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Introduction  

Looking at the whole logistic network, the structure of logistic processes 
becomes increasingly complex. Especially in transport logistics, atomisa-
tion of transportation processes, multimodal transport chains, international 
competition, changing ecological and legal constraints along with conges-
tion of traffic infrastructure lead to highly dynamic and complex logistic 
processes that are difficult to plan (in advance).  
The same situation can be found in production logistics. Modern produc-
tion processes allow highly customized products. But the need for the re-
duction of costs, emerging virtual enterprises with distributed production 
plants, and just-in-time production leads to complex and highly dynamic 
production processes again being difficult to plan. 
The described complexity and the arising difficulty in planning is a great 
challenge for enterprises. Having means to overcome these problems can 
constitute a significant competitive advantage. 
 
The vision of the Collaborative Research Centre CRC 637 Cooperating 
Logistic Processes is to equip logistic processes and logistic objects with 
the capability to take decisions autonomously based on local and partially 
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incomplete information. In consequence, the necessity to plan on a high 
level of details should be reduced significantly.  
Considering transport logistics, this means that transport goods, transport 
vehicles etc. take decisions, like using a different route because of traffic 
congestion, locally without reinitiating a new overall planning and optimi-
sation process. Similarly in production logistics, intelligent goods can se-
lect different suitable tools for the next production step.  
 
Within the CRC 637 the autonomy in logistic systems and its benefits are 
investigated from different disciplines. To support autonomy, logistic enti-
ties need to have a minimum intelligence. Transport goods need to have 
some means of interaction, communication, and processing capabilities to 
take decisions, act, interact and communicate, autonomously. Logistic Sys-
tems are distributed and integrate physically mobile entities like transport 
vehicles or transport goods. 
The CRC 637 is developing integrated solutions and management strate-
gies using recent technological advances, on the hardware as well as on the 
software side, e.g., RFID, WLAN, agent technology.  
 
This chapter presents autonomy as a core property of innovative software 
systems like agents and autonomous units. In the first section, ideas of 
agency are introduced. In the following section, autonomous units as a 
graph transformation-based approach to handling autonomous decision 
makers in a formal framework are compared with agents (for a detailed in-
troduction of autonomous units the reader is referred to Chapter XXX). Fi-
nally, advanced concepts of agency are discussed.  

Ideas of Agency 

Since the early 1970s there are various approaches in computer science to 
design and develop distributed systems to overcome limited computational 
capacity of single processing units and solving larger problems. Accompa-
nying analysis of other research fields especially, in biology seem to con-
tent promising approaches of simple distributed decision entities leading to 
an emergent somehow intelligent behavior like a human brain. But even 
simpler contexts, like ant colonies show emergent behavior including “in-
telligent” solutions resp. global optimization by local interaction.  
 
Let us consider a simple logistics task, which is performed efficiently and 
reliable by real-world ant colonies: finding the shortest path from the nest 
to the food source. After random walks in the environment, the ants will 
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identify a new food source. Shortly after the identification, the ants will 
travel between nest and food on the direct and shortest path (cf. Figure 1 
(a)). This solution is reliable with respect to environmental changes. If an 
obstacle is preventing the use of the shortest path (cf. Figure 1 (b)), the 
ants will travel around obstacle randomly (cf. Figure 1 (c)). Again, after 
short time, the ants will take the shortest path. The underlying algorithm is 
simple with respect to requirements for coordination effort between the 
ants and computational complexity within an ant. The ants are using 
pheromones to mark their path. The intensity of the pheromones decreases 
continuously over time. Ants traveling to the food source follow the path 
with the strongest pheromone concentration.  
 

 
 

(a) 
 

(b) 

 
(c) 

 
(d) 

Fig. 1. Ant colony is finding the shortest path.  

