
Designing a Simulation Middleware for FIPA Multiagent Systems

Arne Schuldt, Jan D. Gehrke, and Sven Werner
Centre for Computing Technologies (TZI)

University of Bremen, Am Fallturm 1, D-28359 Bremen

Abstract

Multiagent systems ease the implementation of software
systems to control complex processes. Instead of monolithic
programs, decision-making is delegated to software agents
as local entities. Like in software development in general,
testing and evaluation play an important role also for mul-
tiagent systems. Particularly, because run-time interactions
between agents and their effects cannot always be predicted
at design time. Multiagent-based simulation is an adequate
means to evaluate agents regarding their applicability in
real-world operation. However, general agent development
frameworks do not consider simulation-specific issues. Be-
cause they provide no means for synchronisation, an addi-
tional simulation middleware is required. Temporal criteria
that are relevant for middleware design are defined in this
paper. Furthermore, the actual implementation and exam-
ple applications in logistics are presented.

1. Introduction

Testing and evaluation play an important role in the soft-
ware development process. This particularly holds for mul-
tiagent systems as run-time interactions between agents and
their effects cannot always be predicted at design time [7].
However, it is generally not desirable to test software sys-
tems in their actual deployment [5]. Firstly, it is quite
expensive and time-consuming to test software in its real
environment. Secondly, testing might compromise the in-
tegrity of actual processes which again leads to high costs.
Simulation is a common alternative to avoid these prob-
lems. Multiagent-based simulation (MABS) is particularly
appealing as it applies the concept of multiagent systems
to simulation [5]. Agents and their behaviour can be easily
transferred [9] which makes MABS a promising approach
to examine them with minimal effort.

However, controlling processes in reality and simulat-
ing them exhibit a major difference. In the real world time
progression is an innate feature of the environment. This
does not hold for simulation because simulation time does

not progress implicitly. Additionally, simulated time pro-
gression may diverge for different agents since it depends
on the computational power demanded and agents are ex-
ecuted independently in parallel. This need for synchroni-
sation is addressed by simulation systems. MABS systems
that are designed for social simulation intend to generate
new findings about reality. There is no necessity to trans-
fer the actual agent implementation to a real-world soft-
ware system. Therefore, such simulation systems imple-
ment synchronisation but do not pay attention to interoper-
ability standards. By contrast, intercompany interaction in
real world necessitates agreeing on a standard communica-
tion language. Widely spread standards have been issued
by the IEEE Foundation for Intelligent Physical Agents
(FIPA). Existing multiagent platforms, such as JADE [1],
implement FIPA standards but do not provide means for
synchronisation. Therewith, they are applicable for real-
world process control but not for simulation.

A solution to this dilemma is to implement a simula-
tion middleware for existing agent platforms. Compliance
with FIPA standards is then assured by the agent platform;
the simulation middleware ensures correct synchronisation.
Middleware implementation requires certain quality criteria
regarding an adequate and correct abstraction of time (Sec-
tion 2). The contribution of this paper is twofold. Firstly,
necessary temporal quality criteria are discussed and for-
mally defined (Section 3). Secondly, these criteria are im-
plemented in a simulation middleware for conservative syn-
chronisation in MABS (Section 4). This middleware is cur-
rently applied in several projects to evaluate the influence of
autonomous control in logistics (Section 5).

2. Multiagent-Based Simulation

Multiagent-based simulation can be categorised as dis-
tributed simulation with discrete time model using software
agents as parallel logical processes. It combines simulation
scalability and runtime acceleration with decision-making
encapsulated in agents [9]. The agent paradigm eases sim-
ulation model development due to the natural mapping be-
tween real-world entities and their simulation counterparts.

