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Abstract 

Logistic processes are inherently complex and dynamic. This motivates the application of 

robust distributed methods, such as multiagent systems, for logistic planning and control. 

In the present paper we outline a knowledge management oriented approach for multi-

agent-based autonomous logistic processes. Recent results from simulations give rise to 

the assumption that efficient usage of knowledge and distributed control can improve the 

robustness and service quality in logistic processes to a significant degree. We discuss 

the role of ontologies as a formal knowledge representation component, present a 

framework based on agent knowledge management roles, and demonstrate how knowl-

edge management in a distributed system can contribute to risk reduction by situation 

awareness at different levels of logistic processes. 

 

1 Introduction 

Due to the increasing demands on efficiency and flexibility of logistic strategies new 

paradigms for planning and control are required. An emerging approach to this is the 

analysis and design of autonomous logistic processes (cf. Scholz-Reiter et al. 2004). 

Software agents represent a modern approach for implementing autonomous systems. 

The challenge for the design of agent systems is to integrate the complex and dynamic 

knowledge required for reliable decision-making. 

 

Distributed decision making systems, e.g., multiagent systems (MAS), have been attrib-

uted to be more robust and more flexible than systems which depend on exactly one 

centralized (global) decision-making unit. This property is important for large-scale deci-
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sion making systems for complex and dynamic environments, e.g., in the area of trans-

portation and supply networks. 

 

In the current paper we will outline different aspects of an approach to distributed deci-

sion-making in logistics which addresses knowledge management and risk management 

for software agents in autonomous logistic systems. We will sketch the architecture of 

the system, as a whole, and the structure of the agents, therein. Results from simulation 

experiments with the above-mentioned system emphasise the importance of knowledge 

in logistic processes with decentralised decision systems. 

 

The remainder of this paper is organized as follows: In section 2 (Distributed Control in 

Logistics) we discuss the application of distributed AI methods and particularly multi-

agent systems in the logistics domain. Section 3 gives an overview on the usage of on-

tologies in our framework and introduces a role-based approach to knowledge manage-

ment. In section 4 we investigate how distributed control, knowledge sharing, and situa-

tion awareness contribute to the logistic performance and reduction of risk in different 

transportation scenarios. Section 5 presents conclusions and outlines future work. 

 

2 Distributed Control in Logistics 

Increasing demand for customization of products and their delivery has brought about a 

sea change in today’s economy. Markets that were predominantly controlled by sellers 

evolve to markets that are now rather driven by buyers and their demands. These trends 

lead to complex and partially conflicting requirements on logistic planning and control 

systems. An upcoming approach to meet these requirements is to allow for more auton-

omy of local sub-systems in order to provide flexibility and rapid response when reacting 

to customer requests as well as more robustness in case of system disturbances. The 

emergence of new hardware technologies including GPS-based telematics, more reliable 

and longer ranging wireless communication and item identification facilities as well as 

low-power sensor devices enable new approaches in controlling and monitoring logistic 

processes. In addition, software with artificial intelligence is being developed to support 

autonomous decision-making on the local level of logistic objects (e.g., transport con-

tainers) and to provide the right information when it is needed (Langer et al. 2006). This 

section introduces the basic software approaches and techniques toward distributed con-

trol in logistics. 

 

2.1 Distributed Artificial Intelligence 

Distributed Artificial Intelligence (DAI) is a subarea of general Artificial Intelligence (AI) 

which has a special focus on distributed problem solving. DAI has been influenced by the 

upcoming of parallel hardware and by several theoretical and practical results on distrib-
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uted knowledge representation and parallel algorithms. There is a wide range of methods 

in DAI, including, e.g., distributed theorem proving, artificial neural networks, swarm 

intelligence, and multiagent systems. Swarm intelligence approaches have been success-

fully applied to particular logistic tasks such as the travelling salesman problem and the 

vehicle routing problem (Svenson et al. 2004). 

 

An important motivation for DAI is the study and simulation of processes and systems 

with different “actors”. Typical domains are games (e.g., robot soccer) and the simulation 

of collaboration and competition in complex social and technical systems. Another moti-

vation for using DAI methods is that they turned out to be appropriate methods for solv-

ing or, at least, approximating difficult optimisation problems. A third motivation for DAI 

is its robustness: Changing just a few bits in a standard software system can have com-

pletely unpredictable effects and will usually result in fatal errors or a system breakdown. 

