
TOWARDS ONTOLOGY-BASED MULTIAGENT SIMULATIONS:
THE PLASMA APPROACH∗

Tobias Warden, Robert Porzel, Jan D. Gehrke, Otthein Herzog, Hagen Langer, Rainer Malaka
Center for Computing and Communication Technologies (TZI)

Universität Bremen
Bremen, Germany

Email: {warden,porzel,jgehrke,herzog,hlanger,malaka}@tzi.de

KEYWORDS
Multiagent-based Simulation, Simulation Modelling, On-
tology Engineering.

ABSTRACT
In multiagent-based simulation systems the agent pro-
gramming paradigm is adopted for simulation. This simu-
lation approach offers the promise to facilitate the design
and development of complex simulations, both regarding
the distinct simulation actors and the simulation envi-
ronment itself. We introduce the simulation middleware
PlaSMA which extends the JADE agent framework with
a simulation control that ensures synchronization and pro-
vides a world model based on a formal ontological descrip-
tion of the respective application domain. We illustrate
the benefits of an ontology grounding for simulation de-
sign and discuss further gains to be expected from recent
advances in ontology engineering, namely the adaption of
foundational ontologies and modelling-patterns.

INTRODUCTION
Multiagent-based simulation (MABS) has been employed
successfully for system analysis and evaluation in a va-
riety of domains ranging from simulating models of bee
recruitment to simulating complex business processes,
such as supply chain management. The approach lends
itself in particular to the simulation of complex systems
on the micro-level where individual decision makers are
modeled explicitly as autonomous agents embedded in
dynamic environments. In contrast to alternatives, such
as equation-based modelling, these modelling approaches
facilitate the design of complex systems due to task de-
composition, a natural mapping from real-world actors
or entities to agents, the focus on modelling of individual
behaviour (Parunak et al., 1998).

Still, the concrete decision to adopt multiagent-based
simulation for evaluation purposes when starting from a
blank slate, is often perceived as a mixed blessing as the
effort required to design particular multiagent-based sim-
ulations, especially when scaling the number of involved

∗This research has been funded by the German Research Founda-
tion (DFG) within the Collaborative Research Centre (CRC) 637 “Au-
tonomous Cooperating Logistic Processes – A Paradigm Shift and its
Limitations” at the Universität Bremen, Germany.

agents and environmental complexity, often exceeds that
of comparable simulation approaches, such as Petri-nets
or queuing networks (Klügl et al., 2002). Off-the-shelf
agent frameworks are typically not designed to consider
simulation-specific issues, such as synchronization, for
which solutions exist in standard simulation approaches
(Bobeanu et al., 2004). In addition, the design of the simu-
lation environment itself in which the MAS can be placed,
requires significant development resources. Thus, there is
still an engineering challenge for multiagent-based mod-
elling and simulation to be addressed.

In this work, we introduce the multiagent-based sim-
ulation system PlaSMA and focus on a description of
its ontology-based simulation world model. We thereby
address how the design challenge to create scalable simu-
lations for complex domains is approached in the PlaSMA
system. To that end, the system provides reusable and
extendable ontological models based on an explicit logical
calculus. For evaluating our approach, we show how the
system has been used successfully for simulations in the
domain of autonomous logistic processes, where differ-
ent approaches for self-organized decision making have
been examined in terms of their robustness and adaptiv-
ity, e.g. in transport processes in dynamic environments
(Hülsmann and Windt, 2007). We also describe ongoing
work to generalize PlaSMA and use recent advances in
ontology engineering, which further facilitates simulation
design, interaction and analysis.

PLASMA SIMULATION PLATFORM
The PlaSMA system provides a distributed multiagent-
based simulation and demonstration system based on
the FIPA-compliant Java Agent Development Framework
JADE (Bellifemine et al., 2007)1. Although the primary
application domain is logistics, PlaSMA is, in principle,
applicable for other simulation domains.

The simulation system consists of the basic components
simulation control, world model, simulation agents, anal-
ysis, and user interface. Simulation control handles world
model initialization, provides an interface for world model
access, and performs agent lifecycle and simulation time
management. Simulation control is jointly executed by a

1PlaSMA, the Platform for Simulations with Multiple Agents, is de-
veloped at the CRC 637 ”Autonomous Cooperating Logistic Processes”.
PlaSMA is available at: plasma.informatik.uni-bremen.de



Distributed Simulation
Host n+1 (Slave Node)

Host n (Slave Node)Host 1 (Master Simulation Node)

TopController

SubController SubController1 n

Agent Agent Agent Agent

Non-distributed Simulation

....Agent....Agent

....