2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology

978-0-7695-3496-1/08 $25.00 © 2008 IEEE

DOI 10.1109/WIIAT.2008.202

76

2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology

978-0-7695-3496-1/08 $25.00 © 2008 IEEE

DOI 10.1109/WIIAT.2008.202

76

2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology

978-0-7695-3496-1/08 $25.00 © 2008 IEEE

DOI 10.1109/WIIAT.2008.202

109

A

t tsim

B

m2

m1

m3

A

t tsim

B

m2

m1

m3

i

j = i + trans(m1)

k = j + trans(m2)

l = k + trans(m3)

i

Figure 1. Agent communication without (left) and with (right) time consumption

In simulation different notions of time must be distin-
guished [2]. Physical time refers to the time at which sim-
ulated events would happen in real world. Simulation time
models physical time within simulation. Simulation time
progresses in a discrete way in MABS. The gold standard is
discrete event simulation where time progression is driven
by events. Finally, wallclock time refers to the time that is
consumed by the simulation system in executing the simula-
tion. In MABS, logical processes (LPs) are implemented as
agents that usually run as operating system threads. Simula-
tion time progression depends on the computational needs
of each LP. Thus, each LP has its own local virtual time
(LVT). As long as agents are independent from each other,
concurrency does not matter. But problems may arise when-
ever agents interact. Consider an agent passing a message
to another agent that is advanced in its local virtual time.
The recipient of such a straggler message might have taken
other decisions if it were aware of the message on time.
This is denoted as the causality problem [2]. In order to
guarantee correct simulations events have to be processed
in accordance with their time-stamp order.

Diverging local virtual times are addressed by synchro-
nisation. Optimistic synchronisation generally does not re-
strict progression of LVT for agents. This allows an ef-
ficient execution of simulation because fast processes do
not have to wait for slower ones. Whenever a straggler
message is received the respective agent is reset to its past
state at the LVT of the received message (cf. [6]). This,
however, leads to potentially high requirements regarding
space [2] because all preceding states of every agent must
be stored at worst. The problem aggravates in simulations
with high amounts of participating agents that possess com-
plex knowledge. Space complexity may be reduced by time
windows [8, 10]. By contrast, conservative synchronisation
strictly prevents causality problems. This can be achieved
if agents commit to send no further messages before a spec-
ified point in simulation time. All events before the mini-
mal commitment are safe to process. Time progression is

therefore potentially slower. But space complexity is sig-
nificantly lower because there is no need to store past agent
states. Thus, we prefer conservative synchronisation for ap-
plications incorporating complex knowledge.

3. Temporal Quality Criteria for MABS

The multiagent-based simulation paradigm distinguishes
from normal object-based simulation or distributed discrete
event simulation. Agents cannot be manipulated directly by
method invocation. Instead, they receive messages as sim-
ulation events from other agents and decide locally when
and how to handle them. Messages may even be ignored.
Thus, messages are no longer just simulation-specific rep-
resentations of events that change state variables. Instead,
they become an important part of the modelled domain be-
cause they represent the flow of information among agents.
This characteristic of MABS implies additional quality cri-
teria for simulation time management that are partially dif-
ferent from those known for distributed simulation systems.
The applied time model and synchronisation mechanism in-
fluence simulation results regarding time model adequacy,
causality, and reproducibility.

3.1. Time Model Adequacy

Time model adequacy denotes the challenge of discretis-
ing physical time to simulation time and mapping events
to certain timestamps. Very fine-grained simulation time
is likely to be harmful to simulation runtime performance.
Thus, it is recommended to determine in advance the mini-
mal granularity needed. This granularity will be referred to
as ∆tmin. It specifies the minimal progression of simula-
tion time between events as well as the acceptable artificial
synchrony, i. e., events within such an interval are consid-
ered simultaneous in simulation time although they are po-
tentially not in physical time. A reasonable value for ∆tmin

depends on the modelled domain and simulation purpose.

7777110

A

t tsim

B

m

m’

A

t tsim

B

m

i

j

i

j

Figure 2. Controlling message visibility to ensure the causality constraint

In general, one should not accept values smaller than the
distance of two possible events whose order is of impor-
tance. Otherwise, simulation results may be corrupted.

