
Combining Rule Induction and Reinforcement Learning

An Agent-based Vehicle Routing

Bartłomiej Śnieżyński
Department of Computer

Science
AGH University of Science

and Technology
Krakow, Poland

sniezyn@agh.edu.pl

Wojciech Wójcik
Department of Computer

Science
AGH University of Science

and Technology
Krakow, Poland

wwojcik@student.agh.edu.pl

Jan D. Gehrke
Center for Computing
and Communication
Technologies – TZI
Universität Bremen
Bremen, Germany

jgehrke@tzi.de

Janusz Wojtusiak
Machine Learning and
Inference Laboratory,

George Mason University
Fairfax, VA, USA
jwojtusi@gmu.edu

Abstract—Reinforcement learning suffers from inefficiency
when the number of potential solutions to be searched is large.
This paper describes a method of improving reinforcement
learning by applying rule induction in multi-agent systems.
Knowledge captured by learned rules is used to reduce search
space in reinforcement learning, allowing it to shorten learning
time. The method is particularly suitable for agents operating
in dynamically changing environments, in which fast response
to changes is required. The method has been tested in trans-
portation logistics domain in which agents represent vehicles
being routed in a simple road network. Experimental results
indicate that in this domain the method performs better than
traditional Q-learning, as indicated by statistical comparison.

Keywords-intelligent agents, simulation, rule learning,
reinforcement learning

I. INTRODUCTION

An attractive approach to handling complex and
computationally hard situations is through their
decentralization. Decentralized systems tend to be more
robust and adaptive in changing environments. One
important class of decentralized problem solving is based on
multi-agent systems. In complex or dynamically changing
environments it is difficult, or sometimes even impossible, to
design all system details a priori. To overcome this problem
one can apply machine learning methods, which allow
adapting the system to the environment. Application of
learning in a multi-agent system requires choosing a learning
method that fits to the problem. Among many machine
learning algorithms used in multi-agent systems, the most
popular are those based on reinforcement learning or
evolutionary computation.

In both, reinforcement learning and evolutionary
learning, feedback from the environment about quality of the
last action executed is sufficient to learn the strategy. In
contrast, rule induction is a supervised learning method that
requires training data in a form of labeled examples. In many
cases learning agents are able to generate training data using
their experience. Symbolic knowledge representation has
several advantages, particularly unordered sets of

attributional rules which correspond to the human way of
expressing knowledge [10]. Therefore, knowledge in such
forms generated by intelligent agents can be understood and
verified by human experts. This feature, often ignored in
autonomous systems, is particularly important in critical
applications in which humans need to audit agents’ behavior.
Rule-based representations also provide modularity that
allows for easier exchange of knowledge between agents and
human experts.

The presented research is to combine two learning
methods: reinforcement learning and rule induction. In the
next section the problem definition is presented, followed by
sections with simulation model description, details of
learning agents, combining of reinforcement learning and
rule induction, experiments and related research.

II. PROBLEM DESCRIPTION

In dynamically changing environments intelligent agents
require the ability to adapt in order to efficiently perform
their tasks. The example application area considered in this
paper is adaptation and learning in agents representing
vehicles. The agents need to make decisions about which
routes to select to arrive at the destination in the shortest
time. Agents predict or are provided with information about
traffic, time, and road network, based on which their routes
can be planned. Agents travel within a simple road network
represented by a grid (see Section III B), and need to make
decisions on which roads to select.

This application area is well known in the literature and
many solutions have been proposed. It has been selected not
to compete with existing routing or planning algorithms, but
rather to study the effect of combining reinforcement and
rule learning.

The specific problem considered here is how quickly
different learning strategies (Q-learning, rule learning + Q-
learning) converge to an optimal or near optimal routing
strategy based on agents’ experience and how that strategy
compares to optimal choices. Faster convergence to a near-
optimal solution is important when the environment

dynamically changes and there is a need to update existing
strategies.

III. SIMULATION MODEL

A. PlaSMA System

In order to evaluate the impact of environmental
knowledge and driving time prediction abilities, experiments
were set up within the simulation system PlaSMA (Platform
for Simulation with Multiple Agents). PlaSMA [13] is a
multiagent-based simulation (MABS) system, i.e.,
distributed simulation with discrete events, using software
agents as logical simulation processes. MABS provides a
natural way to evaluate software agents’ behavior and
interaction.

