
Autonomy in Software Systems

Ingo J. Timm1, Peter Knirsch2, Hans-Jörg Kreowski2, Andreas Timm-Giel3

1Faculty of Computer Science and Mathematics, Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt am Main, Germany
2Faculty for Mathematics and Computer Science, University of Bremen,
Bremen, Germany
3Faculty for Physics and Electrical Engineering/Information Technology,
University of Bremen, Bremen, Germany

Introduction

Looking at the whole logistic network, the structure of logistic processes
becomes increasingly complex. Especially in transport logistics, atomisa-
tion of transportation processes, multimodal transport chains, international
competition, changing ecological and legal constraints along with conges-
tion of traffic infrastructure lead to highly dynamic and complex logistic
processes that are difficult to plan (in advance).
The same situation can be found in production logistics. Modern produc-
tion processes allow highly customized products. But the need for the re-
duction of costs, emerging virtual enterprises with distributed production
plants, and just-in-time production leads to complex and highly dynamic
production processes again being difficult to plan.
The described complexity and the arising difficulty in planning is a great
challenge for enterprises. Having means to overcome these problems can
constitute a significant competitive advantage.

The vision of the Collaborative Research Centre CRC 637 Cooperating
Logistic Processes is to equip logistic processes and logistic objects with
the capability to take decisions autonomously based on local and partially

Published in: Hülsmann, M.; Windt, K. (eds.): Understanding Autonomous Cooperation & Control in Logistics – The Impact on Management,
Information and Communication and Material Flow. Springer, Berlin, 2007

2 Ingo J. TimmPP1PP, Peter KnirschPP2PP, Hans-Jörg KreowskiPP2PP,
Andreas Timm-GielPP3PP

incomplete information. In consequence, the necessity to plan on a high
level of details should be reduced significantly.
Considering transport logistics, this means that transport goods, transport
vehicles etc. take decisions, like using a different route because of traffic
congestion, locally without reinitiating a new overall planning and optimi-
sation process. Similarly in production logistics, intelligent goods can se-
lect different suitable tools for the next production step.

Within the CRC 637 the autonomy in logistic systems and its benefits are
investigated from different disciplines. To support autonomy, logistic enti-
ties need to have a minimum intelligence. Transport goods need to have
some means of interaction, communication, and processing capabilities to
take decisions, act, interact and communicate, autonomously. Logistic Sys-
tems are distributed and integrate physically mobile entities like transport
vehicles or transport goods.
The CRC 637 is developing integrated solutions and management strate-
gies using recent technological advances, on the hardware as well as on the
software side, e.g., RFID, WLAN, agent technology.

This chapter presents autonomy as a core property of innovative software
systems like agents and autonomous units. In the first section, ideas of
agency are introduced. In the following section, autonomous units as a
graph transformation-based approach to handling autonomous decision
makers in a formal framework are compared with agents (for a detailed in-
troduction of autonomous units the reader is referred to Chapter XXX). Fi-
nally, advanced concepts of agency are discussed.

Ideas of Agency

Since the early 1970s there are various approaches in computer science to
design and develop distributed systems to overcome limited computational
capacity of single processing units and solving larger problems. Accompa-
nying analysis of other research fields especially, in biology seem to con-
tent promising approaches of simple distributed decision entities leading to
an emergent somehow intelligent behavior like a human brain. But even
simpler contexts, like ant colonies show emergent behavior including “in-
telligent” solutions resp. global optimization by local interaction.

Let us consider a simple logistics task, which is performed efficiently and
reliable by real-world ant colonies: finding the shortest path from the nest
to the food source. After random walks in the environment, the ants will

Autonomy in Software Systems 3

identify a new food source. Shortly after the identification, the ants will
travel between nest and food on the direct and shortest path (cf. Figure 1
(a)). This solution is reliable with respect to environmental changes. If an
obstacle is preventing the use of the shortest path (cf. Figure 1 (b)), the
ants will travel around obstacle randomly (cf. Figure 1 (c)). Again, after
short time, the ants will take the shortest path. The underlying algorithm is
simple with respect to requirements for coordination effort between the
ants and computational complexity within an ant. The ants are using
pheromones to mark their path. The intensity of the pheromones decreases
continuously over time. Ants traveling to the food source follow the path
with the strongest pheromone concentration.

(a)

(b)

(c)

(d)

Fig. 1. Ant colony is finding the shortest path.

