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Abstract. In this paper we describe a time management approach to distributed 
agent-based simulation. We propose a new time management policy by joining 
optimistic synchronization techniques and domain-specific knowledge based on 
agent communication protocols. With respect to our experimental results, we 
assume that our approach helps to prevent too optimistic event execution. Con-
sequently, the probability of time consuming rollbacks is reduced in compari-
son to a pure time warp based solutions. The approach has been implemented 
as a synchronization service for the JADE agent platform SimJade. The paper 
concludes by the discussion of our experimental results and future improve-
ments. 

1   Introduction 

Research on systems of autonomous agents, called multiagent systems (MAS), has 
received much interest in the domain of (distributed) artificial intelligence, in recent 
years. MAS are most suitable for the development of distributed applications, with 
uncertain and a dynamically changing environment. For validation of those systems 
agent based simulation seems to be well-suited [1].     

Simulation is the imitation of a system’s behaviour and structure in an experimen-
tal model to reach findings, which are transferable to reality. In multiagent-based 
simulation (MABS) real world systems are modelled using multiple agents. The sys-
tem emerges by interaction of the individual agents as well as their collective behav-
iour. Agents send messages with respect to some communication protocol and are 
disposed at some discrete point in time (see Definition 1). In this context, a software 
agent is defined as, a program that acts autonomously, communicates with other 
agents, is goal-oriented (pro-active) and uses explicit knowledge [2]. Beyond this, 
MABS is influenced and grounded on existing simulation techniques such as object 
oriented simulation and distributed simulation [3]. Agent-based simulation has 
reached a growing attention from both science and industry in recent years. Agent-
based modeling and therefore agent-based simulation seems to be the right tool for 
domains characterized by discrete decisions and distributed local decision makers 
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[4],[5]. MABS is an appropriate method if we wish to understand the evolution of a 
distributed system, minted with non-linear dynamics. For instance, a rising number of 
contributions are dealing with agent-based simulation models in the context of supply 
chain management since this domain provides distributed entities with autonomous 
behaviour [6]. Furthermore agents based simulation can be applied to evaluate decen-
tralized decision policies for example within agile or holonic manufacturing systems 
[4]. As a third point agent-based simulation can help to analyze the behavior of com-
plex self-organizing and emergent systems [8]. Last but not least MABS can be used 
to validate multiagent systems within the simulation model, before they are deployed 
to real environments, as part of the software development process [1],[9]. 

 
Definition 1. (Simulation Model):  
 A Simulation model S is defined as  a tuple  <A*, M*, P*, T*>  where 

 A* = {a0, a1, … ,an}  is a set of agents,  
M*= { m0, m1, … ,mn}  is a set of messages,  
P* = { p0, p1, … , pn}  is a set of agent communication protocols, and 
T* = {t0 , t1, … , tn}  is a set of time stamps within simulation time (n∈Ν). 

  
  Let M(p)⊆M* define a set of messages that belongs to some protocol p (p∈P*). 
 
  Let T(a)⊆T* denote a set of time stamps that some agent a (a∈A*) processes  
  during a simulation run.  
 
Obviously, MABS has strong requirements with respect to its inherent computational 
complexity. Nevertheless, in many domains, when distributed systems or high com-
plex world models are in question, MABS seems to be the most adequate form of 
distributing the simulation model resp. to run agents on multiple computational nodes 
in a parallel manner. The distribution of the simulation model, however, leads to an 
additional challenge: Correctness of experimental results generated by a distributed 
simulation run mainly depends on the accuracy of the underlying synchronization 
mechanism. Event-based simulation is the ‘gold standard’ for simulation. In distrib-
uted simulation, the distributed simulation processes could compute progress in the 
simulation in an asynchronous way, i.e., simulation events in the distributed computa-
tional node are happening at different time points with respect to the time in simula-
tion as well as the current time in the real world. Events, which were scheduled to 
happen after each other, could happen in a varying order if the computational nodes 
would not be synchronized. However, complete synchronization would create an 
almost sequential simulation behaviour, which is not desirable and would prevent the 
system to scale with respect to speed-up. In Consequence, synchronization is the key 
challenge in distributed simulation [10],[11],[12]. In this paper, we propose a hybrid 
event driven time management approach based on local knowledge to provide effi-
cient distributed simulation. Therefore, we first give a short introduction on time 
management protocols and why they have relevance in distributed simulation. In 
section 3 we propose a new synchronization approach to MABS using constrained 
optimistic behaviour. Furthermore, we introduce SimJade as a prototypical imple-
mentation of the resulting synchronization service with our approach to time man-



agement policy. Finally, we present experiential results, discuss related work, and 
conclude with a discussion and a brief outline of future work. 