There are several similar examples in natures, where simple decision enti-
ties, like ants, bees, birds, termites, are performing complex problem solv-
ing by local interaction.  
However, logistics tasks in real-world applications are far more complex 
due to various partially conflicting objectives, competitive behavior of the 
entities, etc. Thus, central planning in advance causes exponential compu-
tational complexity. Additionally, central planning is often prohibited by 
competing organizational substructures. Consequently significant research 
is focusing on emergent systems, where global optimization on a macro-
level emerges from local interaction on a micro-level. The underlying idea 
is, to design autonomous entities, which implement simple decision behav-
ior, which gain complexity by interaction with other autonomous entities. 
The concept of autonomies entities interacting on a local level has been re-
searched in computer science since the early 1980s. Smith (Smith 1980) 
invented the contract net approach to negotiate distributed solution in a 
system consisting of multiple autonomous decision makers with heteroge-
neous capabilities resp. skills (Smith and Davis, 1988). The actor theory 
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developed important theoretical models for message-based communication 
of autonomous entities (actors) (Agha 1986). Following developments 
constituted the research field on autonomous agents and multiagent sys-
tems.  
There are several classes of agent technology. A widely accepted defini-
tion of agents is provided by Pattie Maes: “Agents are software entities 
that assist people and act on their behalf” (Maes 1994). For agents in logis-
tics, we propose a specialized definition as follows: Agents are situated in 
an environment, act autonomously, and are able to sense and to react to 
changes (Knirsch and Timm 1999).  
Autonomous agents are modeled as completely free to negotiate and estab-
lish any sort of commitment with any other agent (Müller 1996). Follow-
ing Castelfranchi and Conte (Castelfranchi and Conte 1992), preexisting 
norms, habits, and procedures are not relevant for the agents’ actions. Thus 
social action is explained only in terms of the agents’ mental states as be-
liefs and intentions. This approach describes the extreme situation of a to-
tally autonomous agent, while in practice partial autonomy is common. 
This leads to a generalized definition: An agent is autonomous to the ex-
tent that its action choices depend on its own experience, rather than on 
knowledge of the environment that has been built-in by the designer (Rus-
sell and Norvig 1994).  
From an external view, a system may be defined as autonomous, if it is 
acting non-deterministically, i.e., the system may function differently in 
identical situations. However, this does not mean, that an autonomous sys-
tem has to be non-deterministic. The appearance of non-determinism arises 
from the limited view on the environmental state (situation). If the internal 
state of the system is included, an autonomous system might also be de-
terministic. 
A more sophisticated approach to define autonomy resp. autonomous sys-
tems is the consideration of properties as introduced in (Timm 2006). In 
this context, autonomy resp. autonomous agents are best described by the 
three properties: pro-activity, interaction, and emergence. Pro-activity 
means, that the agent activates goals resp. initiates actions without specific 
external events. Therefore, the agent requires the ability to reason about its 
goals and the current situation, i.e., an explicit representation of goals and 
environment is required. A main feature of an autonomous agent is the ca-
pability of interaction with its environment and other agents. Pro-activity 
and interaction of agents in multiagent systems cause emerging properties 
which are not explicitly modeled in advance. The naive formulation of this 
fundamental assumption is that the system is more than the sum of its 
parts.  
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Fig. 2. Levels of autonomy 

While Caselfranchi and Conte discuss a very high degree of autonomy, 
different levels of autonomy are introduced, e.g., (Rovatsos and Weiss 
2005), (Müller 1997), (Timm 2006). Russell and Norvig classify the envi-
ronment to differentiate AI approaches (Russell and Norvig 1994, 2003) 
following the criteria of observable, deterministic, episodic, static, discrete, 
and agent-oriented environments. In (Timm 2006), a classification scheme 
for levels of autonomy is introduced (cf. Figure 2): strong regulation (no 
autonomy), operational autonomy (reactive systems), tactical autonomy 
(classical deliberative approaches), and strategic autonomy (complex intel-
ligent systems). Table 1 yields the mapping of levels of autonomy to the 
environmental properties of Russell and Norvig. 
 