There are several similar examples in natures, where simple decision enti-
ties, like ants, bees, birds, termites, are performing complex problem solv-
ing by local interaction.
However, logistics tasks in real-world applications are far more complex
due to various partially conflicting objectives, competitive behavior of the
entities, etc. Thus, central planning in advance causes exponential compu-
tational complexity. Additionally, central planning is often prohibited by
competing organizational substructures. Consequently significant research
is focusing on emergent systems, where global optimization on a macro-
level emerges from local interaction on a micro-level. The underlying idea
is, to design autonomous entities, which implement simple decision behav-
ior, which gain complexity by interaction with other autonomous entities.
The concept of autonomies entities interacting on a local level has been re-
searched in computer science since the early 1980s. Smith (Smith 1980)
invented the contract net approach to negotiate distributed solution in a
system consisting of multiple autonomous decision makers with heteroge-
neous capabilities resp. skills (Smith and Davis, 1988). The actor theory

4 Ingo J. TimmPP1PP, Peter KnirschPP2PP, Hans-Jörg KreowskiPP2PP,
Andreas Timm-GielPP3PP

developed important theoretical models for message-based communication
of autonomous entities (actors) (Agha 1986). Following developments
constituted the research field on autonomous agents and multiagent sys-
tems.
There are several classes of agent technology. A widely accepted defini-
tion of agents is provided by Pattie Maes: “Agents are software entities
that assist people and act on their behalf” (Maes 1994). For agents in logis-
tics, we propose a specialized definition as follows: Agents are situated in
an environment, act autonomously, and are able to sense and to react to
changes (Knirsch and Timm 1999).
Autonomous agents are modeled as completely free to negotiate and estab-
lish any sort of commitment with any other agent (Müller 1996). Follow-
ing Castelfranchi and Conte (Castelfranchi and Conte 1992), preexisting
norms, habits, and procedures are not relevant for the agents’ actions. Thus
social action is explained only in terms of the agents’ mental states as be-
liefs and intentions. This approach describes the extreme situation of a to-
tally autonomous agent, while in practice partial autonomy is common.
This leads to a generalized definition: An agent is autonomous to the ex-
tent that its action choices depend on its own experience, rather than on
knowledge of the environment that has been built-in by the designer (Rus-
sell and Norvig 1994).
From an external view, a system may be defined as autonomous, if it is
acting non-deterministically, i.e., the system may function differently in
identical situations. However, this does not mean, that an autonomous sys-
tem has to be non-deterministic. The appearance of non-determinism arises
from the limited view on the environmental state (situation). If the internal
state of the system is included, an autonomous system might also be de-
terministic.
A more sophisticated approach to define autonomy resp. autonomous sys-
tems is the consideration of properties as introduced in (Timm 2006). In
this context, autonomy resp. autonomous agents are best described by the
three properties: pro-activity, interaction, and emergence. Pro-activity
means, that the agent activates goals resp. initiates actions without specific
external events. Therefore, the agent requires the ability to reason about its
goals and the current situation, i.e., an explicit representation of goals and
environment is required. A main feature of an autonomous agent is the ca-
pability of interaction with its environment and other agents. Pro-activity
and interaction of agents in multiagent systems cause emerging properties
which are not explicitly modeled in advance. The naive formulation of this
fundamental assumption is that the system is more than the sum of its
parts.

Autonomy in Software Systems 5

Fig. 2. Levels of autonomy

While Caselfranchi and Conte discuss a very high degree of autonomy,
different levels of autonomy are introduced, e.g., (Rovatsos and Weiss
2005), (Müller 1997), (Timm 2006). Russell and Norvig classify the envi-
ronment to differentiate AI approaches (Russell and Norvig 1994, 2003)
following the criteria of observable, deterministic, episodic, static, discrete,
and agent-oriented environments. In (Timm 2006), a classification scheme
for levels of autonomy is introduced (cf. Figure 2): strong regulation (no
autonomy), operational autonomy (reactive systems), tactical autonomy
(classical deliberative approaches), and strategic autonomy (complex intel-
ligent systems). Table 1 yields the mapping of levels of autonomy to the
environmental properties of Russell and Norvig.