Agent communication using message passing is ana-
logue to events sent between logical processes in distributed
simulation. Nevertheless, agent messages have some spe-
cial properties. The timestamp of events denotes the simu-
lation time when the respective event is intended to change
some simulation variable (or behaviour) of the simulation
process receiving the event. Although this also holds for
MABS one has to think about the message timestamp in a
different way. In a naïve perspective the timestamp of an
agent message equals the simulation time it was created at.
Obviously, this would presuppose that message passing can
be done without time consumption. As indicated above a
sequence of dependent events like an agent conversation se-
quence should be mapped to different timestamps for every
event. Thus, the simulation communication model should
consider the transmission duration trans(m) for a message
m sent at simulation time sent(m):

Definition 1 (Message Timestamp) The timestamp of
message m results from the sum of its sending time and its
transmission duration:

received(m) = sent(m) + trans(m)

Again, an appropriate value for trans(m) depends on the
modelled domain. One might, for instance, look at expected
Internet communication latencies for appropriate values.

The left-hand scenario in Fig. 1 depicts the problem of
agent communication without simulation time consump-
tion. A complex sequence of agent interactions (e. g., nego-
tiating a contract) is handled at a single timestamp although
it would consume physical time. The result of this commu-
nication process happens earlier than actually possible in
real world, thereby possibly corrupting simulation results.
As depicted right-hand in Fig. 1, all agent communication
should take at least a minimum amount of simulation time:

Criterion 1 (Time Consumption) Each message trans-
mission must at least consume the minimal amount of time
progression:

∀m trans(m) ≥ ∆tmin > 0

The minimal time progression ∆tmin also defines a
maximally accepted imprecision of event timestamps. The
potential artificial delay of messages induced by trans(m)
and ∆tmin must not exceed ∆tmin:

Criterion 2 (Modelling Accuracy) The deviation of simu-
lated transmission time and physical transmission time must
not exceed the minimal amount of time progression:

∀m trans(m) − trans′(m) < ∆tmin

Here, trans′(m) denotes the intended message transmission
duration in physical time in contrast to simulation time du-
ration trans(m) which is actually modelled and simulated.

3.2. Causality

Time model adequacy demands message transmission to
consume simulation time. It also impacts causality (also re-
ferred to as correctness), another temporal quality criterion
to be considered in MABS synchronisation mechanisms. It
can be motivated by the following example (Fig. 2). Con-
sider two agents A and B. At simulation time tsim = i, A
passes a message m to B. The order in which A and B are
executed in wallclock time t depends on operating system
scheduling. Thus, it also depends on scheduling whether
B receives m at tsim = j or tsim = i. In the first case,
A is scheduled after B has finished execution at tsim = i
(Fig. 2 left). Hence, B has no possibility of receiving m at
tsim = i and perceives m not until tsim = j. This is in
accordance with the requirement that transmitting m must
consume time. However, there also exists another case in
which m is delivered to B at tsim = i. A is scheduled be-
fore B (Fig. 2 right). Therefore, B could still perceive m at
tsim = i after A has sent it at the same point in simulation
time, i. e., at a point in time m should not yet be visible.

In classical parallel discrete event simulation it does not
pose a major problem if messages arrive early. Early mes-
sages are simply not processed until local virtual time ar-
rives at the timestamp intended. In MABS, message han-
dling is more complicated because agents act autonomously
and have unrestricted access to their message inbox. Thus,

7878111

A

t tsim

mA

‹mA, mC› ‹mC, mA›

mC

mC mA

CB A

t tsim

CB

i

j

i

j

Figure 3. Reproducibility problem of inbox queue order depending on scheduling

simulation model developers would have to handle such
messages explicitly in order to satisfy the causality con-
straint. But burdening agents and their developers with
synchronisation-related issues is error-prone and thus not
desirable. Instead, the simulation system should transpar-
ently handle message perception:

Criterion 3 (Causality) Messages must not be perceivable
to agents before their intended arrival time:

∀m∀tmin
Perceivable(m, tsim) → tsim ≥ received(m)

The right-hand side of Fig. 2 illustrates how the perception
of message m is delayed to m′.