PlaSMA was developed to support experimenting with
multi-agent systems in logistics scenarios. The simulation
system provides ontology knowledge on logistic entities and
transport infrastructure. The virtual environment is based on
a directed graph spatially mapped to a geographic coordinate
system. An extendable library of physical actions (e.g.,
driving or loading cargo) and events (e.g., occurring cargo) is
available to ease scenario modeling. The PlaSMA system
handles and synchronizes agent actions and simulation
events as well as agent message passing in order to guarantee
causality and reproducibility of simulations [13].

Additionally, the system offers means to record scenario
evaluation metrics into a database and to archive simulation
results. Simulations can be loaded, controlled, and tracked in
a GUI client that enables OpenGL 3D Earth visualization.

B. Environment

For the logistics scenario a road network was set up as a
3 × 3 grid graph with a set E of directed edges (i.e.,
unidirectional roads) of various lengths (Fig. 1). Although
this grid structure is very simple it allows the agent to adjust
the path to the traffic density. In fact, a very small grid on
which it is possible to illustrate how the described method of
combining rule induction with reinforcement learning works
was deliberately selected. Experiments with much larger
road networks can be conducted within the PlaSMA system.
The goal of the agents is to travel from bottom left corner of
the grid to upper right one and return. For the return travel,
the graph is symmetric according to the middle node.

Function densg(T) provides a linear traffic density
measure in the whole environment for given time T. It is
used to simulate changes in traffic during various hours or
days of week. It is normalized to range 0 to 1 and indicates
the ability of a vehicle to drive at a reference speed vref.
Every edge e has a traffic modifier assigned tm(e). As a
result, function dens can be extended to represent traffic
density in a given time for a given edge:

 dens(e, T)=densg (T) +tm(e) (1)

Maximum possible speed on every edge e is given by (2).

Fig. 1. Road network; edges are marked with the road
length and traffic density modifier

 vmax(e, T) = vref(e) · (1dens(e,T)) (2)

For our experiments vref(e)=100 km/h for all roads was used.
Hence, if traffic density is 0.5 a vehicle is not able to drive
faster than 50 km/h on average.

IV. LEARNING AGENTS

In the presented research four types of learning agents are
considered. They use Q-learning to create an optimal or near
optimal strategy based on input data consisting of different
types of measurements. These data always contain
information about current agent location (x, y),
and optionally also traffic density and date/time.

Location learning agent (LA) uses only location
information for learning (Fig. 2-A). The agent uses only the
Q-learning algorithm to find an optimal route depending on
the current location.

Location and traffic learning agent (LTA) gets
information about locations and also about current traffic
density tr=dens(e, t) (Fig. 2-B). Traffic density is discretized
into six ranges, from very low to very high. The agent uses
only Q-learning to find an optimal route based on current
location and complete information about traffic density.

Input data may also contain information about current
day of the week (d{1, 2, …, 7}) and current time expressed
as an hour (t{0, 1, 2, …, 23}). Location, day and time
learning agent (LDTA) is using these data for learning
applying the Q-learning algorithm (Fig. 2-C), but does not
include explicit information about traffic density.

AQ-RL agent (Fig. 2-D) combines two methods of
learning. The AQ rule induction algorithm is used to
generate a classifier, which predicts traffic (its discretized
value) from date and time data. Prediction given by the
classifier, combined with location data, is used as an input to
the reinforcement learning module. Next section briefly
describes Q-learning and rule learning algorithms, and a
method for combining these two learning algorithms.

Fig. 2. Learning schemas for four types of agents.

V. COMBINING REINFORCEMENT AND RULE LEARNING

The AQ-RL agents use rule learning in order to reduce
search space in finding the optimal routing strategy. Due to
the reduced search space in Q-learning, the agents are able to
faster converge to a near-optimal strategy, which affects
overall agents’ performance. The following sections briefly
describe Q-learning, AQ rule induction, and the proposed
hybrid method that combines the two.

A. Q-Learning

The most popular learning method in multi-agent
systems is reinforcement learning in which agents improve
their performance on a specific task by trying different ways
the task can be performed. In this method, an agent gets
description of the current state and using a selected strategy
it chooses an appropriate action from a defined set. Next,
using reward from the environment and the next state
description, the agent updates its strategy. Several methods
of choosing the action and updating the strategy have been
developed so far. In Q-learning [21], used in the presented
study, action with the highest predicted value (Q) is chosen.
The function Q, given by (3) estimates value of each action
in a given state,

 Q: A × S → R, (3)

where A is a set of actions, and S is a set of possible states. Q
function is updated after the selected action is executed

 Q(a, s):=Q(a, s) + βΔ
 Δ =γ Qmax + r Q(a, s) (4)
 Qmax=maxa Q(a, s')

where s, s’S are subsequent states, aA is an action chosen,
r is a reward obtained from the environment, γ[0,1] is a
discount rate (importance of the future rewards), and β(0,1)
is a learning rate. Various techniques are used to prevent

from getting into a local optimum. The idea is to better
explore the solution space by occasionally choosing not
optimal actions (i.e. random action or one not performed yet
in a given state). Boltzmann exploration was used in
experiments of the presented study.

