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Abstract: The concept of multiagent-based simulation introduces the agent program-
ming paradigm to simulation. Multiagent systems ease the implementation of soft-
ware systems to control complex business processes, such as supply chain manage-
ment (SCM). Problem complexity is decreased by abolishing monolithic programs. 
Instead, decision-making is delegated to software agents as local entities. This al-
lows coping even with processes that cannot be controlled centrally due to their 
inherent physical distribution. Simulation allows evaluating logistics strategies re-
garding their applicability in such processes. However, general agent development 
frameworks are not designed to consider simulation-specific issues. In particular, 
they provide no means for synchronisation. This paper identifies time model ade-
quacy, causality, and reproducibility as quality criteria that must be ensured by a 
simulation middleware implementing synchronisation. Furthermore, a formal defi-
nition of these quality criteria for conservative synchronisation is presented. 

1 Introduction 
Transport logistics processes are inherently physically distributed, in supply chain 
management (SCM) often even over multiple continents. Several issues make it a 
challenging task to control such processes by software systems: 

1. The high complexity due to the number of participants, as well as their distri-
bution and their interactions. 

2. The high degree of dynamics due to continuously changing demands as well as 
delays in the process. 

3. The physical distribution that prevents relevant information from being avail-
able centrally. 

These arguments illustrate why it is virtually impossible to follow the traditional 
way of centralised monolithic programs in order to control such processes. Even 
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decomposing program complexity by object orientation is often not sufficient to 
cope with this problem. Then, it is necessary to additionally delegate decision-mak-
ing to local entities. This can be accomplished by the agent programming paradigm 
(Weiss 1999; Jennings 2001). In this concept, real-world entities are represented by 
their own autonomous software agents, thereby preserving the original structure of 
the system. This eases software development as follows: 

1. The problem complexity is significantly reduced because every single agent 
only concerns the objectives of the entity it represents. 

2. The decomposition into autonomous units allows flexible interaction in order 
to cope with dynamics. 

3. It is not necessary to disclose decision-making and relevant information to a 
central unit. Instead, agents just interact by communication like companies that 
make contracts in real world. 

Simulation is a powerful tool in order to evaluate logistics strategies and their appli-
cation in advance. This is particularly necessary when complexity and dynamics 
prevent to analytically predict the outcome of a process. Multiagent-based simula-
tion (MABS) applies the concepts of multiagent systems to simulation (Herrler and 
Klügl 2006). New findings from MABS can be directly transferred from simulation 
to real-world operation. Existing agent platforms, like JADE (Bellifemine et al. 
2007), however, are generally not designed to consider simulation-specific issues. In 
order to apply such platforms for MABS, a middleware has to be introduced that 
implements synchronisation. For this purpose certain quality criteria, namely time 
model adequacy, causality, and reproducibility, must be considered. These criteria 
supplement general quality criteria (Wenzel et al. 2008) to be considered in simula-
tion projects. 

The remainder of this paper is structured as follows. Sections 2 and 3 introduce 
foundations of MABS as well as simulation time management. Section 4 discusses 
and formalises the synchronisation-related quality criteria. Subsequently, section 5 
describes their implementation in a simulation middleware. Finally, section 6 pro-
vides a conclusion. 

2 Multiagent-Based Simulation 
Multiagent-based simulation can be categorised as distributed simulation with dis-
crete time model using software agents as parallel logical processes in simulation. It 
combines simulation scalability and runtime acceleration with encapsulation of 
decision-making in agents (Parunak et al. 1998). 

On the most abstract level, simulation structure can be either macro or micro simu-
lation (Davidsson 2000). Agent-based modelling pertains to the category of micro 
modelling methods. In this concept the behaviours of individuals are encapsulated 
by logical processes that interact with each other (Davidsson et al. 2007). Instead of 
being globally visible, variables are evaluated and validated on the individual level. 