3.3. Reproducibility

Reproducibility (or repeatability) of simulation results
given the same model and the same random seeds is an-
other quality criterion. It does not affect simulation result
accuracy. But it is important for traceability and analysis
of occurring effects and possible modelling errors. Ade-
quacy and causality constraints ensure that operating system
scheduling does not influence at which time messages ar-
rive. But this does not guarantee reproducible results. Fig-
ure 3 depicts an example. At tsim = i, both agents A and C
send a message to agent B, mA and mC respectively. Both
messages are received at tsim = j. But the inbox queue of
B can be ordered in two different ways. If the operating sys-
tem schedules A at an earlier wallclock time t than C, mA

is before mC in the queue (Fig. 3 left). Otherwise, the mes-
sages are in reverse order (Fig. 3 right). Because message
ordering directly depends on operating system scheduling,
results of simulation runs would not be reproducible. Thus,
a consistent message ordering ≤M must be imposed.

The first message queue ordering criterion is, of course,
the timestamp at which the respective message has been re-
ceived. Whenever two messages have the same time-stamp
an additional ordering criterion o(m) has to be considered:

Criterion 4 (Reproducibility) Received messages mi and
mj must be ordered by their arrival time and an additional
distinctive ordering criterion:

mi ≤M mj := received(mi) < received(mj) ∨
received(mi) = received(mj) ∧ o(mi) ≤ o(mj)

An appropriate ordering criterion depends on the domain
under consideration. Thus, o(m) is completely generic. A
message attribute that can be applied is the unique sender
identifier. Assumed that every agent receives at most one
message from each sender per time, this criterion is suf-
ficiently distinctive. Otherwise, additional properties (like
the message content) have to be added. While this guaran-
tees reproducibility, ordering messages this way potentially
causes a bias in simulation results. This has to be prevented
by appropriate attributes for ordering [2, pp. 84–86].

4. Implementation

Users should not be burdened with satisfying the tempo-
ral quality criteria themselves. The temporal criteria hold
for all agents and should thus not be considered by each
agent itself. In particular, implementing the same crite-
ria individually for each agent is error-prone. The addi-
tional effort for testing agents from operation in simulation
should be as small as possible. Therefore, the simulation
middleware must implement the temporal quality criteria
rather than each individual agent. The important question
is to which extent the underlying platform has to be modi-
fied. Such modifications are most probably not completely
avoidable. Nevertheless, it is generally desirable to make
only as few modifications as possible. If the middleware
directly changes the underlying source code, it will be nec-
essary to modify also all future versions of the platform.

The temporal quality criteria identified in Section 3 have
been implemented within the PlaSMA1 multiagent-based
simulation system [3] using conservative synchronisation
with tree barriers. PlaSMA is based on the popular JADE
agent platform that is in compliance with FIPA agent stan-
dards. PlaSMA provides a simulation middleware for JADE
that handles experiment initialisation, time management in-
cluding message passing, as well as agent lifecycle manage-
ment. Simulation control primarily consists of two kinds of

1http://plasma.informatik.uni-bremen.de/

7979112

instances: one top-level controller and a sub-controller for
each processor or computer in distributed simulation set-
tings. Each sub-controller locally handles the commitments
of its respective agents concerning wake-up timestamps and
transmits the minimal commitment to the top-level con-
troller. In return, the top-level controller sends time events
to the sub-controllers based on the commitments it received.
Internal message handling has been adapted to guarantee
adequacy, causality, and reproducibility of simulation.

5. Application

The economic importance of global logistics processes
has increased in recent decades. Today, former linear sup-
ply chains have evolved into networks with complex in-
terrelationships between their participants. Each supplier
has many customers and vice versa. A great many natural
and legal persons participate in keeping these globally dis-
tributed processes running. The challenges in controlling
such processes are the complexity and the high degree of
dynamics. Furthermore, the physical distribution prevents
relevant information from being available centrally.

These issues make it virtually impossible, to effectively
apply centralised control to supply networks. Autonomous
logistics is a new paradigm that aims at making complex lo-
gistics processes controllable [12]. This approach delegates
decision-making to local entities, e. g., to shipping contain-
ers which then plan and schedule their way through the lo-
gistics network themselves. This increases robustness be-
cause unexpected changes can be immediately handled on
the local level. Autonomous logistics can be implemented
by intelligent agents that act on behalf of the objects rep-
resented. The PlaSMA simulation system is mainly used
to evaluate approaches for autonomous logistics, e. g., coor-
dination mechanisms [11] and information distribution and
routing algorithms [4]. But PlaSMA is also applicable for
other domains and thus not limited to logistic scenarios.