To speed up the learning process, it is possible to update
Q-values for states visited in the recent past. As a result,
Q()-learning algorithm has been proposed [17], in which
 [0,1] is a parameter used to determine how many old states
are considered (value 1 means all states in the past). We used
=0.4 in the experiments.

B. AQ Rule Induction

AQ is a class of machine learning programs that induce
attributional rules from data and prior knowledge. A basic
form of attributional rules is (5).

 CONSEQUENT <== PREMISE (5)

Here, CONSEQUENT and PREMISE are conjunctions
of attributional conditions. Basic attributional conditions are
in the form (6):

 [L rel R] (6)

in which L is an attribute; R is a value, a disjunction of
values, or a conjunction of values if L is a compound
attribute; and rel is a relation that applies to L and R. Other
forms of attributional conditions may involve count
attributes, simple arithmetical expressions, conjunctions and
disjunctions of attributes, comparison of attributes, and
others [10] .

In the presented study AQ21, the newest and most
advanced program from the AQ family [22] was used.
Given input data, problem definition, and optional
background knowledge, AQ21 induces attributional rules in
the form (5) or in more advanced forms, describing one or
more classes in the data. A set of rules constituting a
description of a given class is called a ruleset. By repeating
learning for all classes defined by values of an output
attribute, AQ21 generates a classifier.

In order to learn rules for a given class AQ21 starts with
one example, called a seed, belonging to the class. It
generates a star, which is a set of maximally general rules
that cover the seed and do not cover any examples from
other classes. This is done by repeating an extension-against
operation that generalizes the seed against examples not
belonging to the concept being learned. Results of applying
the extension-against are intersected and the best rules are
selected according to user-defined criteria. If selected rules
do not cover all examples belonging to the class, another
seed is selected (from the not covered examples) and
additional rules are learned. The process is repeated until all
examples of the class are covered by the learned rules.
AQ21 implements several modifications to the above basic

algorithm [22] that allow it to handle noise and perform
additional operations.

C. Hybrid Learning

Q-learning suffers from inefficiency when the space of
possible states is large. In such a case, an intelligent agent
needs to examine a large number of states before it learns the
optimal set of actions. One possible solution to this problem,
investigated in this paper, is to reduce the set of possible
states, by invoking a secondary learning process. The
secondary learning aims at learning and predicting values
that can be used as inputs to Q-learning. Specifically, in the
equation (3) let

S = S1 × S2 × … × Sn (7)

be a Cartesian product of domains of n attributes. S is the
original search space for Q-learning. The goal of the
secondary learning process is to create a model

M(S) = U (8)

U = U1 × U2 × … × Uk (9)

such that k < n, thus reducing the number of possible states
in Q-learning. Note that, in addition to reduction in the
number of attributes, also reduction of number of values for
these attributes affects the number of states. Because of the
use of generalization provided by the secondary learning, Q-
learning algorithm does not need to search through all
possible states in the original space S, but rather through U, a
smaller space already processed by the secondary learning.

Supervised learning algorithms can be used for the
reduction. Several attributes from S can be replaced by a
class attribute (see Fig. 2-D). To apply supervised learning,
the agent should have a possibility to create examples for
learning.

In the simple case of agent AQ-RL described in Section
IV, the space S is defined as

 S = x × y × d × t (10)

and

 U = x × y × tr (11)

This reduces the space by replacing two variables with one
variable tr, with small domain size. Here, the secondary
learning is performed by the AQ21 rule induction system.
Examples to generate knowledge represent traffic observed
by an agent in a given day and time, and have a form ex=(dex,
tex, trex). An example is added to the agent’s memory after
passing an edge. Parameters dex and tex are calculated to
represent day and time of middle of the travel time. The
parameter trex is the discretized agent’s estimation of traffic
density, dens(T), which is calculated using time spent for the
travel. In the presented simplified model only traffic density
influences speed on a given edge.