Level of 
Autonomy Observable Deterministic Episodic Static Agents 

Strong 
Regulation Fully Deterministic Episodic Static Single 

Operational 
Autonomy Partial Deterministic Episodic Static Multi 

Tactical 
Autonomy Partial Stochastic Episodic Semi Multi 

Strategic 
Autonomy Partial Stochastic Sequential Dynamic Multi 

Tab. 1. Classification scheme for levels of autonomy 

 
For practical applications or theoretical research a specific architecture has 
to be developed. The following paragraphs discuss agent architectures as 
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introduced by Russell and Norvig (2003, see Figure 3) in context of the 
classification scheme for levels of autonomy. In a first step, an agent can 
be described by its input/output relations (black-box principle, Müller 
1996). Russell and Norvig define this approach as the simple reflex agent 
(cf. Figure 3a), which implements strong regulation with respect to the 
levels of autonomy. Introducing an internal state and reflection about envi-
ronmental changes and action consequences combined with condition-
action rules lead to operational autonomous systems (cf. Figure 3b). For 
tactical autonomy it is necessary to deliberate on different objectives; Rus-
sell and Norvig suggest that utility-based agents select their goals with re-
spect to the greatest happiness specified by a utility function (cf. Figure 
3c). Finally, the strategic autonomy includes deliberation capabilities on 
goals, plans, and actions (cf. Figure 3d).  
 

 
(a) simple reflex agent 

 

 
(b) model-based reflex agent 

 

 
(c) utility-based agent 

 
(d) goal-based agent 

Fig. 3. Agent architectures (Russell and Norvig, 2003, p. 47, p. 49, p. 52, p. 50) 
 
A unified approach to specify architectures in agent technology is the for-
mal specification with (multi-)modal logics. Wooldridge and Lomuscio in-
vented a general framework for the definition of agents as well as multi-
agent systems, which may be outlined as follows (cf. Figure 4, Wooldridge 
and Lomuscio 2000). The agent behavior may be based on three phases: 
perceive, next, do.  
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Fig. 4. Agent architecture in VSK (Lomuscio and Wooldridge, p. 3) 

 
1. perceive 

For each agent agt, there exists a unique environment, which is principally 
visible for it. Agents observe their environment via sensors in order to 
identify the relevant information constituting its perceptions: 

perceive: E → P (1) 

where E is the set of environmental states and P is the set of perceptible in-
formation. 
 

2. next 
Depending on the agent’s internal architecture and state design, it is able to 
deliberate, plan, or select appropriate actions for execution. Let L denote 
the set of local states of agent agt. The reasoning process may be formal-
ized by: 

next: L ×  P → L (2) 

 
The local state of an agent may be constituted by highly complex struc-
tures. There are several aspects, which have been discussed in order to 
specify this structure.  
 

3. do 
In the third step the agent is selecting an action according to its internal 
state, which is performed in its environment: 

do: L → Act (3) 

where Act is the set of possible local actions. 
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Summarizing an agent can be defined as a system, consisting of the three 
decision functions perceive, next, do, as well as the accompanying con-
cepts environment, perceptions, local states (including an initial state), and 
actions. 

Definition 1 

Given a set E of environmental states, an agent is a system  
agt = 〈L, P, Act, perceive, next, do, l0 〉 where  

• L is the set of possible agent’s states,  
• P is a set of perceptible information, 
• Act is a set of actions, 
• perceive: E → P is a function for perceiving environmental states, 
• next: L × P → L a local state transformer function, 
• do: L → Act an action selection function, and  
• l0∈L the initial state of the agent. 