Figure 1: PlaSMA simulation control model

single top-level controller and an additional sub-controller
for each processor or computer in distributed settings as
depicted in Figure 1. Sub-controllers handle those soft-
ware agents (called simulation agents) that are the actors
in a simulation scenario. The interaction between top-
controller and sub-controllers concerns agent lifecycle
management, runtime control, and time events.

Simulation Time Management
In general, MABS can combine distributed discrete event
or time-stepped simulation with decision-making encap-
sulated in agents as separate and concurrent logical pro-
cesses (Parunak et al., 1998). In classical simulation sys-
tems, the logical processes involved as well as interac-
tion links have to be known in advance and must not
change during simulation (Fujimoto, 2000). This is not
the case in MABS as each agent may interact with all other
agents (Lees et al., 2004). Agents may join or leave sim-
ulation during execution, e.g. depending on a stochastic
simulation model or human intervention. This flexibility,
however, complicates simulation time management.

Initially, it is necessary to distinguish different notions
of time related to multiagent-based simulation. Generally,
physical time refers to the time at which simulated events
happen in the real world. Simulation time (or virtual
time) models physical time in simulation. In scenarios
where the advancement of local virtual (simulation) time
or in short LVT (Jefferson, 1990) is directly coupled with
the progress of each individual agent in executing its be-
haviours, heterogeneities in the computational demands
of agents in the simulation and the distribution of agents
across hosts platforms with varying computational power
provoke a problematic divergence of LVTs, leading to the
so-called causality problem (Fujimoto, 2000). In order to
guarantee correct and reproducible simulations (Gehrke
et al., 2008), the simulation system has thus to ensure that
agents process events in accordance to their time-stamp
order. This requirement is addressed by synchronization,
which can be either optimistic or conservative in char-
acter. In optimistic synchronization, the progression of
local virtual time for each agent is in general not restricted
which allows executing simulations efficiently since fast
processes do not have to wait for slower ones. Optimistic
synchronization is demanding in implementation and has

∆(t1 ,t2)∆(t0 ,t1)Simulation Agents

Agent1

Agent2

Agent3

Agent4

Agentn
t0 t1 t2

Sub1

Sub2

Top

...

hosts

Figure 2: Course of a PlaSMA simulation.

high requirements regarding memory. Since cascading
rollbacks might require rewinding many steps back in
time, preceding execution states must be retained for each
agent. Conservative synchronization, by contrast, pre-
vents causality problems by ensuring the correct order of
event processing at each time by means of explicit coordi-
nation. The price to be paid is thereby a lesser speedup
that achievable by parallelism.

The choice of synchronization a mechanism is an impor-
tant design decision for the implementation of a MABS
system. Based on the identification of important quality
criteria for MABS systems presented in (Gehrke et al.,
2008), a coordinated conservative synchronization ap-
proach has been adopted in PlaSMA which is handled
concertedly by the simulation controller hierarchy. As
shown in Figure 2, the top-controller sends time events to
each sub-controller to indicate progression of simulation
time. Based on this information, the sub-controllers iden-
tify the respective subset of locally managed simulation
agents due to act at the next time-stamp, advance the LVT
of these agents to the communicated time stamp, and fi-
nally send wake-up notifications. The agents then take
over from the controllers to perform a single walk through
their respective behaviour structure. Computation time
will vary depending on the complexity and diversity of
agent tasks and the situation at hand. At the end of each ac-
tion cycle each simulation agent needs to inform its local
sub-controller of its requirements with regard to continua-
tive operation. Thereby, the agent may choose to declare
explicitly a particular time point in the future. Alterna-
tively, it can choose not to declare such a particular date
and rather wait until operation is necessitated due to the
reception of messages communicated by other agents or
the completion of a previously commissioned action. The
activity requests are consolidated by the sub-controllers
such that only a single result is propagated further to the
top-level controller. The latter then computes the next
simulation time-stamp based on these requests. Having
done so, it also computes the progress in the physical
simulation world model, thus setting the stage for the next
action cycle of the simulation agents.