As discussed above, agents completely encapsulate their internal state (information 
hiding) like in object-based simulation. This eases simulation model development 
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because there exists a natural mapping between real-world entities and their simula-
tion counterparts. Additionally, agents of different companies may interact with each 
other without the necessity to reveal internal structures for decision-making (Pa-
runak et al. 1998). In classical object-based simulation the objects are passive in the 
sense that they are manipulated by central transition rules or programs (Herrler and 
Klügl 2006). Agents, by contrast, are proactive units that autonomously control their 
behaviours. This is important when simulating humans or autonomous systems that 
are capable of acting without external stimuli (Davidsson 2000). In classical parallel 
and distributed simulation systems the logical processes involved as well as interac-
tion links have to be known in advance and must not change during simulation 
(Fujimoto 2000). This restriction does not hold for MABS because each agent may 
interact with all other agents (Lees et al. 2005). Agents can even join or leave simu-
lation during execution, e.g., depending on a stochastic simulation model. Thus, it is 
impossible to predict communication partners, and therewith the simulation model 
topology, in advance (Lees et al. 2005). 

3 Simulation Time Management 
When dealing with simulation it is important to distinguish different notions of time 
(Fujimoto 2000). Physical time generally refers to the time at which simulated 
events would happen in the real world whereas simulation time models the physical 
time within simulation. Simulation time in MABS progresses in a discrete way. The 
gold standard is discrete event simulation where time progression is driven by 
events. Finally, wallclock time refers to the time that is consumed by the simulation 
program in executing the simulation. 

In distributed simulations multiple logical processes (LPs) run concurrently on dif-
ferent platforms or processors, which may differ regarding their computational 
power. Therefore, simulation time progression depends on the CPU and the compu-
tational needs of each LP. Consequently, each LP has its own local virtual time 
(LVT). In MABS, logical processes are implemented as agents that usually run as 
operating system threads. Thus, agents even run concurrently on a single CPU simu-
lation platform.  

As long as agents are independent of each other, concurrency does not matter. But 
problems may arise whenever agents interact. Consider an agent passing a message 
to another agent that is advanced in its local virtual time. The recipient of such a 
straggler message might have taken other decisions if it were aware of the message 
on time. This is denoted as the causality problem (Fujimoto 2000). In order to guar-
antee correct simulations events have to be processed in accordance with their time-
stamp order. 

Diverging local virtual times are addressed by synchronisation which can be either 
optimistic or conservative. The difference between both approaches is as follows. 
Optimistic synchronisation generally does not restrict progression of LVT for 
agents. Whenever a straggler message is received the respective agent is reset to its 
past state at the LVT of the received message (cf. Jefferson 1985). By contrast, con-
servative synchronisation strictly prevents causality problems. This can be achieved 
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if agents commit to send no further messages before a specified point in simulation 
time. All events before the minimal commitment are safe to process. 

Both optimistic and conservative synchronisation approaches have advantages and 
drawbacks. An advantage of optimistic synchronisation is that it allows a more effi-
cient execution of simulation because fast processes do not have to wait for slower 
ones. Regarding time consumption, optimistic simulation is thus preferable to con-
servative simulation (as long as the occurrence of straggler messages is limited). 
But, optimistic synchronisation has potentially high requirements regarding memory 
(Fujimoto 2000) because all preceding states of every agent must be stored at worst. 
This is a particular problem in MABS because agents may need to manage extensive 
knowledge bases. The space complexity may be reduced by time windows for opti-
mistic synchronisation (Lees et al. 2005; Pawlaszczyk and Timm 2006). Neverthe-
less, runtime performance may significantly decrease when state saving requires 
frequent and extensive I/O operations. 

With conservative synchronisation time progression is potentially slower. But mem-
ory requirements are significantly lower because there is no need to store past states 
of agents. Human interaction or monitoring (Davidsson 2000) is an additional argu-
ment for conservative synchronisation. If the simulation requires user interaction, it 
is not desirable that some processes have to wait for user input while others advance 
(arbitrarily far) in time. Furthermore, if the simulation is linked to a visualisation 
component, the states of all agents have to be visualised at the same point in time. 
Hence, the application of conservative synchronisation is adequate in domains 
showing these properties although it restricts the speedup achievable by parallelism. 
Remember that MABS usually incorporates a great number of agents and that inter-
action between them cannot be predicted in advance. Obviously, it is inadequate that 
each agent continuously synchronises with all others. Thus, coordinated synchroni-
sation control is required for conservative synchronisation as, for instance, provided 
by barrier synchronisations known from parallel computation. 