 
This is a slight modification of the notion of agents of the VSK model. In the 
original definition, perceive is the sequential composition of a visibility function 
and a see function. The agent environment provides the visibility function for 
each agent, specifying which parts of the environment are generally perceivable 
to the agent. The see function belongs to the agent instead of the perceive func-
tion. To motivate this separation, let us consider an agent in the Internet as an 
example. The agent may perceive any web page which is generally accessible, 
but none which is restricted. Thus the environment “hides” the restricted infor-
mation to the agent. However, the sensors of the agents may further restrict per-
ceivable information. If an agent does not support a specific protocol for con-
necting to a web service, the agent may not perceive data provided by the web 
service, even if the information source is not hidden from the environment.  
The visibility function of the environment implements general accessibility to 
the environment while the see function of an agent maps from environmental 
state to internal perception representation. However, the separation of the per-
ceive function into two component is not needed in this paper. Hence we have 
integrated the visibility component into the notion of agents. Therefore, the 
agent environment is described in a formal sense by Definition 2 as follows. 
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Definition 2 
 
An environnent is a system Env = 〈E, Act1, ...,Actn,τ, e0〉 where  
 

• E is the set of all possible environmental states,  
• Acti is the set of actions for each i=1, ...,n,  
• τ: E × Act1 × ...× Actn → E is a state transformer function, and 
• e0∈ E is the initial state of the environment. 

 
The formal notion of multiagent systems is given in Definition 3. It com-
bines a group of agents agt1,…,agtn with an environment in such a way that 
the set of actions of the environment coincides with the agents’ sets of ac-
tions and all agents perceive the environmental states of the environment. 
 
Definition 3
 
A multiagent system MAS = 〈Env, agt1, …,agtn〉 consists of an environ-
ment Env = 〈E, Act1, ..., Actn,τ, e0〉 and a sequence of agents agti = 〈Li, Pi, 
Acti, perceivei, nexti, doi, l0

i〉 with, perceivei: E → Pi for each i=1, ...,n. 
 
The previous definitions are introducing a static structure of the multiagent 
systems. During runtime, the agents as well as the environment changes 
with respect to their states. In the approach of VSK, there is a specified 
starting point in the systems, constituted by the initial states of the agents 
as well as the initial state of the environment. Essential property of the 
multiagent system is the function which gains the current state out of prior 
states. This system dynamics is outlined in Definition 4. 
 
Definition 4 
 
The system dynamics of a multiagent system MAS = 〈Env, agt1, …,agtn〉 is 
given by sequences of global environmental states g0, g1, … , gt, gt+1, … 
where the initial global state is defined as  

g0 = 〈e0, next1(l0
1,perceive1(e0)), ..., nextn(l0

n,perceiven(e0))〉 
and, given the global environmental state  gt = 〈et, l1

t, …, ln
t〉 with t∈IN , the 

next global environmental state is defined as    
gt+1=〈τ (et, do1(l1

t), …, don(ln
t)), l1

t+1, …, ln
t+1〉 with 

   li
t+1 = nexti(li

t, perceivei(et)) for i∈{1, …, n}. 
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Ideas of Autonomous Units 

In the following sections, the concepts of autonomous units and communi-
ties of autonomous units as they are introduced in the Chapter “Autono-
mous Units: Basic Concepts and Semantic Foundation” in this book are 
compared to the framework of agents and multiagent systems. As a short 
repetition, an autonomous unit (see also (Hölscher et al. 2006)) is a new, 
formal, and general modelling concept especially designed for the model-
ling of autonomous behaviors. An autonomous unit has a goal, a certain set 
of capabilities, and an internal and therefore autonomous control.  
Up to now existing modelling approaches do not cover the topic of 
autonomous control that explicitly while preserving a level of formality of 
the description that allows defining a precise semantics and proving certain 
properties of the system. Autonomous units are an extension of the well-
studied and proven to be useful transformation units (see, e.g. (Kuske 
2000)) which provide a general structuring methodology for rule-based 
graph transformation systems but only with a sequential semantics. That 
means that actors could only perform actions one after the other which is 
not suitable for logistic processes that are characterised by independent ac-
tors performing their tasks independently in a not predefined order and 
even concurrently. The framework of graph transformation as for instance 
described in (Ehrig et al. 1999) or in (Janssens et al. 2005) allows to model 
different kinds of semantics ranging from strictly sequential to concurrent 
behaviour. Autonomous units -which are still under development -
constitute an adequate means for modelling complex networks of inde-
pendent actors in a structured and rule-based way with an explicit repre-
sentation of autonomy.  
Several similarities with multiagent systems make it worth to have a closer 
look at the used concepts and their relations.  