Top-Level 
Ontology

Transport 
Ontology

Production 
Ontology

Communication 
Ontology

Goods 
Ontology

Std. Scenario 
Graph

Scenario 
Specification 

Scenario 
Specification

PlaSMA Ground Ontologies

Scenario Development

Figure 3: Modular structure of PlaSMA ontologies.

Ontology-based Simulation World Model
The PlaSMA implementation provides a model of the
physical world which is based on a declarative, for-
mal, and explicit model expressed as an OWL-DL on-
tology (Bechhofer et al., 2004). In this way, the initial
process of scenario design is turned into an ontology en-
gineering task for which standard tools and modeling
principles exist. One of the main benefits of this ontology-
based approach can, therefore, be regarded to lie in this
standardization of the scenario design process.

Our implementation of the PlaSMA simulation system
provides a modular set of five ontologies which spec-
ify terminological knowledge relevant in the logistics
domain. These ontology modules, whose link-up is de-
picted schematically in Figure 3, constitute the formal
basis for scenario modelling at design time and are briefly
described below.

• TLO The top-level domain ontology for logistic sce-
narios specifies general types of physical objects, the
basics of traffic infrastructure, organizational mem-
bership, ownership of physical objects, and software
agents responsible for a set of physical objects or pro-
viding abstract services. All other ontologies import
and extend this ontology.

• TRANS As ontology for multimodal transportation,
this ontology defines location and site types, trans-
port relations in the traffic infrastructure as well as
means of transport, handling and loading equipment.

• PROD As ontology for intra- and shop floor logistics,
this ontology specifies production resources, and
orders with their respective properties.

• COM This communication ontology defines commu-
nication and computation devices with properties
such as radio coverage or power supply type.

• GOODS The goods ontology provides a general
schema to classify goods. For instance, classification
may distinguish physical or non-physical good (e.g.,
property rights), packaged or bulk good, perishable
or hazardous goods.

These ontologies are neither considered complete with
regard to the diversity of logistic sub fields (i.e. the current
focus is on distribution and, to a lesser degree, shop floor

logistics) nor mandatory for simulations of other applica-
tion domains. Therefore, the simulation designer is free
to use only a custom subset of core modules, may adapt
or extend these with additional concept and property as-
sertions, or create substitute ontologies suitable to model
a new domain of interest. How this can be achieved in a
systematic fashion is discussed later on.

Scenario Modelling: Infrastructure
In most application scenarios which have been im-
plemented in PlaSMA so far, i.e. in transport logis-
tics (Gehrke and Wojtusiak, 2008) and spontaneous ride
sharing (Xing et al., 2009), a basic traffic network is spec-
ified as an annotated directed graph. Vertices therein are
non-physical locations in the modeled world. In all but
synthetic scenarios, these bear a geographic grounding
in the form of geo-coordinates and host stationary logis-
tic infrastructure such as production facilities, harbors,
cross-docking stations and warehouses. The transport
ontology module provides several types of edges which
can be classified as specializations of the base concepts
LandRoute, WaterRoute and AirRoute, thus allowing for
the modelling of multimodal transport relations between
locations. Besides the stationary logistic resources, the
scenario ontology also specifies non-stationary logistic
resources, in particular means of transport and various fla-
vors of freight objects. The modularity provided by OWL
thereby allows for a separate modelling of a basic scenario
graph and scenario-specific entities populating that graph,
thus rendering the former reusable across scenarios.

Scenario Modelling: Agents
Next to this basic model of the physical environment, the
PlaSMA ontologies allow for the specification of non-
physical entities, such as organizations, and individual
agents in their role as decision makers. Modelling of orga-
nizational contexts allows for an adequate representation
of owner-, responsibility- and membership relations.

Of particular importance with regard to simulation ex-
ecution is the classification of agent types adopted in
PlaSMA and the association of these software agents with
entities within the simulation environment. The adopted
modelling approach conceptually introduces a partition
of all software agents, which constitute a simulation, into
distinct agent communities, namely simulation actors and
environmental agents.