2 Synchronization – Technical Background 

The main component of simulation is the simulation model. Commonly, it is repre-
sented by a set of variables and specific behaviour for their value changes, i.e., in-
duced by some input, each variable is modified with respect to the input and its value 
over time. Another key component of simulation is the time model. There are differ-
ent notions of time within simulation [10]. The physical time denotes the time of the 
physical system, whereas the simulation time is used to represent the physical time 
within the simulation model. Beyond this, we have to discern the wallclock time, 
which refers to the processing or lead-time of the simulation program.  

Depending on their timely fashion, simulation approaches are distinguished as 
continuous and discrete simulation techniques. Within continuous simulation, 
changes to the system state occur continuously in time, whereas in discrete models 
states are modified at discrete time points only. Continuous simulation is normally 
performed by using a system of differential equations. 

Discrete simulation can further be slit into time-stepped models, where simulation 
advances in equidistant time steps, and event-driven models, where the system state is 
changed only if an event is fired [10]. In a time-stepped model, simulation time can 
only advance systematically. In fact, not every state variable is really changed in each 
time step, but must be synchronized anyway. Actions occurring at the same time step 
are normally considered to be simultaneous and therefore independent of each other. 
For many problem domains, such an assumption seems to be rather insufficient. By 
choosing a high granularity of the time steps such situation may be avoided. How-
ever, this again must be paid with a high synchronization overhead. Nevertheless, 
many agent-based simulation test beds rely on this synchronization approach, since it 
is easy to implement [5],[9],[13].  

Within event-driven simulation, a time stamp is assigned to each event, to indicate 
the point in simulation time, when the event occurs. Discrete event simulation can 
easily be realized on a single machine using one global event list that manages the 
events of all Logical Processes (LP), i.e. the agent process. All agents in the simula-
tion model are synchronized by a centralized data structure. Hence, it is ensured that 
events are processed in the correct order of time stamps (sequential simulation ap-
proach). But this solution is clearly contradictory to the underlying idea of MABS, 
i.e., the inherent parallelism is hardly used. The dominant approach in parallel event-
driven simulation (PEDS) on the other hand is based on the approach, that each LP 
maintains its own local simulation time (Local Virtual Time (LVT)).  

 
Definition 2. (local virtual time): LVT(a, t) denotes the current local virtual time, 
i.e., how far an agent has progressed in simulation time, with a∈A*, t∈T(a).   
 
During simulation, the progress of the agents varies from agent to agent. Addition-
ally, it is assumed, that there is no global event list but each LP contains an individual 



event list, locally. As soon as simulation is processed on different processors, there is 
the necessity of synchronizing event execution to preserve the correct event order 
with respect to their time stamps. Since every agent manages its event list independ-
ently, the correct order of events with respect to their time stamps is not ensured. This 
is commonly known as the causality problem within distributed simulation [10]. 
Figure1 gives an example for violation of causality. Corresponding to this figure, we 
can define a straggler message (see definition 3a). 
 

wallclock time
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Fig. 1. Scenario in distributed simulation causing violation of event ordering (causality error). 
When event e12 arrives, e19 has already been processed by agent a1 (straggler event). 

 
Definition 3a. (straggler message): If a message m is received by agent a with time 
stamp t2 which is less than current local time of the agent LVT(a,t1), this “late” mes-
sage is referred to as straggler message:  

 
 ∀ a, t1 ,t2 , m: (LVT(a, t1) ∧ received(a, m, t2) ∧ (t2<t1) → isStraggler(m)) 

a∈A*, m∈M*, t1,t2∈T(a)      
 

The ternary relation received(a, m, t) denotes  that agent a  has received message m 
on time stamp t. 

see definition (1),(2) 
 