Level of
Autonomy Observable Deterministic Episodic Static Agents

Strong
Regulation Fully Deterministic Episodic Static Single

Operational
Autonomy Partial Deterministic Episodic Static Multi

Tactical
Autonomy Partial Stochastic Episodic Semi Multi

Strategic
Autonomy Partial Stochastic Sequential Dynamic Multi

Tab. 1. Classification scheme for levels of autonomy

For practical applications or theoretical research a specific architecture has
to be developed. The following paragraphs discuss agent architectures as

6 Ingo J. TimmPP1PP, Peter KnirschPP2PP, Hans-Jörg KreowskiPP2PP,
Andreas Timm-GielPP3PP

introduced by Russell and Norvig (2003, see Figure 3) in context of the
classification scheme for levels of autonomy. In a first step, an agent can
be described by its input/output relations (black-box principle, Müller
1996). Russell and Norvig define this approach as the simple reflex agent
(cf. Figure 3a), which implements strong regulation with respect to the
levels of autonomy. Introducing an internal state and reflection about envi-
ronmental changes and action consequences combined with condition-
action rules lead to operational autonomous systems (cf. Figure 3b). For
tactical autonomy it is necessary to deliberate on different objectives; Rus-
sell and Norvig suggest that utility-based agents select their goals with re-
spect to the greatest happiness specified by a utility function (cf. Figure
3c). Finally, the strategic autonomy includes deliberation capabilities on
goals, plans, and actions (cf. Figure 3d).

(a) simple reflex agent

(b) model-based reflex agent

(c) utility-based agent

(d) goal-based agent

Fig. 3. Agent architectures (Russell and Norvig, 2003, p. 47, p. 49, p. 52, p. 50)

A unified approach to specify architectures in agent technology is the for-
mal specification with (multi-)modal logics. Wooldridge and Lomuscio in-
vented a general framework for the definition of agents as well as multi-
agent systems, which may be outlined as follows (cf. Figure 4, Wooldridge
and Lomuscio 2000). The agent behavior may be based on three phases:
perceive, next, do.

Autonomy in Software Systems 7

Fig. 4. Agent architecture in VSK (Lomuscio and Wooldridge, p. 3)

1. perceive

For each agent agt, there exists a unique environment, which is principally
visible for it. Agents observe their environment via sensors in order to
identify the relevant information constituting its perceptions:

perceive: E → P (1)

where E is the set of environmental states and P is the set of perceptible in-
formation.

2. next
Depending on the agent’s internal architecture and state design, it is able to
deliberate, plan, or select appropriate actions for execution. Let L denote
the set of local states of agent agt. The reasoning process may be formal-
ized by:

next: L × P → L (2)

The local state of an agent may be constituted by highly complex struc-
tures. There are several aspects, which have been discussed in order to
specify this structure.

3. do
In the third step the agent is selecting an action according to its internal
state, which is performed in its environment:

do: L → Act (3)

where Act is the set of possible local actions.

8 Ingo J. TimmPP1PP, Peter KnirschPP2PP, Hans-Jörg KreowskiPP2PP,
Andreas Timm-GielPP3PP

Summarizing an agent can be defined as a system, consisting of the three
decision functions perceive, next, do, as well as the accompanying con-
cepts environment, perceptions, local states (including an initial state), and
actions.

Definition 1

Given a set E of environmental states, an agent is a system
agt = 〈L, P, Act, perceive, next, do, l0 〉 where

• L is the set of possible agent’s states,
• P is a set of perceptible information,
• Act is a set of actions,
• perceive: E → P is a function for perceiving environmental states,
• next: L × P → L a local state transformer function,
• do: L → Act an action selection function, and
• l0∈L the initial state of the agent.

This is a slight modification of the notion of agents of the VSK model. In the
original definition, perceive is the sequential composition of a visibility function
and a see function. The agent environment provides the visibility function for
each agent, specifying which parts of the environment are generally perceivable
to the agent. The see function belongs to the agent instead of the perceive func-
tion. To motivate this separation, let us consider an agent in the Internet as an
example. The agent may perceive any web page which is generally accessible,
but none which is restricted. Thus the environment “hides” the restricted infor-
mation to the agent. However, the sensors of the agents may further restrict per-
ceivable information. If an agent does not support a specific protocol for con-
necting to a web service, the agent may not perceive data provided by the web
service, even if the information source is not hidden from the environment.
The visibility function of the environment implements general accessibility to
the environment while the see function of an agent maps from environmental
state to internal perception representation. However, the separation of the per-
ceive function into two component is not needed in this paper. Hence we have
integrated the visibility component into the notion of agents. Therefore, the
agent environment is described in a formal sense by Definition 2 as follows.

Autonomy in Software Systems 9

Definition 2

An environnent is a system Env = 〈E, Act1, ...,Actn,τ, e0〉 where

• E is the set of all possible environmental states,
• Acti is the set of actions for each i=1, ...,n,
• τ: E × Act1 × ...× Actn → E is a state transformer function, and
• e0∈ E is the initial state of the environment.

The formal notion of multiagent systems is given in Definition 3. It com-
bines a group of agents agt1,…,agtn with an environment in such a way that
the set of actions of the environment coincides with the agents’ sets of ac-
tions and all agents perceive the environmental states of the environment.