In DAI systems the modification or deletion of one or few actors typically has only slight 

effects and preserves the overall behaviour of the system. On the other hand, the dele-

gation of decision-making authorities to autonomously acting software agents can also 

imply loss of control and, hence, new risks, especially when strategic decisions are sub-

ject of a delegation. Therefore, autonomous agents have to have an integrated risk man-

agement, either as an internal component of the agent itself or as an external control 

mechanism. A generic architecture of risk-aware agents that emphasises the importance 

of knowledge about the state of the world is discussed by Lorenz et al. (2005). 

 

2.2  Intelligent Agents and Multiagent Systems 

For the purposes of modelling more complex logistic processes which presuppose that the 

actors are able to use background knowledge, strategic planning, and reasoning, the 

multiagent system (MAS) paradigm is more appropriate than other DAI methods (e.g., 

Swarm Intelligence). Autonomous agents and MAS have been applied in many domains 

such as manufacturing (Kirn et al. 2006; Pechoucek et al. 2005b), logistics and supply 

chain management (Kirn et al. 2006; Dorer & Callisti 2005), as well as cargo online qual-

ity monitoring on embedded systems (Jedermann & Lang 2008).  

 

Multiagent systems consist of software agents who are situated in a (virtual) environ-

ment. They interact with each other based on high-level interaction protocols. These pro-

tocols are inspired by work on linguistic pragmatics by Austin and Searle in “Speech Act 

Theory” (cf. Austin 1962; Searle 1969). An intelligent agent is considered as an entity 

that perceives through sensors, reasons about its next actions, and acts upon the envi-

ronment it inhabits (Wooldridge 2000). Wooldridge and Jennings (1995) define the fol-

lowing minimal criteria an agent should comply with: autonomy, proactiveness, reactivity, 

and social ability. That is, an intelligent agent should be able of independent and goal-



 

directed decision making, reaction on changes in its environment, and communication 

with other agents. 

 

The basic kind of agent is the simple reflex agent. This agent is governed by condition-

action rules and always selects the same action given the same perception, i.e., it acts 

deterministically. The rational agent “chooses to perform actions that are in its own best 

interests, given the beliefs it has about the world” (Wooldridge 2000, p. 9). Rationality is 

a fundamental requirement of safety-critical autonomous systems. The belief-desire-

intention (BDI) model (Bratman 1987; Bratman et al. 1988) became a prevalent ap-

proach for deliberative software agent architectures (cf. Wooldridge 2000; Timm 2004; 

Kirn et al. 2006). BDI is based on a theory of Bratman (1987) which describes human 

practical reasoning as deliberation, i.e., deciding what state should be achieved, and 

means-ends reasoning, i.e., deciding how to achieve it. In the BDI model, an agent is 

represented by its subjective knowledge about the world (beliefs) and persistent goals 

that should be achieved (desires). Desires and current beliefs result in achievable goals 

and possible actions towards them. Finally, in a process of deliberation, the agent com-

mits to a goal and a corresponding plan with sub-goals (intentions). Since this more so-

phisticated design of an agent explicitly models the decision-making in a “human-like” 

way, it has been chosen a starting point for implementing autonomously acting logistic 

units, discussed below.  

 

2.3 Autonomous Logistics 

The control paradigm of autonomous cooperating logistic processes applies the concept 

of decentralized decision-making and self-organisation to logistics (Scholz-Reiter et al. 

2004; Windt & Hülsmann 2007). That is, autonomous agents accompany logistic entities 

(e.g., vehicles, transport containers, or even single parcels) during a logistic process, 

monitor their state, and decide about their intentions and actions. This may include 

communication and cooperation with other agents if necessary to achieve their goals. 

Radio frequency identification (RFID) helps identify and keep track of load modules (e.g., 

pallets).  

 

The decentralized approach provides easier access to local information needed for mak-

ing the best decision and, due to reduced complexity for frequent (re-)planning, it is less 

vulnerable to environmental changes such as new transport orders or breakdown of vehi-

cles. Decentralized local decision-making cannot guarantee optimal solutions in global or 

company-wide scale. But in practice, the goal of having a steadily optimized plan for a 

large-scale set of resources that face unpredictable events in a dynamic environment 

becomes unachievable. A seemingly optimal solution may prove bad in the end when 

situation changes. In a recent diploma thesis (Kordes 2008) simulation results were pre-

sented which support the hypothesis that decentralization can contribute to a more ro-
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bust behavior of a planning system. Kordes compared a centralized transportation plan-

ning system with a hybrid (i.e., partially decentralized) alternative and found that the 

decentralized planner had advantages w.r.t. the number of time-of-delivery deviations, 

although the average route length computed by the centralized system was significantly 

better. 