The former community, made up of object- and service
agents, constitutes the MAS which has been deployed in
the simulation environment in order to evaluate global
performance, patterns of interaction among or the design
of particular agents. Object agents in PlaSMA act as arti-
ficial autonomous decision makers on behalf of particular
physical entities. They may either assume the role of an
authoritative digital representative or conduct secondary
functions. Service agents offer abstract services to fellow
simulation actors such as traffic information, weather pre-
diction or electronic market places. PlaSMA allows for
an intersection of both actor groups such that a particular



Host n+1 (Slave Node)
Host n (Slave Node)Host 1 (Master Simulation Node)

Simulation 
Agent

Simulation 
Agent

Simulation 
Agent

Simulation 
Agent

tlo:Physical Object

tlo:MeansOf
Transport

trans:Truck

tlo:FreightObject

trans:ISOContainer

tlo:Object 
Agent

tlo:Mobile 
StorageFacility

tlo:Agent

is-a

is-a
owl:Thing

is-a

is-a

scen:OA_001 scen:OA_002

scen:Truck_001 scen:Cont_001

represents represents

stores

scen:SA_001

tlo:Service 
Agent

World Model

PlaSMA Simulation

Terminological Knowledge Assertional Knowledge

....

.... ....

runtime-binding runtime-binding runtime-binding

inst.-of inst.-of

inst.-of

inst.-of

inst.-of

is-a

is-a

Figure 4: Interrelation of simulation agent, ontological
object/service counterpart and physical objects.

agent may simultaneously manage physical objects and
provide additional services.

The association of object agents and physical entities,
whose initial state is modeled at design time, is shown
in Figure 4. It may be subject to change as simulation
runs unfold. Due to the explicit differentiation of agents
and entities, agent modelling enables what may be called
dynamic embodiment with a mutable 1:n relation from
agent to managed entities. The modelling also provides
for the additional category of environmental agents whose
function can be explained by a theatre analogy. If we
think of the modeled environment as set for simulation
actors, the former agents as stage technicians modify the
set over the course of scenario runs. They are responsible
for runtime modification of both topology and charac-
teristics of infrastructure elements within the simulation
environment as shown in Figure 5. These agents are also
responsible for online creation and destruction of physical
entities. In contrast to object and service agents which
are modeled explicitly in the PlaSMA top-level ontology,
environmental agents are modeled indirectly to retain flex-
ibility as they combine traits of object agent, e.g. when a
new container is created and immediately included in a
storage facility inventory, and infrastructure agents.

Scenario Modeling: Validation
Besides advantages such as extensibility and a clear-cut
ontological grounding of all simulation constituents, the
modelling approach on the basis of OWL-DL adopted
for PlaSMA allows to leverage inferential capabilities of
dedicated ontology reasoning systems in order to ensure
the logical consistency and validity of simulation models
at design time. This holds both with respect to termino-
logical knowledge which describes the simulation domain
on the schema level and assertional knowledge, i.e. the
particular scenario specification. Modelling flaws can
thus be rectified early in development, thereby reducing
the number of modelling iterations due to shortcomings

Host n+1 (Slave Node)
Host n (Slave Node)Host 1 (Master Simulation Node)

Simulation 
Agent

Simulation 
Agent

Simulation 
Agent

Simulation 
Agent

tlo:StructureElement

tlo:Edge

trans:Road

tlo:Vertex

trans:TrafficJunction

tlo:Infrastructure 
Agent

tlo:Agent

is-a

is-a owl:Thing

is-a

is-a

scen:IA_001 scen:IA_002

scen:Road_001 scen:Junct_001

represents

World Model

PlaSMA Simulation

Terminological Knowledge Assertional Knowledge

....

.... ....

runtime-binding runtime-binding

inst.-of

inst.-of

inst.-of

inst.-of

is-a

is-a

scen:Road_001

represents

inst.-of

Figure 5: Interrelation of simulation agent, ontological
infrastructure counterpart and structure elements.

only spuriously discovered at run time.

World Model Interaction
The ontological modelling of a simulation scenario for
PlaSMA specifies the initial state of the environment and
the agent to object associations. However, for the simu-
lation to proceed, the ontological agent instances need to
be bound to applicable PlaSMA agents written in Java.