4 MABS Quality Criteria 
The multiagent-based simulation paradigm features special properties that make it 
distinct from normal object-based simulation or distributed discrete event simula-
tion. In particular, agents model autonomous and proactive entities that cannot be 
manipulated directly by method invocation. By contrast, agents only receive mes-
sages as simulation events from other agents and decide locally when and how to 
handle them. This may also include ignoring incoming messages. In this survey we 
particularly focus on agent communication in multiagent systems following the 
standards of the IEEE Foundation for Intelligent Physical Agents (FIPA). This im-
plies using the standardised FIPA agent system architecture and the Agent 
Communication Language (ACL). Messages are no longer just simulation-specific 
representations of events that change state variables but become an important part of 
the modelled domain because they represent the flow of information among agents. 

The above characteristics of MABS imply additional quality criteria for simulation 
time management that are partially different from those known for distributed simu-
lation systems. The applied time model and synchronisation mechanism influence 
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simulation results regarding time model adequacy, causality, and reproducibility. 
Time model adequacy, in this context, denotes the level of abstraction in time pro-
gression as well as duration of agent actions including communication. The 
synchronisation mechanism has to ensure causality constraints (also referred to as 
correctness) with respect to that model. Reproducibility (or repeatability) of simula-
tion results given the same model and the same random seeds is a quality criterion 
that does not affect simulation result accuracy. Nevertheless, it is important for 
traceability and analysis of occurring effects and possible modelling errors.  

4.1 Time Model Adequacy 
Time model adequacy addresses the challenge of discretizing physical time to simu-
lation time and mapping events to certain timestamps. The maximum granularity of 
simulation time is restricted by the maximum integer number that can be represented 
and the maximum virtual length of simulations permitted. Usually, all seconds from 
ca. 1902 to 2038 can be represented in UNIX time format; other formats also sup-
port milliseconds. At least the latter granularity should be sufficient for most 
applications imaginable in logistics, including flow of information.  

However, very fine-grained simulation time is likely to be very harmful to simula-
tion runtime performance. Thus, the minimal granularity needed has to be carefully 
determined in advance. This granularity will be referred to as Δtmin. It specifies the 
minimal progression of simulation time between events as well as the acceptable 
artificial synchrony, i.e., events within such an interval are considered simultaneous 
in simulation time although they are potentially not in physical time. A reasonable 
value for Δtmin depends on the modelled domain and simulation purpose. In general, 
one should not accept values smaller than the distance of two possible events whose 
order is of importance. Otherwise, simulation results may be corrupted. 

Agent communication using message passing is analogue to events sent between 
logical processes in distributed simulation. Nevertheless, agent messages have some 
special properties. The timestamp of events denotes the simulation time when the 
respective event is intended to change some simulation variable (or behaviour) of 
the simulation process receiving the event. Although this also holds for MABS one 
has to think about the message timestamp in a different way. In a naïve perspective 
the timestamp of an agent message equals the simulation time it was created at. 
Obviously, this would presuppose that message passing can be done without time 
consumption. As indicated above a sequence of dependent events like an agent con-
versation sequence should be mapped to different timestamps for every event.  

Thus, the simulation communication model should consider the transmission dura-
tion trans(m) for a message m sent at simulation time sent(m) from one agent to 
another. Again, an appropriate value for trans(m) depends on the modelled domain. 
One might look at expected Internet communication latencies for appropriate values. 
The timestamp of the message event is then defined by: 

)trans()sent()received( mmm +=  

The left-hand scenario in figure 1 depicts the problem of agent communication 
without simulation time consumption. A complex sequence of agent interactions 
(e.g., negotiating a contract) is handled at a single timestamp although it would con-
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sume physical time. Thus, the result of this communication process happens earlier 
than actually possible in real world, thereby possibly corrupting simulation results. 
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Figure 1: Agent Communication without (left) and with (right) Time Consumption 

All agent communication should take at least a minimum amount of simulation time 
(fig. 1 right), i.e.  

