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Abstract: This paper gives a short overview of the multiagent-based simulation 
system PlaSMA. The system provides distributed discrete event simulation with 
conservative synchronisation. PlaSMA has been developed for scenarios within the 
logistics domain with simulation agents representing logistic objects like lorries or 
cargo as well as abstract services like route planning or transport brokering. 
PlaSMA is applied for evaluation and visualisation of control methods. 

1 Introduction 

Multiagent-based simulation (MABS) attracts increasing attention in the context of com-
plex simulations with potentially great numbers of parallel and interacting sub-processes 
[Dav00]. In MABS the environment and the objects acting therein are modelled by a 
number of software agents handled as logical simulation processes [Lee04]. This enables 
distributed simulation [Fuj00] as well as natural mapping of actors to software agents 
with proper autonomy encapsulation. Moreover, when using FIPA-conform agents the 
transfer from simulation to real-world operation is eased, provided that the application 
includes autonomous sub-systems. In particular in logistics, new control paradigms for 
decentralised decision making demand for numerous autonomous sub-systems whose 
performance and interaction has to be tested in advance. In contrast to simulation, soft-
ware verification would get especially complicated or infeasible when the number of 
participating instances is dynamic and validation metrics are vague and possibly influ-
enced by stochastic events.  

The PlaSMA system1 provides a distributed multiagent-based simulation and demonstra-
tion system for logistic processes based on the FIPA-compliant Java Agent Development 
Framework JADE [Bell01]. PlaSMA stands for Platform for Simulations with Multiple 
Agents. The system is developed at the University of Bremen, Germany, as part of the 
Collaborative Research Centre 637 “Autonomous Cooperating Logistic Processes - A 
Paradigm Shift and Its Limitations”. Within this interdisciplinary project the PlaSMA 
system is the joint software platform for autonomous logistics applications and evalua-
tions. 

                                                           

1 Available at http://plasma.informatik.uni-bremen.de 



2 System Architecture 

The PlaSMA system consists of the basic components simulation control, world model, 
simulation agents, analysis, and user interface. The simulation control handles world 
model initialisation, time management as well as agent lifecycle management. Further-
more, it provides an interface for world model access. Simulation control primarily con-
sists of two kinds of instances: one top-level controller and a sub-controller for each 
processor or computer in distributed settings. Sub-controllers handle the actual software 
agents (called simulation agents) that are the actors in a simulation scenario. Communi-
cation between sub-controllers and simulation agents is based on local Java method 
invocation. The interaction between top-controller and sub-controllers concerns, e.g., 
agent lifecycle management, runtime control, and time events. For time management, the 
top-controller sends time events to all sub-controllers to indicate progression of simula-
tion time. Sub-controllers propagate these events to all of their simulation agents (see 
Sect. 3.1). 

The world model component represents the state of the world consisting of its environ-
ment and the physical objects acting therein. It is initialised based on a formal ontology 
description (see Sect. 3.2). The simulation agents represent physical objects, abstract 
services, or legal entities (e.g., organisations). Simulation agents are able to communi-
cate with each other by message passing in FIPA Agent Communication Language ACL 
[Fip02] and may act in the environment if equipped with actuators. Scenario-specific 
agents may be created or adapted by the PlaSMA user by implementing an extension of 
the basic Java agent class SimulationAgent. 

The analysis component consists of a relational database storing scenario performance 
metrics (e.g., cargo cycle times or vehicle utilisation) and an interface to log and query 
these metrics and additional log messages. The metrics can be observed online within the 
PlaSMA client. When agents provide position metrics and the scenario configuration 
contains additional visualisation information the simulation environment can also be 
tracked within the viewer (see Fig. 1). The client/viewer is connected to the server by 
Java Remote Method Invocation (RMI) and by JDBC access to the relational database of 
the analysis component. In order to conduct a simulation experiment the system user 
starts the PlaSMA server and the PlaSMA client subsequently. The client allows for 
selection of predefined scenarios available at the server. Afterwards the scenario may be 
started, paused, and stopped as well as visualised while running. 

3 Simulation Model 

The PlaSMA simulator employs a discrete-event-like conservative synchronisation and 
time model. That is, simulation time progresses in discrete steps of heterogeneous 
length. The simulation actors are parallel logical simulation processes, i.e., software 
agents representing physical entities, abstract services, or parts of the environment. 
These agents govern virtual time progression by requesting their next wake-up time at 
their simulation sub-controller respectively. The simulation agents communicate by 
sending messages in FIPA agent communication language ACL [Fip02]. 



 

Figure 1: PlaSMA client and user interface with visualisation example. 

3.1 Time and Synchronisation Model 

Time management, i.e., the synchronisation of simulation time of parallel simulation 
processes, is a crucial issue in distributed simulation [Fuj00, Lee04, Paw06]. In multi-
agent-based simulation each agent as a logical simulation process may have its own local 
virtual time (LVT). Synchronisation is needed when agents interact to avoid causality 
problems. While optimistic synchronisation uses rollback mechanisms that allow for 
handling of events with time stamps that differ from the agents LVT, conservative syn-
chronisation prohibits such events.  

PlaSMA applies conservative synchronisation using simulation controllers. Although an 
agent-to-agent synchronisation would be possible in general, the dynamic setting in 
PlaSMA with new agents that may enter the simulation in a stochastic manner demands 
for more coordinated handling. That is, each simulation agent may request a simulation 
time to be activated next at its sub-controller and there is one common simulation time 
that progresses depending on these requests. When simulation time progresses all agents 
are activated that either requested for activation at this time or received some event or 
message. The latter ensures in-time handling of (unexpected) incoming events.  

Simulation time is stated as UNIX time stamp with millisecond granularity. To avoid 
very small synchronisation steps the user may define a minimum synchronisation dis-
tance, e.g., 10 seconds, in scenario configuration. Because PlaSMA is also used as dem-
onstration platform with online visualisation, progress of simulation time needs to be 
delayed here. Therefore PlaSMA provides two parameters that specify (a) the maximal 
ratio of simulation time to computation time, e.g., at most 100 times faster than real time, 
and (b) a maximum synchronisation distance. The latter forces all simulation agents’ 
activation within the given simulation time interval in order to ensure steady logging of 
performance metrics and position data needed in visualisation. The configuration also 
allows to select the simulation date time at scenario start.  



3.2 World Model 

Simulated physical objects, e.g., vehicles or transport containers, are positioned in a 
directed graph of typed and annotated nodes and edges representing the multi-modal 
transport infrastructure. The scenario infrastructure and the objects or agents therein are 
specified by an OWL-DL ontology file [Bec04], i.e., a logical domain description. Each 
scenario ontology file has to import a basic logistics domain ontology and optionally 
specific sub-ontologies, e.g., for transportation, that are predefined but may adapted by 
the system user as well. 

3 Application and Integration 

Due to the world model and its corresponding ontologies PlaSMA is focused on the 
logistics domain. Nevertheless the general system is easily adaptable for other domains. 
Currently PlaSMA is applied for comparison and evaluation of algorithms for autono-
mous logistics planning and special sub-processes therein, e.g., coordination mecha-
nisms of logistics objects, information distribution, and routing algorithms. Furthermore 
PlaSMA is part of the “Intelligent Container” platform [Jed07] integrating simulation 
with real-world hardware in perishable food transport scenarios. 
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