Relationship between Autonomous Units and Agents 

The relationship between autonomous units and agents is discussed with 
respect to the environmental states, the transformation steps, the percep-
tion, and the decision making. 

Environmental States 

Both approaches assume environments in which agents and autonomous 
units, resp., act and interact. While the environmental states of multiagent 
systems are not restricted in any way, the information structures underly-
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ing communities of autonomous units are assumed to be graphs. If one 
chooses a particular kind of graphs, it provides some explicit knowledge 
about the environmental states how they may be manipulated and how they 
may be visualized for example. One may say that graphs are particular 
models of environmental states of multiagent systems. But one should no-
tice that graphs are very generic and flexible structures and that many data 
structures and system states are easily and adequately represented by 
graphs. Hence the choice of graphs is not much of a restriction. 

Transformation Steps 

With respect to the notion of transformation steps, the relation between 
multiagent systems and communities of autonomous units is similar. A 
multiagent system assumes some state transformer function of environ-
mental states dependent on an action performed by each agent, i.e. a func-
tion 

τ : E × Act1 × ... × Actn → E. 
 
It is not specified how an environmental state changes under which actions 
in the general framework, but must be instantiated in each case of applica-
tion.  
In contrast to this, a transformation step in a community of autonomous 
units is defined explicitly by a direct derivation, i.e. by an application of a 
rule to an environment graph yielding another environment graph. 
 

G ⇒r H. 
 
This provides a particular choice of the environment transformation τ if r 
is a parallel rule composed of one rule for each autonomous unit. And 
graph transformation turns out to a model of multiagent systems in this re-
spect. 
In another respect, communities of autonomous units have a more general 
environment transformation than multiagent systems. In addition to the 
synchronized parallelism of a rule per unit, any kind of sequential or paral-
lel rule may be applied. An autonomous unit can act alone, some – but not 
necessarily all – of the units may act together, and each of the acting units 
may apply several rules in parallel in each step. Moreover, there is a con-
current semantics of communities of autonomous units in which synchro-
nized parallelism does not appear explicitly and actions are only ordered in 
time if they are causally dependent. 
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Perception 

Each agent of a multiagent system has got its individual perception of the 
environmental states given by the function vis: E → 2E and see: 2E → P. 
As they are always applied together, first vis then see, they may be re-
placed by a single function perceive: E → P given by perceive(e) = 
see(vis(e)) for all e ∈ E. 
 
An autonomous unit is not equipped with an explicit perception. Neverthe-
less, there is a counterpart implicit in the approach. Considering the rules 
of an autonomous unit, they can access an environment graph G by all 
possible rule applications. In this sense, the set of all direct derivations     
G ⇒r G' with rules of the unit is the perception of G.  
 
Depending on the control condition of the unit, the perception of an envi-
ronment may contain further information. If the control mechanism is 
based on an evaluation function, for example, then the perception is 
enlarged by the view the evaluation provides of the environment. But quite 
often control conditions are used that check only the possible rule applica-
tions. In these cases, the control component of a unit does not add anything 
to the perception. 

Decision Making 

Based on the perception of the actual environmental state e, an agent up-
dates its actual local state l by applying the function next: L × P → L yield-
ing the next local state, i.e. l' = next (l, perceive (e)). 
Then it decides about the next action to be performed by applying the 
function do: L → Act yielding do(l'). 
 