0)trans( >Δ≥∀ mintmm  

The minimal time progression Δtmin also defines a maximally accepted imprecision 
of event timestamps. The potential artificial delay of messages induced by trans(m) 
and Δtmin must not exceed Δtmin: 

mintmmm Δ<−∀ )(trans')trans(  

Here, trans'(m) denotes the intended message transmission duration in physical time 
in contrast to the simulation time duration trans(m) which is actually modelled and 
simulated. 

4.2 Causality 
As discussed in the preceding section, time model adequacy demands message 
transmission to consume simulation time. This constraint also has an impact on 
causality, the second quality criterion to be considered in MABS synchronisation 
mechanisms. It can be motivated by the following example (fig. 2). Consider two 
agents A and B. At simulation time tsim = i, A passes a message m to B. The order in 
which A and B are executed in wallclock time t depends on operating system sched-
uling. Thus, it depends on scheduling whether B receives m at tsim = j or tsim = i. In 
the first case (fig. 2 left), A is scheduled after B has finished execution at tsim = i. 
Hence, B has no possibility of receiving m at tsim = i and perceives m not until tsim = 
j. This is in accordance with the requirement that transmitting m must consume time. 
However, there also exists another case (fig. 2 right) in which m is delivered to B at 
tsim = i. A is scheduled before B. Therefore, B could still perceive m at tsim = i after A 
has sent it at the same point in simulation time, i.e., at a point in time m should not 
yet be visible. 
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Figure 2: Controlling Message Visibility to Ensure the Causality Constraint 

In classical parallel discrete event simulation it does not pose a major problem if 
messages arrive early. Whenever messages arrive early they are simply not proc-
essed until time progression arrives at the timestamp intended. By contrast, message 
handling is more complicated in multiagent-based simulation. This is due to the fact 
that agents act autonomously and that they have unrestricted access to their message 
inbox. Thus, simulation model developers would have to handle such messages 
explicitly in order to satisfy the causality constraint. 

However, burdening agents and their developers with synchronisation-related issues 
is error-prone and thus not desirable. Instead, the simulation system should transpar-
ently handle message perception. From this follows that the simulation system has to 
ensure that agents cannot perceive messages before their intended arrival time (mes-
sage m' in fig. 2 right): 

)received(),e(Perceivabl mttmtm simsimsim ≥→∀∀  

4.3 Reproducibility 
As an intermediate result, adequacy and causality constraints ensure that messages 
are never processed at the same simulation time they have been sent at. Thus, it does 
not depend on operating system scheduling at which time messages arrive. From this 
follows that message arrival is reproducible over multiple simulation runs. Never-
theless, this does not necessarily guarantee reproducible results. Figure 3 depicts an 
example. At tsim = i, both agents A and C send a message to agent B, mA and mC 
respectively. Both messages are received by B at tsim = j. However, there exist two 
possible ways in which the messages can be ordered in the inbox queue of B. If the 
operating system schedules A at an earlier wallclock time t than C, mA is before mC 
in the queue (fig. 3 left). Otherwise, the messages are in reverse order (fig. 3 right). 
From this follows that results of simulation runs would not be reproducible. In order 
to address this issue, a consistent message ordering ≤M must be imposed. Message 
ordering directly depends on operating system scheduling. Remember that an agent 
platform and its simulation middleware do generally not have any influence on op-
erating system scheduling. Thus, the ordering has to be introduced at a later stage. 
Actually, it is sufficient to order message as soon as they are added to the message 
queue of the receiving agent. 