6. Conclusion

In general, the behaviour of multiagent systems cannot
be predicted analytically due to the underlying complex-
ity and dynamics. Instead, multiagent-based simulation,
which combines the agent paradigm with simulation, can
be applied for evaluation. A simulation middleware must
be introduced because existing agent platforms generally do
not consider simulation-specific issues. Such a middleware
must satisfy temporal quality criteria on the message ex-
change layer. These criteria consider time model adequacy,
causality, and reproducibility. For this purpose, this paper
defines particular rules for message transfer and processing.
The approach presented in this paper already delegates most

tasks to the simulation middleware, thereby disburdening
the agent programmer. Nevertheless, agents (and thus their
programmers) must still explicitly commit until when they
will not send further messages. An open research question
concerns how to determine this commitment automatically.
The ultimate objective in this context is to arrive at a uni-
form agent design for operation and simulation.

Acknowledgement. The authors should like to thank To-
bias Warden for his valuable remarks that helped improve
the paper. This research is funded by the German Research
Foundation (DFG) within the Collaborative Research Cen-
tre 637 “Autonomous Cooperating Logistic Processes: A
Paradigm Shift and its Limitations" (SFB 637) at the Uni-
versity of Bremen, Germany.

References

[1] F. Bellifemine, G. Caire, and D. Greenwood. Developing
Multi-Agent Systems with JADE. John Wiley & Sons, Chich-
ester, UK, 2007.

[2] R. Fujimoto. Parallel and Distributed Simulation Systems.
John Wiley & Sons, New York, NY, USA, 2000.

[3] J. D. Gehrke and C. Ober-Blöbaum. Multiagent-based Lo-
gistics Simulation with PlaSMA. In GI 2007, pages 416–
419, Bremen, Germany, 2007.

[4] J. D. Gehrke and J. Wojtusiak. Traffic Prediction for Agent
Route Planning. In ICCS 2008, pages 692–701, Kraków,
Poland, 2008. Springer-Verlag.

[5] R. Herrler and F. Klügl. Simulation. In S. Kirn, O. Her-
zog, P. Lockemann, and O. Spaniol, editors, Multiagent En-
gineering: Theory and Applications in Enterprises, pages
575–596. Springer-Verlag, Heidelberg, Germany, 2006.

[6] D. R. Jefferson. Virtual Time. ACM Transactions on Pro-
gramming Languages and Systems, 7(3):404–425, 1985.

[7] N. R. Jennings. An Agent-Based Approach for Building
Complex Software Systems. Comm. ACM, 44(4):35–41,
2001.

[8] M. Lees, B. Logan, R. Minson, T. Oguara, and G. Theodor-
opoulos. Distributed Simulation of MAS. In MABS 2004,
pages 25–36, New York, NY, USA, 2005. Springer-Verlag.

[9] H. V. D. Parunak, R. Savit, and R. L. Riolo. Agent-Based
Modeling vs. Equation-Based Modeling: A Case Study and
Users’ Guide. In MABS 1998, pages 10–25, Paris, France,
1998. Springer-Verlag.

[10] D. Pawlaszczyk and I. J. Timm. A Hybrid Time Manage-
ment Approach to Agent-Based Simulation. In KI 2006,
pages 374–388, Bremen, Germany, 2006. Springer-Verlag.

[11] A. Schuldt and S. Werner. Distributed Clustering of Au-
tonomous Shipping Containers by Concept, Location, and
Time. In MATES 2007, pages 121–132, Leipzig, Germany,
2007. Springer-Verlag.

[12] K. Windt and M. Hülsmann. Changing Paradigms in Logis-
tics. In M. Hülsmann and K. Windt, editors, Understanding
Autonomous Cooperation and Control in Logistics, pages 1–
16. Springer-Verlag, Heidelberg, Germany, 2007.

8080113

