 
applications in which humans need to audit agents’ behavior.  
Rule-based representations also provide modularity that 
allows for easier exchange of knowledge between agents and 
human experts. 

The presented research is to combine two learning 
methods: reinforcement learning and rule induction. In the 
next section the problem definition is presented, followed by 
sections with simulation model description, details of 
learning agents, combining of reinforcement learning and 
rule induction, experiments and related research. 

II. PROBLEM DESCRIPTION 

In dynamically changing environments intelligent agents 
require the ability to adapt in order to efficiently perform 
their tasks. The example application area considered in this 
paper is adaptation and learning in agents representing 
vehicles. The agents need to make decisions about which 
routes to select to arrive at the destination in the shortest 
time.  Agents predict or are provided with information about 
traffic, time, and road network, based on which their routes 
can be planned. Agents travel within a simple road network 
represented by a grid (see Section III B), and need to make 
decisions on which roads to select. 

This application area is well known in the literature and 
many solutions have been proposed.  It has been selected not 
to compete with existing routing or planning algorithms, but 
rather to study the effect of combining reinforcement and 
rule learning. 

The specific problem considered here is how quickly 
different learning strategies (Q-learning, rule learning + Q-
learning) converge to an optimal or near optimal routing 
strategy based on agents’ experience and how that strategy 
compares to optimal choices.  Faster convergence to a near-
optimal solution is important when the environment 



dynamically changes and there is a need to update existing 
strategies. 

III. SIMULATION MODEL  

A. PlaSMA System 

In order to evaluate the impact of environmental 
knowledge and driving time prediction abilities, experiments 
were set up within the simulation system PlaSMA (Platform 
for Simulation with Multiple Agents). PlaSMA [13] is a 
multiagent-based simulation (MABS) system, i.e., 
distributed simulation with discrete events, using software 
agents as logical simulation processes. MABS provides a 
natural way to evaluate software agents’ behavior and 
interaction.  

PlaSMA was developed to support experimenting with 
multi-agent systems in logistics scenarios. The simulation 
system provides ontology knowledge on logistic entities and 
transport infrastructure. The virtual environment is based on 
a directed graph spatially mapped to a geographic coordinate 
system. An extendable library of physical actions (e.g., 
driving or loading cargo) and events (e.g., occurring cargo) is 
available to ease scenario modeling. The PlaSMA system 
handles and synchronizes agent actions and simulation 
events as well as agent message passing in order to guarantee 
causality and reproducibility of simulations [13]. 

Additionally, the system offers means to record scenario 
evaluation metrics into a database and to archive simulation 
results. Simulations can be loaded, controlled, and tracked in 
a GUI client that enables OpenGL 3D Earth visualization. 

B. Environment 

For the logistics scenario a road network was set up as a 
3 × 3 grid graph with a set E of directed edges (i.e., 
unidirectional roads) of various lengths (Fig. 1). Although 
this grid structure is very simple it allows the agent to adjust 
the path to the traffic density.  In fact, a very small grid on 
which it is possible to illustrate how the described method of 
combining rule induction with reinforcement learning works 
was deliberately selected. Experiments with much larger 
road networks can be conducted within the PlaSMA system. 
The goal of the agents is to travel from bottom left corner of 
the grid to upper right one and return. For the return travel, 
the graph is symmetric according to the middle node. 

Function densg(T) provides a linear traffic density 
measure in the whole environment for given time T. It is 
used to simulate changes in traffic during various hours or 
days of week. It is normalized to range 0 to 1 and indicates 
the ability of a vehicle to drive at a reference speed vref.  
Every edge e has a traffic modifier assigned tm(e).  As a 
result, function dens can be extended to represent traffic 
density in a given time for a given edge: 

 dens(e, T)=densg (T) +tm(e) (1) 

Maximum possible speed on every edge e is given by (2). 