VI. EXPERIMENTAL RESULTS

In order to experimentally test the effect of combining
rule learning and reinforcement learning, a large number of
simulations in the simple environment described in Section
III B were executed. The scenario was simple enough to
illustrate the effect of learning. Experiments were repeated
100 times. That was sufficient to show that results in mean
values in travel times are significantly different, as checked
using the two-tailed t-test (null hypothesis is C=D) with the
obtained p-values indicating statistical significance.

Table 1 includes means and standard deviations of
driving times for the four types of agents during different
days of the simulation and p-values for comparing Q-
learning with date and time, and hybrid learning. The results
indicate that agents employing Q-learning combined with
AQ rule learning converge much faster to near optimal
performance (below 4 hours driving time) than agents using
traditional Q-learning. Before day 25 of the simulation the
AQ-RL agent achieves that performance, while the
performance of the compared agent at this time is worse.
This result indicates that the AQ21 system was able to
sufficiently approximate traffic regularities to match the
performance of agent B that is provided with traffic
information. The table includes results from all agents
described in Section IV.

VII. RELATED RESEARCH

Although both reinforcement learning and rule induction
are applied in multi-agent systems, combining the two is an
original idea that has not been tried before. Paragraphs below
briefly describe related research on multiagent simulations,
rule induction, and learning in multiagent systems.

Table 1: Mean +/- standard deviation of travel times in experimental comparison of four types of agents: naïve, Q-
learning with full information, Q-learning with location and date information, and AQ/reinforcement learning hybrid.
Agent Day 1 Day 10 Day 25 Day 51 Day 75 Day 100 Day 200

A: Q with location only 16.19+/-3.98 11.92+/-6.27 4.39+/-2.18 4.24+/-0.98 3.98+/-0.69 4.24+/-0.92 4 .14+/-0.57

B: Q with location and
t raffic

15.48+/-4.81 17.80+/-9.34 3.56+/-1.84 3.46+/-0.59 3.34+/-0.34 3.46+/-0.64 3 .39+/-0.59

C: Q with locat ion and time 15.80+/-4.54 27.50+/-21.28 15.11+/-13.80 1 2. 51+/-15.75 5.80+/-3.44 5.14+/-6.31 3 .66+/-1.43

D: AQ-RL 19. 59 +/-10.06 20.44+/-10.86 3.88+/-2.04 3.88+/-2.84 3.43+/-0.49 3.63+/-1.91 3 .41+/-0.80

p-value (C vs D) 0.0036 0.0106 8.235E-20 4.339E-16 2.021E-55 0 .0003 1.099E-22

Multiagent-based simulation (MABS) is a popular means
for evaluating agent-based software systems as well as social
systems in general. As a microsimulation, MABS offers an
accurate mapping from autonomous and interacting sub-
systems to simulation entities. In addition to PlaSMA,
systems such as MASON, Cougaar, JAMES, and AnyLogic
are applied for simulation of agent-based software systems,
including the logistics domain [9]. Agent-based simulators
like NetLogo, Repast, Swarm, and SeSAm are mainly used
in the social sciences. PlaSMA is distinguished by a focus on
logistics, FIPA-compliance, formal model semantics, and
high modeling flexibility. The latter feature, however,
demands Java programming skills while some other
platforms (e.g. SeSAm) provide visual programming [9].

Rule learning is one of the most popular and well studied
approaches to supervised learning, although most programs
are limited to inducing rules from data, without using any
background knowledge. Programs from AQ family, whose
AQ21 was used in this study, pioneered separate-and-
conquer approach to rule learning. Over four decades of
development several implementations with different features
have been created. The most notable are AQVAL/AQ7,
AQ11, AQ17, and current AQ21.

A review of separate-and-conquer approach to rule
learning is in [4]. Among the best well known rule learning
programs are CN2, RIPPER and its successor SLIPPER, and
several programs based on rough set theory [7]. Currently
investigated are statistical approaches to rule learning, i.e.
one that uses maximum likelihood estimation to guide search
for the best rules [2].

In multi-agent systems two main techniques applied for
learning are reinforcement learning, and evolutionary
computation. However; other techniques, such as supervised
learning are also applied. Good survey of learning in multi-
agent systems working in various domains can be found in
[14] and [17]. Learning can be applied in various
environments. Predator-Prey is one of them, where several
learning techniques were applied. [20] is an example of
reinforcement learning application. In this work predator
agents use reinforcement learning to learn a strategy
minimizing time to catch a prey. Agents can cooperate by
exchanging sensor data, strategies, or episodes. Experimental
results show that cooperation is beneficial. Two other works
successfully apply genetic programming [8] and
evolutionary computation [6] in this domain. Predator
strategy can be also learned using rule induction [18].