Once instantiated, the simulation agents have access to
their ontological specification using world model queries.
In the example presented in Figure 4, the truck agent can
retrieve its managed truck objects and their respective sta-
tus such as information about loaded freight objects. Be-
sides retrieval, the simulation world model also provides
means for its manipulation via two related mechanisms,
namely physical actions for use by simulation agents and
environment events for use by environmental agents. De-
pending on the modelling granularity chosen for a par-
ticular scenario, the aforementioned actions may thereby
correspond immediately to actions associated with phys-
ical entities, for instance the drive action of a truck, but
also to complex actions such as cargo transport between
storage facilities.

PlaSMA provides a growing library of reusable logistic
standard actions and an API to create additional actions.
Custom actions are programmatically specified in terms
of a) preconditions to be met for their execution, b) con-
cluding effects in the world model, and c), for protracted
rather than point-wise actions, transitional action effects
setting in at the begin of action execution. Due to the on-
tological foundation of the PlaSMA world model it is pos-
sible at run time to exploit inferential capabilities exposed
through the world model query interface. For instance,
asserted and derived classes of a particular graph edge
passed to a drive action can be ascertained and matched
with the action specification. Actions in PlaSMA can be
conceived as expansion of the world model whose scope
is respectively tailored to the domain of simulation. Thus,



they are granted unconstrained read access, allowing for
context-sensitive computation of action effects. For in-
stance, environmental events such as traffic jams or severe
weather conditions can significantly prolong the execution
of drive actions on affected transport relations. PlaSMA
ensures that active actions are notified of world model
changes. They then need to interpret these changes with
regard to their own execution and, if need be, internally
compute action effects incrementally.

The world model allows simulation agents to dynam-
ically create additional agents over the whole course of
a simulation run. In autonomous logistics, the runtime
creation of new agents is often motivated by dynamic
production or transport order inflow. For instance, an
agent which manages incoming transport orders for a for-
warding agency, might want to delegate the supervision
of particular orders to specialized agents. These can be
instantiated on demand rather than creating a fixed pool
of handling agents upon simulation start.

For further development of the PlaSMA simulation
world model, the following extensions are considered.
Firstly, there is a need for an automated detection and
subsequent resolution of conflicts that arise due to simul-
taneous or temporally overlapping computation mutually
exclusive actions. Secondly, the world model query inter-
face so far does not constrain the retrieval of world model
information such that it is up to the agent programmer to
implement an adequate scope visibility. In order to dis-
burden the programmer, object agents require an explicit
perception which accommodates their dynamic embodi-
ment as they assume control of one or multiple logistic
entities at a time. In this case, these agents should be
constrained to perceive the environment based on sensors
attached to represented objects. Additional challenges to
be met by object agents then comprise the locality and
incompleteness of perception as well as noise which can
be introduced by the sensor models.

Scenario Visualization and Control
PlaSMA comprises a visualization client which allows
runtime control and progress monitoring of simulation
experiments. To initiate a simulation run, the client is
connected to the main PlaSMA simulation node. The
experimenter may choose from previously deployed sce-
narios whose runtime parameters such as simulation start
and duration, number of successive runs, or logging gran-
ularity can be customized. Once a scenario is loaded, the
client leverages the NASA World Wind2 mapping engine
to render the annotated directed graph which represents
the multimodal transport network as well as the physi-
cal logistic entities thereon onto a virtual globe. It also
provides a tree representation of both agents as simula-
tion actors and physical objects. In particular, the tree
view continuously depicts the associations between soft-
ware agents in their roles as autonomous decision makers

2Web Site: http://worldwind.arc.nasa.gov/java/
(visited: 2010/02/25)

and managed logistic entities, either from the agent per-
spective (i.e. objects managed by respective agents) or
the entity perspective (i.e. agents acting either authorita-
tively or in secondary roles for respective objects). The
selection of entities or agents in the simulation delivers
insight to their associated world model state which is
useful when tracing entities during simulation runs. The
PlaSMA client offers support for a distributed monitoring
of simulation runs. Multiple client instances may connect
to the same PlaSMA server. This allows for monitoring
of joint experiments from different locations via multiple
viewports.

Work on extending the client’s scope of operation is
currently underway. Therein, we focus on supporting
intuitive collaborative interaction with larger, and there-
fore more complex, simulations. Within this approach we
investigate multi-touch surface computing environments
as a means to provide an intuitive interaction framework
which allows human agents a) to manipulate the physical
simulation environment directly via environment events
and b) to allow for online human-agent interaction. The
latter thereby renders possible the involvement of human
actors as an additional category of decision makers in
what could then be considered a participative simulation.