  

Fig. 1. Road network; edges are marked with the road 
length and traffic density modifier 

 

 vmax(e, T) = vref(e) · (1dens(e,T)) (2) 

 
For our experiments vref(e)=100 km/h for all roads was used.  
Hence, if traffic density is 0.5 a vehicle is not able to drive 
faster than 50 km/h on average. 

IV. LEARNING AGENTS 

In the presented research four types of learning agents are 
considered. They use Q-learning to create an optimal or near 
optimal strategy based on input data consisting of different 
types of measurements. These data always contain 
information about current agent location (x, y), 
and optionally also traffic density and date/time.  

Location learning agent (LA) uses only location 
information for learning (Fig. 2-A). The agent uses only the 
Q-learning algorithm to find an optimal route depending on 
the current location. 

Location and traffic learning agent (LTA) gets 
information about locations and also about current traffic 
density tr=dens(e, t) (Fig. 2-B). Traffic density is discretized 
into six ranges, from very low to very high.  The agent uses 
only Q-learning to find an optimal route based on current 
location and complete information about traffic density. 

Input data may also contain information about current 
day of the week (d{1, 2, …, 7}) and current time expressed 
as an hour (t{0, 1, 2, …, 23}). Location, day and time 
learning agent (LDTA) is using these data for learning 
applying the Q-learning algorithm (Fig. 2-C), but does not 
include explicit information about traffic density.  

AQ-RL agent (Fig. 2-D) combines two methods of 
learning. The AQ rule induction algorithm is used to 
generate a classifier, which predicts traffic (its discretized 
value) from date and time data. Prediction given by the 
classifier, combined with location data, is used as an input to 
the reinforcement learning module. Next section briefly 
describes Q-learning and rule learning algorithms, and a 
method for combining these two learning algorithms.  

 



 

Fig. 2. Learning schemas for four types of agents. 
 

V. COMBINING REINFORCEMENT AND RULE LEARNING 

The AQ-RL agents use rule learning in order to reduce 
search space in finding the optimal routing strategy.  Due to 
the reduced search space in Q-learning, the agents are able to 
faster converge to a near-optimal strategy, which affects 
overall agents’ performance. The following sections briefly 
describe Q-learning, AQ rule induction, and the proposed 
hybrid method that combines the two. 

A. Q-Learning 

The most popular learning method in multi-agent 
systems is reinforcement learning in which agents improve 
their performance on a specific task by trying different ways 
the task can be performed. In this method, an agent gets 
description of the current state and using a selected strategy 
it chooses an appropriate action from a defined set.  Next, 
using reward from the environment and the next state 
description, the agent updates its strategy. Several methods 
of choosing the action and updating the strategy have been 
developed so far.  In Q-learning [21], used in the presented 
study, action with the highest predicted value (Q) is chosen. 
The function Q, given by (3) estimates value of each action 
in a given state, 

 Q: A × S → R, (3) 

where A is a set of actions, and S is a set of possible states. Q 
function is updated after the selected action is executed 

 Q(a, s):=Q(a, s) + βΔ 
 Δ =γ Qmax + r  Q(a, s) (4) 
 Qmax=maxa Q(a, s') 

where s, s’S are subsequent states, aA is an action chosen, 
r is a reward obtained from the environment, γ[0,1] is a 
discount rate (importance of the future rewards), and β(0,1) 
is a learning rate. Various techniques are used to prevent 

from getting into a local optimum. The idea is to better 
explore the solution space by occasionally choosing not 
optimal actions (i.e. random action or one not performed yet 
in a given state). Boltzmann exploration was used in 
experiments of the presented study. 

To speed up the learning process, it is possible to update 
Q-values for states visited in the recent past. As a result, 
Q()-learning algorithm has been proposed [17], in which  
 [0,1] is a parameter used to determine how many old states 
are considered (value 1 means all states in the past). We used 
=0.4 in the experiments. 

B. AQ Rule Induction 

AQ is a class of machine learning programs that induce 
attributional rules from data and prior knowledge.  A basic 
form of attributional rules is (5). 