Definition 3

A multiagent system MAS = 〈Env, agt1, …,agtn〉 consists of an environ-
ment Env = 〈E, Act1, ..., Actn,τ, e0〉 and a sequence of agents agti = 〈Li, Pi,
Acti, perceivei, nexti, doi, l0

i〉 with, perceivei: E → Pi for each i=1, ...,n.

The previous definitions are introducing a static structure of the multiagent
systems. During runtime, the agents as well as the environment changes
with respect to their states. In the approach of VSK, there is a specified
starting point in the systems, constituted by the initial states of the agents
as well as the initial state of the environment. Essential property of the
multiagent system is the function which gains the current state out of prior
states. This system dynamics is outlined in Definition 4.

Definition 4

The system dynamics of a multiagent system MAS = 〈Env, agt1, …,agtn〉 is
given by sequences of global environmental states g0, g1, … , gt, gt+1, …
where the initial global state is defined as

g0 = 〈e0, next1(l0
1,perceive1(e0)), ..., nextn(l0

n,perceiven(e0))〉
and, given the global environmental state gt = 〈et, l1

t, …, ln
t〉 with t∈IN , the

next global environmental state is defined as
gt+1=〈τ (et, do1(l1

t), …, don(ln
t)), l1

t+1, …, ln
t+1〉 with

 li
t+1 = nexti(li

t, perceivei(et)) for i∈{1, …, n}.

10 Ingo J. TimmPP1PP, Peter KnirschPP2PP, Hans-Jörg KreowskiPP2PP,
Andreas Timm-GielPP3PP

Ideas of Autonomous Units

In the following sections, the concepts of autonomous units and communi-
ties of autonomous units as they are introduced in the Chapter “Autono-
mous Units: Basic Concepts and Semantic Foundation” in this book are
compared to the framework of agents and multiagent systems. As a short
repetition, an autonomous unit (see also (Hölscher et al. 2006)) is a new,
formal, and general modelling concept especially designed for the model-
ling of autonomous behaviors. An autonomous unit has a goal, a certain set
of capabilities, and an internal and therefore autonomous control.
Up to now existing modelling approaches do not cover the topic of
autonomous control that explicitly while preserving a level of formality of
the description that allows defining a precise semantics and proving certain
properties of the system. Autonomous units are an extension of the well-
studied and proven to be useful transformation units (see, e.g. (Kuske
2000)) which provide a general structuring methodology for rule-based
graph transformation systems but only with a sequential semantics. That
means that actors could only perform actions one after the other which is
not suitable for logistic processes that are characterised by independent ac-
tors performing their tasks independently in a not predefined order and
even concurrently. The framework of graph transformation as for instance
described in (Ehrig et al. 1999) or in (Janssens et al. 2005) allows to model
different kinds of semantics ranging from strictly sequential to concurrent
behaviour. Autonomous units -which are still under development -
constitute an adequate means for modelling complex networks of inde-
pendent actors in a structured and rule-based way with an explicit repre-
sentation of autonomy.
Several similarities with multiagent systems make it worth to have a closer
look at the used concepts and their relations.

Relationship between Autonomous Units and Agents

The relationship between autonomous units and agents is discussed with
respect to the environmental states, the transformation steps, the percep-
tion, and the decision making.

Environmental States

Both approaches assume environments in which agents and autonomous
units, resp., act and interact. While the environmental states of multiagent
systems are not restricted in any way, the information structures underly-

Autonomy in Software Systems 11

ing communities of autonomous units are assumed to be graphs. If one
chooses a particular kind of graphs, it provides some explicit knowledge
about the environmental states how they may be manipulated and how they
may be visualized for example. One may say that graphs are particular
models of environmental states of multiagent systems. But one should no-
tice that graphs are very generic and flexible structures and that many data
structures and system states are easily and adequately represented by
graphs. Hence the choice of graphs is not much of a restriction.

Transformation Steps

With respect to the notion of transformation steps, the relation between
multiagent systems and communities of autonomous units is similar. A
multiagent system assumes some state transformer function of environ-
mental states dependent on an action performed by each agent, i.e. a func-
tion

τ : E × Act1 × ... × Actn → E.

It is not specified how an environmental state changes under which actions
in the general framework, but must be instantiated in each case of applica-
tion.
In contrast to this, a transformation step in a community of autonomous
units is defined explicitly by a direct derivation, i.e. by an application of a
rule to an environment graph yielding another environment graph.

G ⇒r H.