APPLICATION AND EVALUATION
Although actively used as a joint experiment platform by
several research groups within the Collaborative Research
Centre (CRC) 637 for four years, PlaSMA is still in a
prototype stage of development. It is applied for compar-
ison and evaluation of algorithms for logistics planning
and special sub-processes therein, such as coordination
mechanisms of logistics objects, information distribution,
environment adaptation and prediction (Gehrke and Wo-
jtusiak, 2008) as well as routing and cargo clustering
algorithms (Schuldt and Werner, 2007). Furthermore,
PlaSMA is part of the Intelligent Container demonstra-
tion platform3 integrating simulation with real-world hard-
ware in perishable food transport scenarios. In the context
of adaptive route planning, PlaSMA has been integrated
with the AQ21 machine learning system for prediction
of expected traffic and speed on potential routes (Gehrke
and Wojtusiak, 2008). PlaSMA is currently integrated
with the learnable evolution model (LEM), a library for
non-Darwinian evolutionary computation that employs
machine learning to guide evolutionary processes (Woj-
tusiak, 2009). Complexity of simulation surveys ranges
from very few agents to large agent communities (20,000).

EXTENDING PLASMA SCOPE AND USABILITY
While the successful application and evaluation so far has
adduced initial evidence that the PlaSMA system facili-
tates the compilation of simulations for multiple scenarios
in our application domains, there is still potential for de-
velopment which we seek to explore in ongoing research.

3Web Site: http://www.intelligentcontainer.com
(visited: 2010/02/25)



Ground Model  
Ontology of 

Logistic Objects

Ground Model  
Ontology of 

Logistic Objects

DOLCE Modules

DOLCE 
Foundational Ontology

Ontology of Plans

Core Software 
Ontology

Ontology of 
Information Objects

Descriptions and 
Situations

Foundational Ontology 
of Simulation Systems

Ground Model  
Ontology of 

Logistic Objects

PlaSMA Simulation 
Ontology Su

pp
ly

 M
od

el
in

g 
Pa

tte
rn

s

Foundational and Descriptive OntologiesGround Ontologies

Figure 6: Framework for modelling multiagent-based
simulation systems, grounded on DOLCE.

Reaching beyond Simulations With regard to the
medium-term goal to propagate multiagent-based imple-
mentation of logistic decision and control systems from
the lab into real-world production systems, MABS is con-
sidered a suitable means to test multiagent applications
for compliance with specifications at hand. Although
multiagent-based applications are initially deployed in a
simulation test bed in early stages of their product life-
cycle, agent developers should be put in a position where
they can focus on the production use case. We propose
to augment multiagent-based simulation environments
such that simulation-specific portions of the agent code
bases are no longer required (Gehrke and Schuldt, 2009).
This renders possible a uniform agent design suitable
for both simulation and operation. The characteristics
of the agents’ target environment, either real or simu-
lated, is kept transparent from the point of view of the
agents. Working towards the uniform agent design ideal,
the PlaSMA system has been extended to handle implicit
simulation time synchronization (Schuldt et al., 2008).

Ontology Support for Design, Interaction & Analysis
The field of ontology engineering was motivated in gen-
eral by the promise of yielding scalable, portable and
reusable domain models. Initial results reached by the re-
search community, however, fell short of achieving these
promises and turned out to yield more pain than gain. As
a consequence, the ontology engineering process has been
revised and put on more rigorous modelling principles
such as the employment of foundational models, such as
DOLCE (Masolo et al., 2003) or SUMO (Niles and Pease,
2001), the explication of the corresponding ontological
commitments as well as the application of design- and
content patterns (Gangemi and Presutti, 2008).