 CONSEQUENT <== PREMISE (5) 

Here, CONSEQUENT and PREMISE are conjunctions 
of attributional conditions. Basic attributional conditions are 
in the form (6): 

 [L rel R]  (6) 

in which L is an attribute; R is a value, a disjunction of 
values, or a conjunction of values if L is a compound 
attribute; and rel is a relation that applies to L and R. Other 
forms of attributional conditions may involve count 
attributes, simple arithmetical expressions, conjunctions and 
disjunctions of attributes, comparison of attributes, and 
others [10] . 

In the presented study AQ21, the newest and most 
advanced program from the AQ family [22] was used.  
Given input data, problem definition, and optional 
background knowledge, AQ21 induces attributional rules in 
the form (5) or in more advanced forms, describing one or 
more classes in the data. A set of rules constituting a 
description of a given class is called a ruleset.  By repeating 
learning for all classes defined by values of an output 
attribute, AQ21 generates a classifier. 

In order to learn rules for a given class AQ21 starts with 
one example, called a seed, belonging to the class. It 
generates a star, which is a set of maximally general rules 
that cover the seed and do not cover any examples from 
other classes. This is done by repeating an extension-against 
operation that generalizes the seed against examples not 
belonging to the concept being learned. Results of applying 
the extension-against are intersected and the best rules are 
selected according to user-defined criteria. If selected rules 
do not cover all examples belonging to the class, another 
seed is selected (from the not covered examples) and 
additional rules are learned. The process is repeated until all 
examples of the class are covered by the learned rules.  
AQ21 implements several modifications to the above basic 



algorithm [22] that allow it to handle noise and perform 
additional operations. 

C. Hybrid Learning 

Q-learning suffers from inefficiency when the space of 
possible states is large.  In such a case, an intelligent agent 
needs to examine a large number of states before it learns the 
optimal set of actions.  One possible solution to this problem, 
investigated in this paper, is to reduce the set of possible 
states, by invoking a secondary learning process. The 
secondary learning aims at learning and predicting values 
that can be used as inputs to Q-learning.  Specifically, in the 
equation (3) let  
 

S = S1 × S2 × … × Sn  (7) 
 
be a Cartesian product of domains of n attributes. S is the 
original search space for Q-learning. The goal of the 
secondary learning process is to create a model  
 

M(S) = U  (8) 
 

U = U1 × U2 × … × Uk  (9) 
 
such that k < n, thus reducing the number of possible states 
in Q-learning.  Note that, in addition to reduction in the 
number of attributes, also reduction of number of values for 
these attributes affects the number of states.  Because of the 
use of generalization provided by the secondary learning, Q-
learning algorithm does not need to search through all 
possible states in the original space S, but rather through U, a 
smaller space already processed by the secondary learning. 

Supervised learning algorithms can be used for the 
reduction. Several attributes from S can be replaced by a 
class attribute (see Fig. 2-D). To apply supervised learning, 
the agent should have a possibility to create examples for 
learning.  

In the simple case of agent AQ-RL described in Section 
IV, the space S is defined as 

 S = x × y × d × t (10) 

and 

 U = x × y × tr (11) 

This reduces the space by replacing two variables with one 
variable tr, with small domain size.  Here, the secondary 
learning is performed by the AQ21 rule induction system. 
Examples to generate knowledge represent traffic observed 
by an agent in a given day and time, and have a form ex=(dex, 
tex, trex). An example is added to the agent’s memory after 
passing an edge. Parameters dex and tex are calculated to 
represent day and time of middle of the travel time. The 
parameter trex is the discretized agent’s estimation of traffic 
density, dens(T), which is calculated using time spent for the 
travel. In the presented simplified model only traffic density 
influences speed on a given edge. 

VI. EXPERIMENTAL RESULTS 

In order to experimentally test the effect of combining 
rule learning and reinforcement learning, a large number of 
simulations in the simple environment described in Section 
III B were executed.  The scenario was simple enough to 
illustrate the effect of learning.  Experiments were repeated 
100 times. That was sufficient to show that results in mean 
values in travel times are significantly different, as checked 
using the two-tailed t-test (null hypothesis is C=D) with the 
obtained p-values indicating statistical significance. 