There are two main approaches in place to ensure correct time stamp order: conserva-
tive and optimistic synchronization. Conservative synchronization algorithms intro-
duce constraints on events and therefore avoid violation and ensure local causality 
Conservative algorithms prevent the event ordering from being violated. Accordingly, 
a situation as illustrated in Figure 1 should never occur when using a conservative 
synchronization scheme. Therefore conservative protocols cannot fully take advan-
tage of parallelism within the application resp. the parallel infrastructure of multiple 
computational nodes, as in the conservative approach, the guidance is addressed to 
the worst-case scenario only, i.e. the incoming of a straggler message, which may 
rarely actually occur in practice.  Optimistic algorithms like Jefferson’s Time Warp 
mechanism on the other hand explicitly allow causality errors, and provide suitable 
techniques to recover from an incorrect system state. In the example introduced 
above, agent a1 has to go back in time and rollback its execution state from LVT 19 to 
LVT 12. Occasionally, an incorrect message that has already been processed by an 



agent can result in the generation of additional incorrect messages that have been 
processed by other agents, which results in still other incorrect messages. Undoing all 
effects of  incorrect computations, the agent has to unsent all previously sent (possi-
bly) incorrect messages using so called anti-messages[10]. Each agent that receives 
such an anti-message has to rollback its state as well. Therefore a rollback within 
optimistic simulation can be defined as: 
 

Definition 3b. (rollback):  Let m be an anti-message resp. a straggler message  
received in t2 , the rollback is defined as the behavior initiated by the receiving agent 
a. Doing so, the agent reactivates its state to a former point in time t3  (new LVT) 
that is less then the current local virtual time t1, and less or equal  t2 (cf. definition 
(1),(2),(3a)):  

∀ a, t1 ,t2, t3, m: (LVT(a, t1) ∧ (isAntiMessage(m) ∨  isStraggler(m)) ∧  
received(a, m, t2) →  rollback(a, t3 ) ∧  newLVT(a, t3)) 

 
a∈A*, m∈M*, t1, t2, t3∈ T(a), with t3≤ t2 < t1 

 
Conservative as well as optimistic time management protocols have gained remark-
able speedups in the recent years. Various approaches have been proposed to control 
the optimism of the simulation model. Conservative synchronization scales well, if 
the lookahead, i.e. the ability of an LP to make predictions about its own future, is 
high. But, in dynamic environments with frequently changing relationships between 
model entities optimistic synchronization insures a better scalability, since it does not 
rely on the lookahead of a certain simulation model. Additionally, the model devel-
oper has not to be familiar with details of synchronization, as within conservative 
simulation. Since we are looking for a suitable time management approach to agent-
based simulation that provides enough performance for a wide range of models opti-
mistic synchronization seems to be a good choice. 

3 The Hybrid Approach 

In conservative synchronization, algorithms prevent the event ordering from being 
violated. Within pure Time Warp implementations, no constraints exist on the dis-
tance in time an agent process resp. the advance ahead of others into future. Conse-
quently, the probability of incorrect computations increases. As shown above, each 
straggler message causes one or even more rollbacks. If the time to perform a roll-
back is high, i.e. many states have to be rolled back, the performance of the simula-
tion decreases significantly. This commonly known performance hazard within opti-
mistic synchronization is caused by too optimistic event execution [10]. A good time 
management protocol should avoid such situations. At the same time, it has to be 
ensured, that parallelism is not fully lost within the simulation model, as it is caused 
by a too restrictive time management policy for example. The question that arises is 
how to prevent these potential performance hazards? Communication is one of the 



key features in agent technology. Messages are sent out from a sender to a receiver 
resp. a list of receivers. Messages are encoded in an Agent Communication Language 
(ACL), an external language that defines intended meaning of a message by using 
performatives. A series of messages produces a dialog. A dialog normally follows a 
predefined structure – the Interaction Protocol (IP). Commonly, communication of 
agents is based on such protocols. The FIPA specification, as an internationally 
agreed agent standard, defines an agent communication language as well as a set of 
interaction protocols, most commonly used [14]. The FIPA Request Interaction Pro-
tocol for example allows an agent to request another agent to perform some action. 
The participant needs to decide whether to accept or refuse the request. In any case, 
the message receiver has to respond with a reply to a request message. Even if the 
receiver does not have any clue how to deal with a message, the specification pre-
scribes to send a least a not-understood message. With this in mind we define policies 
for time management (see def. 4.) Furthermore we have to consider some special 
cases, where the agent exceptionally is allowed to do something, even if it is waiting 
for a reply-message (see def.5a,5b). 