This provides a particular choice of the environment transformation τ if r
is a parallel rule composed of one rule for each autonomous unit. And
graph transformation turns out to a model of multiagent systems in this re-
spect.
In another respect, communities of autonomous units have a more general
environment transformation than multiagent systems. In addition to the
synchronized parallelism of a rule per unit, any kind of sequential or paral-
lel rule may be applied. An autonomous unit can act alone, some – but not
necessarily all – of the units may act together, and each of the acting units
may apply several rules in parallel in each step. Moreover, there is a con-
current semantics of communities of autonomous units in which synchro-
nized parallelism does not appear explicitly and actions are only ordered in
time if they are causally dependent.

12 Ingo J. TimmPP1PP, Peter KnirschPP2PP, Hans-Jörg KreowskiPP2PP,
Andreas Timm-GielPP3PP

Perception

Each agent of a multiagent system has got its individual perception of the
environmental states given by the function vis: E → 2E and see: 2E → P.
As they are always applied together, first vis then see, they may be re-
placed by a single function perceive: E → P given by perceive(e) =
see(vis(e)) for all e ∈ E.

An autonomous unit is not equipped with an explicit perception. Neverthe-
less, there is a counterpart implicit in the approach. Considering the rules
of an autonomous unit, they can access an environment graph G by all
possible rule applications. In this sense, the set of all direct derivations
G ⇒r G' with rules of the unit is the perception of G.

Depending on the control condition of the unit, the perception of an envi-
ronment may contain further information. If the control mechanism is
based on an evaluation function, for example, then the perception is
enlarged by the view the evaluation provides of the environment. But quite
often control conditions are used that check only the possible rule applica-
tions. In these cases, the control component of a unit does not add anything
to the perception.

Decision Making

Based on the perception of the actual environmental state e, an agent up-
dates its actual local state l by applying the function next: L × P → L yield-
ing the next local state, i.e. l' = next (l, perceive (e)).
Then it decides about the next action to be performed by applying the
function do: L → Act yielding do(l').

In the framework of autonomous units, this task is done by the control
condition of a unit. The control condition checks all possible rule applica-
tions of a unit to each actual environment graph and divides them into ad-
mitted and forbidden ones. Then one of the admitted rule applications is
picked for the next action of the unit. Therefore, the decision of the next
action is based on the perception of the environment graph and its restric-
tion to the admitted part, which may be seen as the local state.

Autonomy in Software Systems 13

Advanced Concepts of Agency

In the section on ideas of agency, fundamental concepts for agency have
been discussed following the VSK specification of Wooldridge and
Lomuscio (2000). The basic model of the agents is quite simple, defining a
perception (perceive), state transformation (next), and action (do) function.
The formal representation of architectures and decision behavior has a
strong history in the agent community. Agent’s formalization mainly de-
pend the constitution of a suitable formal language. The choice and devel-
opment of the language depends on the use for internal specification used
by agents for reasoning about behavior and actions, external specification
used by agents for communicating with other agents, i.e., exchanging
pieces of knowledge, or external use on a meta-level by developers for
specifying, implementing, validating, and verifying properties of agents’
behavior.

Internal specification languages are mainly applied to agents, which im-
plement reasoning capabilities for advanced decision behavior. The formal
language is used for the representation of the environment or internal state
of the agent. Agents using formal languages for reasoning about knowl-
edge to identify an action or action sequences are referred to as intelligent,
deliberative, cognitive or rational. Interaction between agents uses com-
munication languages. These languages specify the process of communica-
tion and a mandatory syntax of messages. However, message content is not
specified there. The specification of content uses an external language,
e.g., OWL (Patel-Schneider et al. 2007). Important aspects of external
specification languages are that content can be interpreted in the same way
by sender and receiver. The complexity of these languages as well as the
underlying coordination mechanism vary, e.g., in market-based coordina-
tion models, content languages will consist of simple concepts for price
and objects, while in negotiation-based coordination models, logical ex-
pressions are exchanged and used explicitly for internal reasoning.

Formal specification with meta-language should enable the design of mul-
tiagent systems as well as verification and validation of agents’ or multi-
agents’ behavior (Dunne et al. 2003). The language VSK is designed for
these purposes. However, the individual agent’s should be allowed to use
varying formal languages for internal reasoning (Singh et al. 1999). The
distinction between specification and implementation languages is not only
useful for flexibility but also for expressiveness and efficiency. Designers
tend to use a formal language with high expressive power for describing an
intended system’s behavior. In contrast to this, an implementation is in

14 Ingo J. TimmPP1PP, Peter KnirschPP2PP, Hans-Jörg KreowskiPP2PP,
Andreas Timm-GielPP3PP

need of computationally efficient realizations, which – at least – rule out
those formal approaches which are not decidable.