Table 1 includes means and standard deviations of 
driving times for the four types of agents during different 
days of the simulation and p-values for comparing Q-
learning with date and time, and hybrid learning.  The results 
indicate that agents employing Q-learning combined with 
AQ rule learning converge much faster to near optimal 
performance (below 4 hours driving time) than agents using 
traditional Q-learning. Before day 25 of the simulation the 
AQ-RL agent achieves that performance, while the 
performance of the compared agent at this time is worse.  
This result indicates that the AQ21 system was able to 
sufficiently approximate traffic regularities to match the 
performance of agent B that is provided with traffic 
information.  The table includes results from all agents 
described in Section IV. 

VII. RELATED RESEARCH 

Although both reinforcement learning and rule induction 
are applied in multi-agent systems, combining the two is an 
original idea that has not been tried before. Paragraphs below 
briefly describe related research on multiagent simulations, 
rule induction, and learning in multiagent systems. 

Table 1: Mean +/- standard deviation of travel times in experimental comparison of four types of agents: naïve, Q-
learning with full information, Q-learning with location and date information, and AQ/reinforcement learning hybrid. 
Agent Day 1 Day 10 Day 25 Day 51 Day 75 Day 100 Day 200

A: Q with location only 16.19+/-3.98 11.92+/-6.27 4.39+/-2.18 4.24+/-0.98 3.98+/-0.69 4.24+/-0.92 4 .14+/-0.57

B: Q with location and 
t raffic 

15.48+/-4.81 17.80+/-9.34 3.56+/-1.84 3.46+/-0.59 3.34+/-0.34 3.46+/-0.64 3 .39+/-0.59

C: Q with locat ion and time 15.80+/-4.54 27.50+/-21.28 15.11+/-13.80 1 2. 51+/-15.75 5.80+/-3.44 5.14+/-6.31 3 .66+/-1.43 

D: AQ-RL 19. 59 +/-10.06 20.44+/-10.86 3.88+/-2.04 3.88+/-2.84 3.43+/-0.49 3.63+/-1.91 3 .41+/-0.80

p-value (C vs  D) 0.0036 0.0106 8.235E-20 4.339E-16 2.021E-55 0 .0003 1.099E-22 



Multiagent-based simulation (MABS) is a popular means 
for evaluating agent-based software systems as well as social 
systems in general. As a microsimulation, MABS offers an 
accurate mapping from autonomous and interacting sub-
systems to simulation entities. In addition to PlaSMA, 
systems such as MASON, Cougaar, JAMES, and AnyLogic 
are applied for simulation of agent-based software systems, 
including the logistics domain [9]. Agent-based simulators 
like NetLogo, Repast, Swarm, and SeSAm are mainly used 
in the social sciences. PlaSMA is distinguished by a focus on 
logistics, FIPA-compliance, formal model semantics, and 
high modeling flexibility. The latter feature, however, 
demands Java programming skills while some other 
platforms (e.g. SeSAm) provide visual programming [9]. 

Rule learning is one of the most popular and well studied 
approaches to supervised learning, although most programs 
are limited to inducing rules from data, without using any 
background knowledge.  Programs from AQ family, whose 
AQ21 was used in this study, pioneered separate-and-
conquer approach to rule learning.  Over four decades of 
development several implementations with different features 
have been created. The most notable are AQVAL/AQ7, 
AQ11, AQ17, and current AQ21.  

A review of separate-and-conquer approach to rule 
learning is in [4]. Among the best well known rule learning 
programs are CN2, RIPPER and its successor SLIPPER, and 
several programs based on rough set theory [7].  Currently 
investigated are statistical approaches to rule learning, i.e. 
one that uses maximum likelihood estimation to guide search 
for the best rules [2]. 