 

Engineering autonomous processes in logistics includes three perspectives: material, in-

formation, and management. Autonomous agents cover the information as well as the 

management perspective because they process and exchange information and have 

some autonomous decision behaviour. High-level decision behaviour of agents is chal-

lenging and may not be realised by simple reflex agent architectures. Therefore, we as-

sume that intelligent agents with deliberative decision behaviour and explicit knowledge 

representation and reasoning capabilities are required to meet these requirements (e.g., 

BDI agents).  

 

The challenge in logistics arises from complexity and dynamics of a spacious environment 

and the different interests within the system. On the interaction level, agents should 

maximize their own utility. But each agent is also a representative of an enterprise and, 

therefore, its behaviour should improve the performance of the corresponding enterprise. 

This may call for actions that are conflicting with the agent’s local utility. Furthermore, 

agents may need to communicate or even cooperate with agents of potentially competing 

companies. Thus, strategic considerations and preferences in cooperation with other 

companies as well as information hiding issues have to be addressed. Cross-company 

communication of agents also requires standards for encoding and interpretation of data 

for information interchange. Formal ontologies, which are currently the predominant 

method to represent the semantics of information interchange between agents, are sub-

ject of section 3, below. 

 

3 Ontologies and Knowledge Management in Logistics  

Knowledge representation using ontologies is an important research topic in Artificial In-

telligence and in many related application-oriented research areas. For example, most 

Semantic Web applications presuppose ontologies as a basic component. Although on-

tologies are typically well-defined formal objects, the term ontology itself is actually an 

informal concept. Hence, it is often difficult to separate ontology from related terms such 

as taxonomy, semantic network, thesaurus, etc. A frequently cited definition, derived 

from Gruber (1993), states that an ontology is a “specification of a conceptualization”. 

 

In contrast to taxonomies, ontologies typically not only define a hierarchy of concepts 

(concepts and their sub-concepts and super-concepts), but also offer many other rela-

tions, which are often domain-specific. In our application ontologies play an important 



 

role. First, ontologies are used to represent knowledge about the logistic tasks and ob-

jects the agents have to deal with and, secondly, the ontologies define the semantics of 

the expressions which the agents use to communicate with each other. 

 

The conceptual knowledge is represented as an OWL (Web Ontology Language, cf. 

Bechhofer et al. 2004) ontology. For the purpose of our logistic application domain, this 

ontology includes a representation of the transportation or production network, the prop-

erties of infrastructure (such as highways, depots, etc), and the types of logistic objects 

and their properties. For a vehicle this includes, e.g. its maximum speed, the types of 

routes in the network it can use, the type of storage space and its capacity.  

 

In our framework, knowledge representation and reasoning of each individual agent is 

accompanied by a role-based distributed knowledge management infrastructure (Langer 

et al. 2006). In contrast to previous approaches to agent-based knowledge management, 

we do not presuppose a one-to-one correspondence between agents and knowledge 

management functions, such as providing knowledge or brokering knowledge. In our ap-

proach these functions are implemented as roles. A knowledge management role includes 

certain reasoning capabilities, a visibility function on an agent's beliefs, a pattern of ac-

tion (i.e., a plan how to accomplish the knowledge management task), and a communi-

cation behaviour with interacting agents. The latter is defined by specific interaction pro-

tocols for each pair of interacting roles. 

 

The aim of knowledge management roles is to provide a formal description of knowledge 

management tasks that simplifies the development of agents and agent interactions. One 

agent can assume different roles and may change them over time. The minimum role 

model consists of one or more knowledge providers and a knowledge consumer that may 

negotiate for knowledge transfer using the Contract Net (Smith 1980) agent interaction 

protocol standardised by the Foundation for Intelligent Physical Agents (FIPA). We intro-

duced an extended role model that incorporates, e.g., brokers that help discover infor-

mation sources provided by other agents or mediation services able to integrate multiple 

data sources (Langer et al. 2006). In figure 1 some of the knowledge management roles 

and their interaction characteristics are depicted. 

 



Distributed Control for Robust Autonomous Logistic Processes  In: Robuste und sichere Logistiksysteme. 
4. Wissenschaftssymposium Logistik. 
Deutscher Verkehrs-Verlag, Hamburg, S. 25-37 

 

 
Figure 1: Agent Knowledge Management Roles 

 

4  Coping with Risks by Situation Awareness 

On the one hand, autonomous systems reduce certain risks but, on the other hand, they 

also raise new risks in system operation. The decision process of autonomous agents in 

logistics depends to a large extent on accurate, comprehensive, and up-to-date knowl-

edge and information about themselves, their environment, and other logistic processes 

they may need to synchronise with. Whereas humans, to some degree, may be aware of 

what information is currently relevant for their decisions and whether they have that in-

formation or not (known unknowns), autonomous agents are not aware of missing infor-

mation in general. Thus, these systems also need some kind of situation awareness 

(Endsley 2000) and a measure for its quantification. A potential measure for situation 

awareness can be derived from information value theory (Howard 1966), i.e., by the dif-

ference in expected utility given more information, or sensitivity analysis (Saltelli et al. 