Another domain, where several learning techniques were
applied is target observation. In [23] rules are evolved to
control large area surveillance from the air. In [15] Parker
presents cooperative observation task to test autonomous
generating of cooperative behaviors in robot teams. Agents
cooperate to keep targets within specific distance. Lazy
learning based on reinforcement learning is used to generate
strategy better than a random, but worse than a manually
developed one. Results of application of reinforcement
learning mixed with state space generalization method can

be found in [3], where Evolutionary Nearest Neighbor
Classifier – Q-learning (ENNC-QL) is proposed. It is a
hybrid model, a combination of supervised function
approximation and state space discretization with Q-learning.
This method has similar goals to hybrid algorithm presented
in this paper: reduction of state space for reinforcement
learning, with minimal possible information loss, so that the
Markov property can be still be satisfied after applying the
reduction. For ENNC-QL this works best in deterministic
domains. Technically, ENNC-QL algorithm works as a very
sophisticated function approximator with built-in
discretization support. The main application domain of
ENNC-QL approach consists of problems with possibly
large, continuous state spaces. [3] gives no information about
experiments with pure discrete state spaces, so the range of
applications is basically somewhat different than for the
hybrid model proposed here. Additionally, the ENNC-QL
algorithm requires several predefined phases in order to
compute discretization and state space representation,
including explicit exploration phase and two learning phases,
so it might be hard to apply in non-stationary, changing
environments. On the other hand, it is more generic than
hybrid model described here, because it can be easily applied
to any continuous state space problem without making any
assumptions on the problem's domain.

There are also several other works about learning in
multi-agent systems that are using supervised learning. Rule
induction is used in a multi-agent solution for vehicle routing
problem [5]. However; in this work learning is done off-line.
In [19], agents learn coordination rules, which are used in
coordination planning. If there is not enough information
during learning, agents can communicate additional data
during learning. Airiau [1] adds learning capabilities into
BDI model. Decision tree learning is used to support plan
applicability testing. Nowaczyk and Malec are also using
learning for plans evaluation. Inductive Logic Programming
is used to generate knowledge for choosing the best partial
plan for an agent [12].

VIII. CONCLUSIONS

This paper described a method of combining
reinforcement learning and rule induction. The method’s
goal is to improve learning efficiency by decreasing search
space in reinforcement learning. Learned rules are used as a
classifier that is able to replace several dimensions
(attributes) with one (class attribute). Rule-based models can
be also easily verified by human experts that can be very
important in many application domains.

In order to apply the method, an agent needs to be able to
generate examples for rule induction. These examples
connect selected input attributes with a class attribute
computed by the agent.

The presented experimental work was designed to show
working of the method on a simple scenario on which its
advantage can be already seen. Experimental evaluation in
more complex scenarios and in large-scale simulation

systems is needed to test how the method applies in real
world complex situations.

Other future work on the method will include
investigation of the relation between search parameters in
reinforcement learning versus generalization in rule learning.
Also, the possibility of communication and cooperation
between agents should be taken into account to investigate
effects of exchange of agents’ knowledge. Because of rule-
based representation of knowledge, the process may be very
efficient.

ACKNOWLEDGMENTS

This research funded in part by the German Research
Foundation (DFG) within Collaborative Research Centre 637
(SFB 637), and in part by the Polish Ministry of Science and
Higher Education grant number N N516 366236.
Development of the AQ21 system was partially funded by
the U.S. National Science Foundation grants.

REFERENCES

[1] S. Airiau, L. Padham, S. Sardina, and S. Sen, “Incorporating
learning in BDI agents,” Proc. of the ALAMAS+ALAg
Workshop, 2008.

[2] K. Dembczyński, W. Kotłowski, and R. Słowiński,
“Maximum likelihood rule ensembles,” Proc. of the 25th Int’l.
Conf. on Machine Learning (ICML 08), ACM Press, 2008,
pp. 224–231.

[3] F. Fernández, D. Borrajo, and L. E. Parker, “A reinforcement
learning algorithm in cooperative multirobot domains,”
Journal of Intelligent Robotics Systems, vol. 43, pp. 161–174,
Aug. 2005.