In the framework of autonomous units, this task is done by the control 
condition of a unit. The control condition checks all possible rule applica-
tions of a unit to each actual environment graph and divides them into ad-
mitted and forbidden ones. Then one of the admitted rule applications is 
picked for the next action of the unit. Therefore, the decision of the next 
action is based on the perception of the environment graph and its restric-
tion to the admitted part, which may be seen as the local state. 
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Advanced Concepts of Agency 

In the section on ideas of agency, fundamental concepts for agency have 
been discussed following the VSK specification of Wooldridge and 
Lomuscio (2000). The basic model of the agents is quite simple, defining a 
perception (perceive), state transformation (next), and action (do) function. 
The formal representation of architectures and decision behavior has a 
strong history in the agent community. Agent’s formalization mainly de-
pend the constitution of a suitable formal language. The choice and devel-
opment of the language depends on the use for internal specification used 
by agents for reasoning about behavior and actions, external specification 
used by agents for communicating with other agents, i.e., exchanging 
pieces of knowledge, or external use on a meta-level by developers for 
specifying, implementing, validating, and verifying properties of agents’ 
behavior. 
 
Internal specification languages are mainly applied to agents, which im-
plement reasoning capabilities for advanced decision behavior. The formal 
language is used for the representation of the environment or internal state 
of the agent. Agents using formal languages for reasoning about knowl-
edge to identify an action or action sequences are referred to as intelligent, 
deliberative, cognitive or rational. Interaction between agents uses com-
munication languages. These languages specify the process of communica-
tion and a mandatory syntax of messages. However, message content is not 
specified there. The specification of content uses an external language, 
e.g., OWL (Patel-Schneider et al. 2007). Important aspects of external 
specification languages are that content can be interpreted in the same way 
by sender and receiver. The complexity of these languages as well as the 
underlying coordination mechanism vary, e.g., in market-based coordina-
tion models, content languages will consist of simple concepts for price 
and objects, while in negotiation-based coordination models, logical ex-
pressions are exchanged and used explicitly for internal reasoning. 
 
Formal specification with meta-language should enable the design of mul-
tiagent systems as well as verification and validation of agents’ or multi-
agents’ behavior (Dunne et al. 2003). The language VSK is designed for 
these purposes. However, the individual agent’s should be allowed to use 
varying formal languages for internal reasoning (Singh et al. 1999). The 
distinction between specification and implementation languages is not only 
useful for flexibility but also for expressiveness and efficiency. Designers 
tend to use a formal language with high expressive power for describing an 
intended system’s behavior. In contrast to this, an implementation is in 
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need of computationally efficient realizations, which – at least – rule out 
those formal approaches which are not decidable.  
 
Modeling heterogeneous multiagent systems requires the abstraction of in-
dividual agents’ behavior. The model of the system should only include 
those actions, which are perceivable to other agents or which change the 
environment. (Wooldridge and Lomuscio 2000) introduce VSK as a for-
mal model for multiagent system based on multimodal logic. VSK inte-
grates an environment depending visibility function (visibility) and an 
agent depending perception function (see). These concepts realized as mo-
dalities enable varying virtual environments for specific agents. A third 
modality is used for representation of the local state of agents (knowl-
edge). However, the interaction of desires, beliefs, and intentions is not 
handled explicitly. Semantically, VSK is based on multimodal sorted first 
order logic (Wooldridge and Lomuscio 2000) and for temporal aspects it 
includes the possible worlds semantics, i.e., beliefs resp. propositions 
about knowledge follow weakS5 (KD-45) modal system (Meyer et al. 
1991). In spite of the convincing concept of VSK, the underlying multi-
modal first-order logic suffers from the well-known logical omniscience 
problem of weakS5 as well as semi-decidability of first order logic.  
 
In the context of autonomous logistics, a key characteristic of the agents is 
their physical or virtual mobility. Due to the physical movement of logis-
tics objects, a formal approach has to consider ad hoc networks or re-
stricted visibility of the environment. Furthermore, the mobility of agents 
within the virtual community has to be considered. The VSK model allows 
for dynamic manipulation of the accessibility of the environment through 
the visibility function. Petsch introduced an approach for modeling open 
agent societies with explicit migration in the formal model including rep-
resentations of real-world organizations on the formal basis of VSK 
(Petsch 2006).  
 