Modeling heterogeneous multiagent systems requires the abstraction of in-
dividual agents’ behavior. The model of the system should only include
those actions, which are perceivable to other agents or which change the
environment. (Wooldridge and Lomuscio 2000) introduce VSK as a for-
mal model for multiagent system based on multimodal logic. VSK inte-
grates an environment depending visibility function (visibility) and an
agent depending perception function (see). These concepts realized as mo-
dalities enable varying virtual environments for specific agents. A third
modality is used for representation of the local state of agents (knowl-
edge). However, the interaction of desires, beliefs, and intentions is not
handled explicitly. Semantically, VSK is based on multimodal sorted first
order logic (Wooldridge and Lomuscio 2000) and for temporal aspects it
includes the possible worlds semantics, i.e., beliefs resp. propositions
about knowledge follow weakS5 (KD-45) modal system (Meyer et al.
1991). In spite of the convincing concept of VSK, the underlying multi-
modal first-order logic suffers from the well-known logical omniscience
problem of weakS5 as well as semi-decidability of first order logic.

In the context of autonomous logistics, a key characteristic of the agents is
their physical or virtual mobility. Due to the physical movement of logis-
tics objects, a formal approach has to consider ad hoc networks or re-
stricted visibility of the environment. Furthermore, the mobility of agents
within the virtual community has to be considered. The VSK model allows
for dynamic manipulation of the accessibility of the environment through
the visibility function. Petsch introduced an approach for modeling open
agent societies with explicit migration in the formal model including rep-
resentations of real-world organizations on the formal basis of VSK
(Petsch 2006).

The internal decision behavior of agents is in focus of the distributed arti-
ficial intelligence community. This also reflects the majority of formal ap-
proaches which are focused on enabling intelligent behavior within agents
(van der Hoek and Wooldridge 2003), (Wooldridge and Jennings 1995),
(Rao and Georgeff 1998), (Fisher and Ghidini 2002), (Nide and Takata
2002), and (Timm 2001). Design of intelligent agents is often based on an
explicit, cognitive model of beliefs, desires, and intentions, which are
based on (Bratman 1987). BDI-agents use a formal semantics and imple-
ment a cognitive model of beliefs, desires, and intentions. The underlying

Autonomy in Software Systems 15

idea is that an agent is creating an explicit world model (beliefs) on the ba-
sis of observations and its actions. Additionally, it contains a set of objec-
tives (desires or persistent goals) and a set of goals which are currently
pursued (intentions). The agent pursues its goals by autonomously created
plans. This decision behavior is outlined in Table 2. BDI-agents are “the
dominant force” in formal approaches (d’Inverno et al. 2004). Following
(Wooldridge 2000) this is caused by their foundation on a widely accepted
theory of rational actions of humans, the “great” number of successful
complex applications and the availability of a large family of well-
understood, sophisticated, and formalized approaches.

Tab. 2. Simplified decision behavior of BDI agents (Wooldridge 2000)

In 2006, Henesey performed a survey on agent approaches in logistics
(Henesey 2006). One of the main conclusions of this survey is that the ma-
jority of the agent approaches focus on operation decision support and only
rare approaches have been applied in praxis. With respect to the levels of
autonomy, the tactical and strategic level as implemented by BDI agents
seem to be beneficial to autonomous logistics, as complex internal decision
behavior can be modeled explicitly. However, BDI approaches do not fo-
cus on system behavior but on agent internal knowledge representation and
decision making. In autonomous logistics, there are organizational struc-
tures as well as a centralized management defining the boundaries for in-
dividual agents’ behavior. Here the BDI approach lacks explicit modeling
of utility function or mechanisms for reliable behavior of a group of
agents. In (Timm 2004) as well as (Scholz et al. 2006) the formal models
of BDI especially the logical framework Lora (Wooldridge 2000) and
VSK have been integrated as a unified formal basis for systems of intelli-
gent agents.

16 Ingo J. TimmPP1PP, Peter KnirschPP2PP, Hans-Jörg KreowskiPP2PP,
Andreas Timm-GielPP3PP

In the research of the priority research program on “Intelligent Agents and
Business Applications” from 2000 to 2006, it has been stated, that flexibil-
ity is the key benefit of intelligent agents (Kirn et al. 2006). However the
question arises, if the optimization of individual performance within an
agent also leads to a global optimization for a group of agents. In current
approaches especially in the context of the CRC on autonomous logistics,
we are investigating strategic management in multiagent systems. The stra-
tegic management is based on autonomous adjustment of the agent’s
autonomy. The underlying model is based on a social mechanism for re-
flection within social systems and has been transferred to multiagent the-
ory (Timm & Hillebrandt, 2006).