Definition 4. (wait for rule): Given agent a1 which has sent a message m1 to agent 
a2, and assuming that there is at least one valid reply m2 for m1. The rule “wait 
for” is defined as follows: If  the expected reply message was not received yet, the 
agent should wait for this particular message, before going on with the next mes-
sage:  

∀ m1, m2 ,a1 ,a2,  p: (sent(a1, m1, a2) ∧ validReply(m2, m1)∉∅  ∧   
¬received(a1, m2 ,t) → wait-for(a1, m2))  

 a1,a2 ∈A*, a1 ≠ a2, m1,m2 ∈M(p),  m1 ≠ m2 ,  p∈P*, t∈ T(a)  

Whereby the ternary relation sent(a1, m1, a2) denotes  that  agent a1  has sent mes-
sage m1  to the receiver a2. 

see definition (1) 
 

Definition 5a. (execution condition):  Given some message m2 which has been 
received while agent a is waiting for message m1 of the same sender, and message 
m2  matches to m1 (message performative and conversation ID of m2  are  the same 
as in m1) the execution condition is defined as the following behavior of the agent: 
agent a does not need to rollback, process the message and remove wait-for condi-
tion: 

∀ a,m1,m2 , p, t:(wait-for(a, m1,) ∧ received(a, m2, t) ∧ matched(m1 , m2) →   
¬rollback(a) ∧  process(m2) ∧ ¬wait-for(a, m1,))  

 
a ∈A*, m1,m2 ∈M(p), p∈P*, t∈T*  

see definition (1),(3b),(4) 

 



Definition 5b. (delayed execution condition):  A delayed execution condition is 
defined by some message m2 which is received while agent a  is waiting for message 
m1 from a sender different to the sender of  m2, whereby  m2 is not part of the current 
interaction protocol p. In this case the message is buffered. 

∀ a,m1,m2 , p, t:(wait-for(a, m1,) ∧ received(a, m2, t) ∧ sender(m1) ≠ sender(m2) ∧ 
m1∈M(p) ∧ m2∉M(p) → bufferMessage(a , m2))  

 
a ∈A*, m1,m2 ∈M*, p∈P*, t∈T*  

see definition (1),(3b),(4)  

 
We have to avoid deadlock situations, where agent a1 waits for agent a2, and to the 
same time agent a2 waits for agent a1, since both independently have sent a message 
to each other. Both agents are blocked; each is waiting for a message event which 
will never occur. Hence, the agent must also process a message from its opponent 
even if it is not belonging to the protocol it currently processes: 
  

Definition 6. (deadlock avoidance condition): If some message m2 is received 
while agent a is waiting for message m1 of the same sender, but m2 does not belong 
to the current interaction protocol (m2∉M(p)), and agent a doesn’t need to rollback, 
then the deadlock avoidance condition is defined as the behavior of processing the 
new  m2 despite of any wait-for condition: 

∀ a, m1 ,m2 , p, t: (wait-for(a,m1) ∧ received(a,m2,t) ∧  
 (sender(m1)= sender(m2)) ∧  m1∈M(p) ∧ m2∉M(p) ∧  ¬rollback(a) 

 →  process(a , m2))  
 

a ∈A*, m1,m2 ∈M*, p∈P*, t∈T(a)   
See definition (1),(3b),(4) 

 

Definition 7. (consideration of cyclic dependencies):  If some message m2 is re-
ceived while agent a is waiting for message m1 with a sender different to the sender 
of  m2, and the new message m2  does belong  to the current interaction protocol 
(m2∈M(p)), and agent a doesn’t need  to rollback, then the condition consideration 
of cyclic dependencies is defined as the behavior of processing m2 in despite of any 
wait-for condition, since the protocol could not proceed otherwise: 

∀ a, m1, m2, p, t:(wait-for(a, m1) ∧ received(a, m2 , t) ∧ sender(m1)≠ sender(m2) ∧  
(m1,m2 ∈M(p))  ∧   ¬rollback(a) →  process(a , m2))  

 
     a ∈A*, m1,m2 ∈M*, p∈P*, t∈T(a) 

see definition (1),(3b),(4) 
 



Finally, cyclic dependencies have to be handled adequately. Although situations as 
described in the following are not very probable, there may occur situations when for 
example in multi-staged-protocols an agent receives a request within the same con-
versation, from a new communication partner different from its original opponent. In 
such a case, this message of course must be processed before going to wait state again 
(see def. 7). 