The internal decision behavior of agents is in focus of the distributed arti-
ficial intelligence community. This also reflects the majority of formal ap-
proaches which are focused on enabling intelligent behavior within agents 
(van der Hoek and Wooldridge 2003), (Wooldridge and Jennings 1995), 
(Rao and Georgeff 1998), (Fisher and Ghidini 2002), (Nide and Takata 
2002), and (Timm 2001). Design of intelligent agents is often based on an 
explicit, cognitive model of beliefs, desires, and intentions, which are 
based on (Bratman 1987). BDI-agents use a formal semantics and imple-
ment a cognitive model of beliefs, desires, and intentions. The underlying 
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idea is that an agent is creating an explicit world model (beliefs) on the ba-
sis of observations and its actions. Additionally, it contains a set of objec-
tives (desires or persistent goals) and a set of goals which are currently 
pursued (intentions). The agent pursues its goals by autonomously created 
plans. This decision behavior is outlined in Table 2. BDI-agents are “the 
dominant force” in formal approaches (d’Inverno et al. 2004). Following 
(Wooldridge 2000) this is caused by their foundation on a widely accepted 
theory of rational actions of humans, the “great” number of successful 
complex applications and the availability of a large family of well-
understood, sophisticated, and formalized approaches.  
 

 
 

Tab. 2. Simplified decision behavior of BDI agents (Wooldridge 2000) 
 
In 2006, Henesey performed a survey on agent approaches in logistics 
(Henesey 2006). One of the main conclusions of this survey is that the ma-
jority of the agent approaches focus on operation decision support and only 
rare approaches have been applied in praxis. With respect to the levels of 
autonomy, the tactical and strategic level as implemented by BDI agents 
seem to be beneficial to autonomous logistics, as complex internal decision 
behavior can be modeled explicitly. However, BDI approaches do not fo-
cus on system behavior but on agent internal knowledge representation and 
decision making. In autonomous logistics, there are organizational struc-
tures as well as a centralized management defining the boundaries for in-
dividual agents’ behavior. Here the BDI approach lacks explicit modeling 
of utility function or mechanisms for reliable behavior of a group of 
agents. In (Timm 2004) as well as (Scholz et al. 2006) the formal models 
of BDI especially the logical framework Lora (Wooldridge 2000) and 
VSK have been integrated as a unified formal basis for systems of intelli-
gent agents.  
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In the research of the priority research program on “Intelligent Agents and 
Business Applications” from 2000 to 2006, it has been stated, that flexibil-
ity is the key benefit of intelligent agents (Kirn et al. 2006). However the 
question arises, if the optimization of individual performance within an 
agent also leads to a global optimization for a group of agents. In current 
approaches especially in the context of the CRC on autonomous logistics, 
we are investigating strategic management in multiagent systems. The stra-
tegic management is based on autonomous adjustment of the agent’s 
autonomy. The underlying model is based on a social mechanism for re-
flection within social systems and has been transferred to multiagent the-
ory (Timm & Hillebrandt, 2006). 

Conclusion 

In this chapter, we have discussed two approaches to modelling autonomy 
in software systems: multiagent systems and communities of autonomous 
units. The former is a well-known and widely used logical framework in 
artificial intelligence. The latter is a rule-based and graph-oriented method 
recently introduced in the context of the Collaborative Research Centre 
Autonomous Cooperating Logistic Processes (cf. Chapter XXX). 
 
As the very first observation in comparison of the two approaches, it has 
turned out that communities of autonomous units form executable struc-
tural models of the axiomatic notion of multiagent systems so that the for-
mer provide platform-independent realizations of the latter. 
 
To shed more light on the significance of these observations, future studies 
will have to work out the relationship in more detail. This will include on 
one hand to prove that communities of autonomous units do not only fol-
low the structure of multiagent systems, but satisfy also the requested 
properties. On the other hand, one may employ the well-working decision-
making procedures of agents as control mechanism of autonomous units to 
widen the spectrum of possibilities with respect to the self-control. 
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