[4] J. Fürnkranz, “Separate-and-conquer rule learning,” Artificial
Intelligence Review, vol. 13, pp. 3–54, Jan. 1999.

[5] J. D. Gehrke and J. Wojtusiak, “Traffic prediction for agent
route planning,” Proc. of the Int’l. Conf. on Computational
Science (ICCS 2008), vol. 3, Springer-Verlag, 2008, pp. 692–
701.

[6] C. L. Giles and K.-C. Jim, “Learning communication for
multi-agent systems,” Proc. of 1st Workshop on Radical
Agent Concepts (WRAC 2002), Springer-Verlag, 2003, pp.
377–392.

[7] J. W. Grzymala-Busse, “A New Version of the Rule Induction
System LERS,” Fund. Informaticae, vol. 31, pp. 27–39, 1997.

[8] T. Haynes and I. Sen, “Evolving behavioral strategies in
predators and prey,” Proc. of IJCAI'95 Workshop on
Adaptation and Learning in Multiagent Systems, Springer-
Verlag, 1996, pp. 113–126.

[9] R. Herrler and F. Klügl, “Simulation,” in Multiagent
Engineering, Theory and Applications in Enterprises, S. Kirn,

O. Herzog, P. Lockemann, and O. Spaniol, Eds. Berlin:
Springer-Verlag, 2006, pp. 575–596.

[10] R. S. Michalski, “Attributional Calculus: A Logic and
Representation Language for Natural Induction,” Reports of
the Machine Learning and Inference Laboratory, MLI 04-2,
George Mason University, 2004.

[11] A. Newell and H. Simon, Human Problem Solving. Prentice-
Hall, 1972.

[12] S. Nowaczyk and J. Malec, “Learning to evaluate conditional
partial plans,” Proc. of the Sixth Int’l. Conf. on Machine
Learning and Applications (ICMLA ’07), IEEE Computer
Society, 2007, pp. 235–240.

[13] A. Schuldt, J. D. Gehrke, and S. Werner, “Designing a
simulation middleware for FIPA multiagent systems,” Proc.
of the Int’l. Conf. on Intelligent Agent Technology (IAT 08),
IEEE, 2008, pp. 109–113.

[14] L. Panait and S. Luke, “Cooperative multi-agent learning: The
state of the art,” Autonomous Agents and Multi-Agent
Systems, vol. 11, pp. 387–434, Nov. 2005.

[15] L. E. Parker and C. Touzet, “Multi-robot learning in a
cooperative observation task,” in Distributed Autonomous
Robotic Systems 4, L. E. Parker, G. Bekey, and J. Barhen,
Eds. Berlin: Springer-Verlag, 2000, pp. 391–401.

[16] J. Peng and R. J. Williams, “Incremental multi-step Q-
learning,” Proc. of Int’l. Conf. on Machine Learning (ICML
94), vol. 11, Morgan Kaufmann, 1994, pp. 226–232.

[17] S. Sen and G. Weiss, “Learning in multiagent systems,” in
Multiagent Systems, G. Weiss, Ed. Cambridge, MA: MIT
Press, 1999, pp. 259–298.

[18] B. Śnieżyński, “Agent strategy generation by rule induction in
predator-prey problem,” Proc. of the 9th Int’l. Conf. on
Computational Science (ICCS 2009), Springer-Verlag, 2009,
pp. 895–903.

[19] T. Sugawara and V. Lesser, “On-line learning of coordination
plans,” Proc. of the 12th Int’l. Workshop on Distributed
Artificial Intelligence, 1993.

[20] M. Tan, “Multi-agent reinforcement learning: Independent vs.
cooperative agents,” Proc. of 10th Int’l. Conference on
Machine Learning (ICML 93), Morgan Kaufmann, 1993, pp.
330–337.

[21] C. J. C. H. Watkins, Learning from Delayed Rewards. PhD
thesis, King’s College, Cambridge, 1989.

[22] J. Wojtusiak, R. S. Michalski, K. Kaufman, and J.
Pietrzykowski., “The AQ21 natural induction program for
pattern discovery: Initial version and its novel features,” Proc.
of the 18th IEEE International Conference on Tools with
Artificial Intelligence, 2006, pp. 523–526.

[23] A. S. Wu, A. C. Schultz, and A. Agah, “Evolving control for
distributed micro air vehicles,” Proc. of IEEE Int’l. Symp. on
Computational Intelligence in Robotics and Automation
(CIRA 99), IEEE, 1999, pp. 174–179.