As discussed above, we employ simulations as a cen-
tral method for examining the capabilities and limits of
autonomous logistic processes. In order to enhance the
PlaSMA ontologies described above, efforts are under-
way to put the corresponding models on firmer ontolog-
ical grounds. For this purpose, we employ the DOLCE
foundational ontology with several additional modules,
namely Descriptions and Situations (Gangemi and Mika,
2003), the Ontology of Information Objects, the Ontol-
ogy of Plans and the Core Software Ontology (Oberle

et al., 2005). We currently develop a foundational ontol-
ogy that models simulations themselves. It will facilitate
the import of other ontological models that employ the
same foundational top level and, consequently, further
the adoption of PlaSMA for simulations in new applica-
tion domains. Also, the subsequent use of domain mod-
els, initially developed specifically for use in PlaSMA,
is rendered possible in new contexts. Next to enabling
portability and re-usability, one can employ the resulting
framework to explicate context-dependent reifications of
the simulated entities and their actions, e.g. a logistic
object, such as a truck, can be ontologically described
as a MeansOfTransportation, a FreightObject, or a Traf-
ficObstacle depending on the context at hand. In the
end the resulting framework will provide a foundational
domain-independent ontology of simulations - modelling
the constituents of simulations per se - together with their
respective docking stations for domain ontologies, which
model the environment and entities, simulated or real.

CONCLUSION AND OUTLOOK
In this paper, we have introduced the multiagent-based
simulation system PlaSMA with a particular focus on its
ontology-based world model. We have described the ben-
efits of the ontological grounding for simulation design
and execution. We have shown, how the adoption of the
PlaSMA system to new domains requires - in principle -
only the creation and integration of a set of new domain
ontologies. We hope to ease this engineering effort by
employing a standardized and well-used foundational on-
tology and dedicated simulation-specific design patterns.
Encouraged by successful adoption of PlaSMA for ex-
perimentation and demonstration in autonomous logistics,
in the future, we will explore the potential advantages
of using a foundational simulation ontology beyond in-
creasing the scalability, portability and re-usability of the
domain simulation models. We anticipate this generaliza-
tion to affect also the interaction with agent-based sim-
ulations for the human stakeholders. Specifically, in the
design phase scenario engineering will be facilitated by
exploitation of reusable ontological patterns. At runtime,
complex simulations could be rendered (more) accessible
for human-computer interaction. Finally, in the analysis
phase, an easier and well-grounded evaluation of recorded
simulation runs will become feasible. We see usability as
a central challenges for MABS of domains where we find
a mixture of human and artificial decision makers, as one
needs to guarantee that the human stakeholders involved
will be able both to understand what is happening within
such systems and control a running system.

REFERENCES

Bechhofer, S., van Hamelen, F., Hendler, J., et al. (2004). OWL
Web Ontology Language Reference, W3C Recommendation.
Technical report, W3C.

Bellifemine, F., Caire, G., and Greenwood, D. (2007). Develop-



ing Multi-agent Systems with JADE. Wiley Series in Agent
Technologies. Wiley Inter-Science.

Bobeanu, C.-V., Kerckhoffs, E. J. H., and Landeghem, H. V.
(2004). Modeling of Discrete Event Systems: A Holistic and
Incremental Approach using Petri Nets. ACM Trans. Model.
Comput. Simul., 14(4):389–423.

Fujimoto, R. (2000). Parallel and Distributed Simulation Sys-
tems. Wiley & Sons, New York, NY, USA.

Gangemi, A. and Mika, P. (2003). Understanding the Semantic
Web through Descriptions and Situations. In Proceedings of
the ODBASE Conference, pages 689–706. Springer.

Gangemi, A. and Presutti, V. (2008). Handbook of Ontologies
(2nd edition), chapter Ontology Design Patterns, pages 221–
244. Springer.

Gehrke, J. D. and Schuldt, A. (2009). Incorporating Knowledge
about Interaction for Uniform Agent Design for Simulation
and Operation. In 8th Int. Conference on Autonomous Agents
and Multiagent Systems, pages 1175–1176.

Gehrke, J. D., Schuldt, A., and Werner, S. (2008). Quality
Criteria for Multiagent-Based Simulations with Conserva-
tive Synchronisation. In 13th ASIM Dedicated Conference
on Simulation in Production and Logistics, pages 545–554,
Berlin, Germany. Fraunhofer IRB Verlag.

Gehrke, J. D. and Wojtusiak, J. (2008). Traffic Prediction for
Agent Route Planning. In International Conference on Com-
putational Science 2008 (vol. 3), volume 5103 of LNCS, pages
692–701, Poland, Kraków. Springer.