In multi-agent systems two main techniques applied for 
learning are reinforcement learning, and evolutionary 
computation. However; other techniques, such as supervised 
learning are also applied. Good survey of learning in multi-
agent systems working in various domains can be found in 
[14] and [17]. Learning can be applied in various 
environments. Predator-Prey is one of them, where several 
learning techniques were applied. [20] is an example of 
reinforcement learning application. In this work predator 
agents use reinforcement learning to learn a strategy 
minimizing time to catch a prey. Agents can cooperate by 
exchanging sensor data, strategies, or episodes. Experimental 
results show that cooperation is beneficial. Two other works 
successfully apply genetic programming [8] and 
evolutionary computation [6] in this domain. Predator 
strategy can be also learned using rule induction [18].  

Another domain, where several learning techniques were 
applied is target observation. In [23] rules are evolved to 
control large area surveillance from the air. In [15] Parker 
presents cooperative observation task to test autonomous 
generating of cooperative behaviors in robot teams. Agents 
cooperate to keep targets within specific distance. Lazy 
learning based on reinforcement learning is used to generate 
strategy better than a random, but worse than a manually 
developed one. Results of application of reinforcement 
learning mixed with state space generalization method can 

be found in [3], where Evolutionary Nearest Neighbor 
Classifier – Q-learning (ENNC-QL) is proposed. It is a 
hybrid model, a combination of supervised function 
approximation and state space discretization with Q-learning. 
This method has similar goals to hybrid algorithm presented 
in this paper: reduction of state space for reinforcement 
learning, with minimal possible information loss, so that the 
Markov property can be still be satisfied after applying the 
reduction. For ENNC-QL this works best in deterministic 
domains. Technically, ENNC-QL algorithm works as a very 
sophisticated function approximator with built-in 
discretization support. The main application domain of 
ENNC-QL approach consists of problems with possibly 
large, continuous state spaces. [3] gives no information about 
experiments with pure discrete state spaces, so the range of 
applications is basically somewhat different than for the 
hybrid model proposed here. Additionally, the ENNC-QL 
algorithm requires several predefined phases in order to 
compute discretization and state space representation, 
including explicit exploration phase and two learning phases, 
so it might be hard to apply in non-stationary, changing 
environments. On the other hand, it is more generic than 
hybrid model described here, because it can be easily applied 
to any continuous state space problem without making any 
assumptions on the problem's domain. 

There are also several other works about learning in 
multi-agent systems that are using supervised learning. Rule 
induction is used in a multi-agent solution for vehicle routing 
problem [5]. However; in this work learning is done off-line. 
In [19], agents learn coordination rules, which are used in 
coordination planning. If there is not enough information 
during learning, agents can communicate additional data 
during learning. Airiau [1] adds learning capabilities into 
BDI model. Decision tree learning is used to support plan 
applicability testing. Nowaczyk and Malec are also using 
learning for plans evaluation. Inductive Logic Programming 
is used to generate knowledge for choosing the best partial 
plan for an agent [12]. 

VIII. CONCLUSIONS 

This paper described a method of combining 
reinforcement learning and rule induction. The method’s 
goal is to improve learning efficiency by decreasing search 
space in reinforcement learning.  Learned rules are used as a 
classifier that is able to replace several dimensions 
(attributes) with one (class attribute). Rule-based models can 
be also easily verified by human experts that can be very 
important in many application domains. 

In order to apply the method, an agent needs to be able to 
generate examples for rule induction. These examples 
connect selected input attributes with a class attribute 
computed by the agent. 

The presented experimental work was designed to show 
working of the method on a simple scenario on which its 
advantage can be already seen.  Experimental evaluation in 
more complex scenarios and in large-scale simulation 



systems is needed to test how the method applies in real 
world complex situations. 

Other future work on the method will include 
investigation of the relation between search parameters in 
reinforcement learning versus generalization in rule learning. 
Also, the possibility of communication and cooperation 
between agents should be taken into account to investigate 
effects of exchange of agents’ knowledge. Because of rule-
based representation of knowledge, the process may be very 
efficient.  
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