 
Accordingly, on each message send agent ai executes: 
send(message msg) to an{... 
    if (msg.requiresReply()∉∅) then{ 
       waitForReply:=true;      //[def.4] 
       MsgTemplate = msg.createReplyTemplate(); 
    }... 
} 

When a message is received by agent ai it exectues: 
receive(message msg){... 
     if (LVT(ai)>msg.Time)∨ msg.isANTIEVENT = true)  
         then rollback();         //[def.3] 
     else  
     if(waitForReply = true) then  
        if (MessageTemplate.match(msg)=true) then 
        { 
            waitForReply:=false;    
            process(msg);         //[def.5a] 
        } 
        else 
        if(msg.Sender = MsgTemplate.Sender)     
            then process(msg);    //[def.6] 
        else  
        if(msg.ProtocolID = MsgTemplate.ProtocolID)  
            then process(msg);    //[def.7]    
        else 
            bufferMessage(msg);   //[def.5b]  
     } 
     else process(msg); //no wait condition was set 
} 

 
Now remembering the example from section 2, where a straggler message caused the 
agent to rollback and recover to an earlier point in time. With the new policy in place 
such situations could easily be avoided. Now the agent waits until it gets a reply mes-
sage, and not simply processes with the next message (see figure 2).  As shown 
above, delayed execution helps to preserve event order and therefore avoids wrong 
computation. Of course, such a policy cannot fully prevent rollback situations. In fact, 
there are conceivable cases, where this policy may fail. But it seems to be at least 
fairly better than a pure TW solution, without fully loss of parallelism, and is consid-
ered within the evaluation of this approach. Furthermore the implementation effort of 
this solution is considerable low. The agent has to be provided with information about 
the structure of the used protocols at initialization stage only. Depending on the pro-



tocol length, the policy is applied more frequently. Particular long interaction proto-
cols, like the fipa-contract-net are most eligible (see Table 1). Since this approach is 
joining optimistic techniques with constrained optimism, we actually pursue a hybrid 
time management approach. 
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Fig. 2. Delayed event execution based on protocol information. Agent a1 receives a proposal 
from Agent a3, while he is waiting for an inform-done message of Agent a2. Instead of immedi-
ately processing the incoming message, the execution is delayed. Thus, event order is pre-
served and still valid. 
 
Table 1. Communication complexity for some standard FIPA Agent Interaction Pro-
tocols (m – number of participants) [14] 

Protocol name Min. message  number Max.  message number 
Propose 2 2 
Request  2 3 
Query  2 3 
Contract Net 2m 5m 

 4 The SimJade Synchronization Service 

A prototype implementation of the proposed synchronization service was realized by 
using the Java Agent Development Environment (JADE) [15]. This framework offers 
an appropriate middleware to simplify the implementation of multiagent systems. 
Beyond this, it is widely used in academia. As one part of this agent toolkit, there are 
ready-to-use behaviour objects for standard interaction protocols such as fipa-request 
and fipa-query-ref. By supporting generic interaction protocols, application develop-
ers just need to implement domain specific actions, while the framework will carry 
out all application independent protocol logic. Since JADE is FIPA compliant, a high 
degree of interoperability is guaranteed. To test our approach, we have implemented 
an extension named SimJade to support a local synchronization scheme. This service 
implements optimistic Time Warp based synchronization algorithm, first introduced 
by Jefferson and discussed in [10]. Each agent is equipped with a local control 
mechanism for event scheduling. Furthermore, a dedicated synchronization service, 



which is integrated into the agent platform, is provided. This service offers the func-
tionality of computing state copies of an agent as well as recovering a former agent 
state. A specialized simulation manager agent implements global control mechanisms, 
like memory reclaiming, starting and stopping simulation of experiments, as well as 
detecting termination of simulation runs. For distributed computation of the global 
virtual time, a procedure based on a snapshot algorithm first proposed by Mattern has 
been implemented [16]. Unused memory is reclaimed by using fossil collection [10]. 
Most of the described functionality is transparent to the agent developer. This is real-
ized by encapsulating all time management functionality within a single agent super-
class. Using the new service only requires that the domain agents are inherited from 
this new agent class instead of the default agent class.  