Conclusion

In this chapter, we have discussed two approaches to modelling autonomy
in software systems: multiagent systems and communities of autonomous
units. The former is a well-known and widely used logical framework in
artificial intelligence. The latter is a rule-based and graph-oriented method
recently introduced in the context of the Collaborative Research Centre
Autonomous Cooperating Logistic Processes (cf. Chapter XXX).

As the very first observation in comparison of the two approaches, it has
turned out that communities of autonomous units form executable struc-
tural models of the axiomatic notion of multiagent systems so that the for-
mer provide platform-independent realizations of the latter.

To shed more light on the significance of these observations, future studies
will have to work out the relationship in more detail. This will include on
one hand to prove that communities of autonomous units do not only fol-
low the structure of multiagent systems, but satisfy also the requested
properties. On the other hand, one may employ the well-working decision-
making procedures of agents as control mechanism of autonomous units to
widen the spectrum of possibilities with respect to the self-control.

References

Agha GA (1986) ACTORS: A Model of Concurrent Computation in Distributed
Systems. The MIT Press: Cambridge, Massachusetts

Bratman ME (1987) Intentions, Plans and Practical Reason. Harvard University
Press: Cambridge, Massachusetts

Autonomy in Software Systems 17

Castelfranchi C, Conte R (1992) Emergent functionality among intelligent sys-
tems: Cooperation within and without minds. Journal on Artificial Intelligence
and Society, 6 (1), pp.78–87

d’Inverno M, Luck M, Georgeff M, Kinny D; Wooldridge M (2004) The dMARS
Architecture: A Specification of the Distributed Multi-Agent Reasoning Sys-
tem. Autonomous Agents and Multi-Agent Systems, 9 (1-2), pp. 5-53

Dunne PE; Laurence M; Wooldridge M (2003) Complexity Results for Agent De-
sign Problems. In: Annals of Mathematics, Computing & Teleinformatics,
vol. 1, No. 1, pp. 19-36

Ehrig H, Kreowski H-J, Montanari U, Rozenberg G (eds) (1999) Handbook of
Graph Grammars and Computing by Graph Transformation, vol 3: Concur-
rency, Parallelism, and Distribution. World Scientific, Singapore

Fisher M; Ghidini C (2002) The ABC of Rational Agent Modelling. In: Castel-
franchi C, Johnson WL (eds) Proceedings of the First International Joint Con-
ference on Autonomous Agents & Multiagent Systems (AAMAS 2002). Bo-
logna, Italy, July 15-19, pp. 849-856

Hölscher K, Kreowski H-J, Kuske S (2006) Autonomous Units and their Seman-
tics – the Sequential Case. In: Corradini, A, Ehrig H, Montanari U, Ribeiro L,
Rozenberg G (eds) Proc. 3rd International Conference on Graph Transforma-
tions (ICGT 2006), Lecture Notes in Computer Science vol 4178, Springer,
Berlin Heidelberg New York, pp 245-259

Janssens D, Kreowski H-J, Rozenberg G (2005) Main Concepts of Networks of
Transformation Units with Interlinking Semantics. In: Kreowski H-J, Mon-
tanari U, Orejas F, Rozenberg G, Taentzer G (eds) Formal Methods in Soft-
ware and System Modeling, Lecture Notes in Computer Science vol 3393.
Springer, Berlin Heidelberg New York, pp 325-342

Knirsch P.; Timm IJ (1999) Adaptive Multiagent Systems Applied on Temporal
Logsitics Networks. In: Muffato M, Pawar KS (eds) Logistics in the Informa-
tion Age. SGE Ditoriali: Padova Italy, pp. 213–218

Kuske S (2000) Transformation Units-A Structuring Principle for Graph Trans-
formation Systems. Ph.D. thesis, Bremen

Maes P (1994) Agent that Reduce Work and Information Overload. In: Communi-
cations of the ACM 37, Nr.7, pp. 31–40

Meyer J-JC, van der Hoek W, Vreeswijk GAW (1991) Epistemic Logic for Com-
puter Science: A Tutorial (Part One). In: Bulletin of the EATCS 44. European
Association for Theoretical Computer Science, pp. 242–270

Müller JP (1996) The Design of Intelligent Agents: A Layered Approach. Lecture
Notes in Artificial Intelligence 1177. Springer: Berlin