The first message queue ordering criterion is, of course, the timestamp at which the 
respective message has been received. Whenever two messages have the same time-
stamp an additional ordering criterion o(m) has to be considered: 
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Figure 3: Problem of Inbox Queue Order Depending on Scheduling 
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In the above formula o(m) is completely generic because an appropriate ordering 
criterion may depend on the domain under consideration. A general attribute of 
messages that can be applied is the unique agent identifier of its sender. Assumed 
that every agent receives at most one message from each sender per time, this crite-
rion is already sufficiently distinctive. Otherwise, additional properties (like the 
message content) have to be added. While this guarantees reproducibility, ordering 
messages this way might potentially corrupt simulation results. This has to be pre-
vented by choosing appropriate attributes for ordering (Fujimoto 2000, pp. 84–86). 

5 Implementation 
The quality criteria identified have been implemented within the PlaSMA multi-
agent-based simulation system (Gehrke and Ober-Blöbaum 2007) using conser-
vative synchronisation with tree barriers. PlaSMA is based on the popular JADE 
agent platform that is in compliance with FIPA agent standards. PlaSMA provides a 
simulation control middleware for JADE that handles experiment initialisation, time 
management, as well as agent lifecycle management. Simulation control primarily 
consists of two kinds of instances: one top-level controller and a sub-controller for 
each processor or computer in distributed simulation settings. Each sub-controller 
locally handles the commitments of its respective agents concerning wake-up time-
stamps and transmits the minimal commitment to the top-level controller. In return, 
the top-level controller sends time events to the sub-controllers based on the com-
mitments it received. Additionally, the internal message handling was adapted in 
order to guarantee adequacy, causality, and reproducibility of simulation. Time 
progression and correct message delivery is conducted transparently by the imple-
mentation. The user is not burdened with these simulation-specific issues. 

PlaSMA is mainly applied for simulations with logistics entities represented by 
software agents. It is used in order to compare and evaluate algorithms for autono-
mous logistics planning and special sub-processes within this domain, e.g., coordi-
nation mechanisms (Schuldt and Werner 2007) as well as information distribution 
and routing algorithms (Gehrke and Wojtusiak 2008). Nevertheless, it is also appli-
cable for other domains and thus not limited to logistic scenarios. Furthermore, 
PlaSMA is also part of a demonstration platform integrating real-world hardware in 
perishable food transport scenarios (Jedermann et al. 2007). 



Quality Criteria for Multiagent-based Simulations 553 

6 Conclusion 
Multiagent systems are an adequate means to control complex logistics processes. 
Problem complexity is reduced by delegating decision-making to software agents as 
local entities. In general, the outcome of logistics strategies cannot be predicted 
analytically due to the underlying complexity and dynamics. Instead, multiagent-
based simulation, which combines the agent programming paradigm with simula-
tion, can be applied in order to evaluate such strategies. However, existing agent 
frameworks generally do not consider simulation-specific issues. Therefore, it is 
necessary to introduce a simulation middleware that implements synchronisation. 

In this paper conservative synchronisation is applied due to domain-specific per-
formance considerations (i.e., agents with extensive and dynamic knowledge bases). 
The paper identifies quality criteria to be considered on the message exchange layer 
as the central medium for agent interaction. Namely, these criteria are time model 
adequacy, causality, and reproducibility. The paper presents how to guarantee them 
by defining particular rules for message transfer and processing. 

Additional quality criteria for synchronisation in multiagent-based simulation are 
performance and usability. Runtime performance of conservative synchronisation 
for MABS strongly depends on the agents employed and their tasks. Recent results 
indicate that even simulation models with more than 2,000 agents can be executed in 
reasonable time on a dual core computer (Schuldt and Werner 2007). The approach 
presented in this paper delegates most tasks to the simulation middleware, thereby 
disburdening the agent programmer. Nevertheless, agents (and thus their program-
mers) must still explicitly commit until when they will not send further messages. 
An open research question concerns how to determine this commitment automati-
cally. The ultimate objective in this context is to arrive at a uniform agent design for 
operation and simulation. 
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