2000), i.e., dependency of system output on potentially uncertain inputs.  

 

In this section we will focus on two different examples for risk related to a lack of situa-

tion awareness. Both examples are taken from the transportation domain, and both illus-

trate how the level of risk relates to the level of uncertainty about the environment con-

ditions in logistic processes. The first risk concerns potential transport orders a vehicle 

agent passes up because it is not aware of them. The other risk concerns the loss of ser-

vice quality in transportation processes, when the vehicle agent's knowledge about the 

environment is insufficient with respect to the weather and traffic situation. 

 

4.1  Scenario 1: Knowledge Exchange 

In autonomous logistics there will be an increasing amount of orders that are not as-

signed to contractors based on a long-term general cooperation agreement. In contrary, 

cooperation is also established on an ad hoc basis. The official parties in such an ad hoc 

 



 

agreement remain companies. But the focus is on particular logistic objects and re-

sources such as freight and its means of transport. The acting representatives in the cor-

responding negotiation are either humans or, more importantly, software agents that 

handle one specific logistic object. 

 

The technical foundations of such an agent-based agreement are already available with 

(mobile) Internet communication and agent negotiation protocols standardized by the 

IEEE FIPA Standards Committee. But considering an open infrastructure that supports 

participation of arbitrary companies, there are practical issues that have to be addressed. 

These issues concern the administration and distribution of information that enable a 

large number of potential cooperation partners to find each other. A simple broadcast of 

a principal’s call for proposals would flood the IT infrastructure and overburden other 

agents with many useless messages. Also a central service brokerage instance is not ap-

propriate because it creates an IT bottleneck as well as a major risk to overall system 

stability when breaking down. Furthermore, brokers would call for fees and there may be 

also orders that should be distributed only to a selected group of possible contractor 

agents. 

 

Cooperation networks could be a solution for these problems. Whenever an order is dis-

covered, e.g., by local wireless broadcast communication of such an order by some cargo 

to surrounding means of transport, and the corresponding call for proposals does not fit a 

receiver’s requirements, the receiver agent may forward this proposal to cooperating 

agents. Thereby the cargo’s call for transport proposals is spread over the network 

(Fig. 2). In order to avoid useless communication agents may have filters to select inter-

esting orders based on general requirements (price, size etc.) or specific interests told by 

cooperation partners (“Need follow-up cargo in Hamburg area from 4pm”). This is where 

our distributed agent knowledge management infrastructure comes into play (Sect. 3). 
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Figure 2: Knowledge exchange on available cargo between cooperating transport 

vehicles in autonomous logistics. 

 

We conducted multiagent-based simulations (MABS), using the PlaSMA simulation plat-

form (Gehrke & Ober-Blöbaum 2007), that model such a collaboration network and dis-

tributed service infrastructure. In this setting, a group of four to twelve collaborating 

transport agents represent single trucks. Another group of truck agents does not collabo-

rate and thus depends on information on potential orders gathered solely on their own. 

The physical infrastructure they act in was simulated as a torus-shaped 250,000 km2 

area that is structured by a graph of road links. Each node in the graph represents a po-

tential source or sink of transport orders. 

 

The experiments showed that cooperating agents actually profit from knowledge ex-

change significantly. 20 to 36 per cent of their orders resulted from information previ-

ously obtained from cooperation partners. The cooperating agents transported 2 to 10 

per cent more cargo than their non-cooperating opponents. Also their downtime could be 

reduced by 13 per cent in average. Most importantly, they acquired more attractive or-

ders: Their profit increased by 16 to 52 per cent. The difference depends on the size of 

the cooperation group. Bigger groups were more successful in comparison to non-

cooperating agents but less in comparison to the smaller cooperating groups in other 

experiments. This is because the overall number of available orders (system load) re-

mained the same. That is, cooperation by knowledge exchange is even more rewarding 

when competition increases. This stresses the importance of situation awareness for 

agents in autonomous logistics. 