Müller H-J (1997) Towards agent systems engineering. Data & Knowledge Engi-
neering, 23(3):217–245

Nide N, Takata S (2002) Deduction Systems for BDI Logics Using Sequent Cal-
culus. In: Castelfranchi C, Johnson WL (eds) Proceedings of the First Interna-
tional Joint Conference on Autonomous Agents & Multiagent Systems
(AAMAS 2002). Bologna, Italy, July 15-19, pp. 928-935

18 Ingo J. TimmPP1PP, Peter KnirschPP2PP, Hans-Jörg KreowskiPP2PP,
Andreas Timm-GielPP3PP

Patel-Schneider PF, Hayes P, Horrocks I (2007) OWL Web Ontology Language
Semantics and Abstract Syntax. W3C-Recommendation.
http://www.w3.org/TR/owl-semantics/ (last visited Jan. 2007)

Petsch M (2006) Integrative Betrachtung der Offenheit von Multiagentensystemen
unter technischen, systemischen, sozialen, und organisatorischen Aspekten.
Dissertation. Technische Universität Ilmenau, Fachbereich Wirtschaftswis-
senschaften, Institut für Wirtschaftsinformatik, September

Rao A, Georgeff M (1998) Decision procedures for BDI logics. In: Journal of
Logic and Computation 8, No. 3, pp. 293–342

Rovatsos M, Weiss G (2005) Autonomous Software. In Chang S K (ed): Hand-
book of Software Engineering and Knowledge Engineering, volume 3: Recent
Advances. World Scientific Publishing: River Edge, New Jersey

Russel SJ, Norvig P (1994) Artificial Intelligence: A Modern Approach. Prentice
Hall: Englewood Cliffs

Russel SJ, Norvig, P (2003) Artificial Intelligence: A Modern Approach. 2nd Edi-
tion. Prentice Hall: Englewood Cliffs, New Jersey

Singh, MP, Rao AS, Georgeff M P (1999) Formal Methods in DAI: Logic-Based
Representation and Reasoning. In: Weiss G (ed) Multiagent Systems - A
Modern Approach to Distributed Artificial Intelligence. The MIT Press: Cam-
bridge, Massachusetts

Smith RG (1988) The contract net protocol: High-level communication and con-
trol in a distributed problem solver. In Bond A H, Gasser L (eds.) Readings in
Distributed Artificial Intelligence. Morgan Kaufmann: San Mateo

Smith RG, Davis R (1980) Frameworks or cooperation in distributed problem
solving. IEEE Transactions on Systems, Man and Cybernetics, 11(1)

Timm IJ (2001): Enterprise Agents Solving Problems: The cobac-Approach. In:
Bauknecht K, Brauer W, Mueck Th (eds): Informatik 2001 - Tagungsband der
GI/OCG Jahrestagung, 25.-28. September 20011, Universität Wien, pp. 952-
958

Timm IJ (2004) Dynamisches Konfliktmanagement als Verhaltenssteuerung Intel-
ligenter Agenten. DISKI 283, infix: Köln

Timm IJ (2006) Strategic Management of Autonomous Software Systems. Tech-
nical Report. TZI Bericht Nr. 35, Universität Bremen, Bremen

Timm IJ, Hillebrandt F (2006) Reflexion als sozialer Mechanismus zum strategi-
schen Management autonomer Softwaresysteme. In: Schmitt M., Michael F,
Hillebrandt F (eds) Reflexive soziale Mechanismen. Von soziologischen Er-
klärungen zu sozionischen Modellen, VS Verlag: Wiesbaden, pp.255-288

Timm IJ, Scholz T, Herzog O (2006) Capability-Based Emerging Organization of
Autonomous Agents for Flexible Production Control. In: Advanced Engineer-
ing Informatics Journal, 20, S. 247-259

van der Hoek W, Wooldridge M (2003) Towards a Logic of Rational Agency. In:
International Logic Journal of the IGPL, 11, Nr. 2, pp. 133-157

Wooldridge MJ (2000) Reasoning about Rational Agents. The MIT Press: Cam-
bridge, Massachusetts

Autonomy in Software Systems 19

Wooldridge M, Jennings N (1995) Intelligent Agents: Theory and Practice. In:
The Knowledge Engineering Review 10, No. 2, pp. 115–152

Wooldridge M, Lomuscio, A (2000) A Logic of Visibility, Perception, and
Knowledge: Completeness and Correspondence Results. In: Proceedings of
the Third International Conference on Pure and Applied Practical Reasoning
(FAPR-2000). London, UK