Hülsmann, M. and Windt, K., editors (2007). Understanding
Autonomous Cooperation & Control in Logistics: The Im-
pact on Management, Information and Communication and
Material Flow. Springer, Berlin, Germany.

Jefferson, D. R. (1990). Virtual Time II: Storage Management in
Conservative and Optimistic Systems. In Proceedings of the
Ninth Annual ACM Symposium on Principles of Distributed
Computing, pages 75–89, Quebec, Canada. ACM Press.

Klügl, F., Oechslein, C., Puppe, F., and Dornhaus, A. (2002).
Multi-Agent Modelling in Comparison to Standard Mod-
elling. In Artificial Intelligence, Simulation and Planning
in High Autonomy Systems (AIS 2002), pages 105–110. SCS
Publishing House.

Lees, M., Logan, R., Minson, T., Oguara, T., and Theodoropolus,
G. (2004). Distributed Simulation of MAS. In Multi-Agent
Based Simulation, Joint Workshop, volume 3415 of LNCS,
pages 25–36. Springer.

Masolo, C., Borgo, S., Gangemi, A., Guarino, N., and Otramari,
A. (2003). D18: Ontology Library (final). Project deliverable,
WonderWeb: Ontology Infrastructure fo the Semantic Web.

Niles, I. and Pease, A. (2001). Towards a Standard Upper
Ontology. In Proceedings of the Int. Conference on Formal
Ontology in Information Systems, pages 2–9.

Oberle, D., Lamparter, S., Eberhart, A., and Staab, S. (2005).
Semantic Management of Web Services. In Service-Oriented
Computing - ICSOC 2005, volume 3826 of LNCS, pages
514–519. Springer.

Parunak, H. V. D., Savit, R., and Riolo, R. L. (1998). Agent-
Based Modeling vs. Equation-Based Modeling: A Case Study
and Users’ Guide. In Multi-Agent Systems and Agent-Based
Simulation, First International Workshop, volume 1534 of
LNCS, pages 10–25, Paris, France. Springer.

Schuldt, A., Gehrke, J. D., and Werner, S. (2008). Designing
a Simulation Middleware for FIPA Multiagent Systems. In
2008 IEEE/WIC/ACM International Conference on Web In-
telligence and Intelligent Agent Technology, pages 109–113,
Sydney, Australia. IEEE Computer Society Press.

Schuldt, A. and Werner, S. (2007). Distributed Clustering of
Autonomous Shipping Containers by Concept, Location, and
Time. In 5th German Conference on Multiagent System
Technologies, volume 4687 of LNAI, pages 121–132, Leipzig,
Germany. Springer.

Wojtusiak, J. (2009). The LEM3 System for Multitype Evolu-
tionary Optimization. Computing and Informatics (28), pages
225–236.

Xing, X., Warden, T., Nicolai, T., et al. (2009). SMIZE: A Spon-
taneous Ride-Sharing System for Individual Urban Transit.
In Multiagent System Technologies: 7th German Conference,
pages 165–176, Hamburg, Germany. Springer.

AUTHOR BIOGRAPHIES
Tobias Warden is a computer scientist and joined the
artificial intelligence group at the University of Bremen
as a research assistant in 2008. His research interests
span distributed knowledge management and collabora-
tive multi-agent learning.
Robert Porzel is a senior researcher at the Digital Media
Research Group at the University of Bremen. His research
encompasses knowledge representation, contextual com-
puting, and natural language processing.
Jan D. Gehrke is a computer scientist and joined the
artificial intelligence group at the University of Bremen
as a research assistant in 2005. His research focuses on
intelligent agents in logistics as well as knowledge repre-
sentation and management in MAS.
Otthein Herzog is a professor emeritus. From 1993 to
2009, he held the chair on Artificial Intelligence in the
Department of Mathematics and Computer Science at the
University of Bremen. Dr. Herzog continues to contribute
to the interdisciplinary activities of the CRC 637 which
he represented as speaker till 2009.
Hagen Langer is a senior researcher at the Artificial In-
telligence Research Group of the University of Bremen.
Besides knowledge representation and reasoning, his re-
search focus is on natural language processing.
Rainer Malaka holds the chair on Digital Media in the
Department of Mathematics and Computer Science at the
University of Bremen. He directs the TZI – Center for
Computing and Communication Technologies.