 

4.2  Scenario 2: Knowledge about the Environment 

Uncertainty in vehicle route planning is an everyday problem in transportation over long-

er distances. The shortest route is not always the fastest. Even when considering maxi-

 



 

mum allowed or average expected speed on single roads the planned routes may prove 

to be suboptimal. While suboptimal solutions are a natural property in dynamic, open 

environments with partial observability, usual classical route planning does not make use 

of much up-to-date or background information that would be obtainable and correlates 

with travel time. As an exception, many retail car navigation systems include traffic re-

ports in their calculations by excluding congested roads which are within a certain, usu-

ally fixed spatial distance from the vehicle. 

 

Thus, we conducted simulation studies (Gehrke & Wojtusiak 2007) that help find the util-

ity or importance of environmental information for evaluating travel time and its applica-

tion in route planning cost functions. We included location-specific weather information 

(in pre-processed or even plain textual format) and background knowledge on road traf-

fic. The single-destination vehicle route planning in our simulations applies an A* search 

algorithm (Hart et al. 1968) with cost function 

),(),(),,( dendhtrgtdrf rdepdep 
 

for reaching destination d when using (partial) route r at departure time tdep with g as the 

estimated driving time for r and with h as the estimated remaining driving time to d after 

passing r. Heuristics h is calculated as driving time at straight line distance from endr to d 

at maximum vehicle speed. The route r consists of n consecutive road links  with 

. The route segment of first k road links is denoted by rk-1. The estimated driving 

time g on route r is calculated by: 
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with vest as the estimated vehicle speed on a road. The estimation depends on the vehicle 

agent implementation. Road link departure time for i > 0 is defined by 

),(, depildep tlgt
i
 . 

Because this setting ensures the criteria for the A* algorithm (non-negative costs and 

optimistic heuristics) it guarantees the optimal solution. However, the route found is op-

timal only provided that knowledge about the environment used in the cost function for 

the determination of vest is complete and correct. But assumptions on future road and 

weather conditions are possibly wrong because the environment continuously changes in 

a way that cannot be predicted precisely. 

 

We conducted simulation experiments with a traffic model based on real-world traffic 

census data within the simulation platform PlaSMA (Gehrke & Ober-Blöbaum 2007). In a 

first experiment setting, the vehicle agent determined vest only based on weather infor-

mation for the locations the vehicle might pass and background knowledge on how 

weather might influence maximum safe vehicle speed. The experiments (16,000 itera-
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tions for each setting) revealed that the inclusion of uncertain textual weather informa-

tion reduces travel time by 3.5 to 5.1 per cent on average. The simulation model presup-

posed a moderate weather-to-speed influence model with a difference in expected speed 

of only 6 meters per second between best and worst weather conditions. 

 

As an adaptation of that study, we included learned travel time predictions in the vehicle 

agent’s route planning (Gehrke & Wojtusiak 2007). This predicting agent is an extension 

of the above weather-aware agent and uses previous experiences as input to learn situa-

tion- and road-specific rules for expected speed with weather conditions, time of day, 

and day of week as parameters. The applied Natural Induction learning approach 

(Michalski 2004) and machine learning program AQ21 (Wojtusiak et al. 2006) yielded 

human-readable predictions rules such as 

[Speed=60] 

    <= [Day=Mo] & [Time=morning] & [Weather=moderate..good] 

i.e., on a specific road link expected average speed is 60 km/h on Monday mornings 

when weather is from good to moderate. Rule base queries use the road, available road-

specific weather information, and estimated arrival time as input, with depend-

ing on other predictions. On average, this agent was 6.3 per cent faster than naïve igno-

rant agents and standard deviation of travel time was reduced by 31 per cent. The pre-

dictions were also robust in settings with greater uncertainties (Gehrke & Wojtusiak 

2007). Applying such a situation-aware route planning could enhance quality of logistic 

service and thus bring about a considerable competitive advantage and economic impact. 

ildept , ildept ,

 

5 Conclusions 

In this paper we discussed two key factors for the robustness of logistic processes, the 

decentralization of control and the role of information and knowledge. We pointed out 

that distributed control helps improve robustness, but can also imply new risks because 

decisions are delegated to autonomous software agents with limited situation awareness. 

We, therefore, suggest the integration of an explicit knowledge management component 

into a rational agent that enables reasoning about lack of information about the environ-

ment. We sketched a multiagent-based framework for knowledge management and re-

ported the results of simulation experiments which gave strong evidence that, at least in 

the restricted scenarios which were used in the simulations, the outlined knowledge 

management approach in fact improves the performance of logistic agents significantly. 

The experiments also suggested that the relevance and value of additional information in 

highly dynamic domains is hard to determine without prior experiences in practice or 

simulation. In future work, we will focus on formal models to measure situation aware-

ness of autonomous systems in order to conduct agent knowledge acquisition as a ra-



 

tional and well-founded reasoning process. 
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