Since SimJade synchronization service is based on a widespread agent toolkit it 
enables the testing of multiagent systems developed within JADE before they are 
deployed in the real world. Moreover using an optimistic synchronization scheme 
relieves the agent developer from most technical issues associated with time man-
agement. Thus, the programmers can concentrate their efforts on implementing the 
domain specific application logic.  

5   Evaluation  

To evaluate the proposed time management policy, we performed a number of ex-
periments using the SimJade service together with a self-defined agent model. Our 
test environment consists of a mini-cluster with five P4 2.8 GHz workstations (256 
MB RAM, Suse Linux 8) which are connected by a 100 Mbit switched Ethernet. 

The test model comprises of 30 agents. In a single run those agents together ex-
change over 2000 event messages. To emulate a realistic workload, each agent in our 
evaluation scenario implements standard reasoning capabilities using JESS-engine 
and the respective behaviour for integration in JADE [17]. The JESS contribution can 
easily be combined with the generic interaction protocols provided by JADE [15]. If 
an agent process receives a message, the JESS inference engine, to create a suitable 
reply-message, first interprets this message. A combination of different standard 
FIPA protocols (see Table 1) with mixed communication lengths where used within 
each run. We tracked the wall clock time required to finish as simulation run, as well 
as the total number of rollbacks to measure the efficiency of our approach. Figure 3 
shows the obtained lead times. For orientation, the dotted line shows the cycle time 
using sequential synchronization scheme. As can be seen, our time management pol-
icy clearly outperforms the pure time warp implementation in this scenario. Even 
more, a remarkable speedup could be gained, compared to sequential synchronization 
approach. The last fact is not self-evident, since results are crucially determined by 
the parallelism of the application and even more by the synchronization overhead 
caused by distribution. The main reason for these good performance results probably 
grounds on the small number of rollbacks compared to none-constrained optimistic 
synchronization policy (Figure 4). Within the pure Time Warp solution agents tend to 
be too far ahead of each other in simulation time, and therefore more frequently caus-
ing rollbacks. By deploying message delays we could minimize the probability of 



time consuming rollbacks, at least for the test scenario. To summarize, there is a clear 
connection of rollback frequency and obtained speed up, whereby our time manage-
ment policy seems to have an advantage over the pure time warp based solution. 

Fig. 3. The figure shows the arising average execution times with and without an advanced 
time management policy in place. The dotted line indicates the lead time reached by using a 
sequential (none distributed) synchronization policy. 
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Fig. 4.  The figure depicts the total number of rollbacks within a single simulation run compar-
ing pure time warp solution with our advanced synchronization approach. 

6   Related Work 

Many different agent-based simulation toolkits have been proposed in recent years. 
So far, the majority neither offer a support to distributed simulation nor provide any 
advanced time management schemes.  
One of the first general purpose frameworks for agent-based simulation is the 
GENSIM system by Anderson and Evans [18], where agents are given perceptions at 
fixed intervals, and with a fixed amount of time to react to each perception. Within 
the distributed version, DGENSIM a time-stepped synchronization mode is used [19]. 
A support for swarm-like simulation is realized within SWAGES simulation envi-



ronment [20]. This framework gives support to parallel execution of agent-based 
models and dynamic load balancing. Therefore, simulated agents are referred to a 
spatial model. Agents are allowed to act asynchronously within their event horizon, 
but have to consider whenever a non-local entity could potentially influence them, 
and potentially affects the sphere of influence of an agent.  

The SYNCER framework is another remarkable contribution, that enables running 
a distributed simulation with the well known SWARM agent toolkit based on a time 
stepped time management approach, whereas remote communication is realized via  
proxy objects located on each computational node [21]. The simulators used in the 
RoboCup Simulation Leagues like rescue and 2D soccer simulator use a fixed step 
discrete time model [22]. In [5], a sequential synchronization service for linking dif-
ferent agent simulation test beds is presented. Popov et al [223] again describe a par-
allel sequential simulation approach to simulation of 106 agents to capture the behav-
iour of web users. This vast number of simulated agents is reached by keeping the 
agent implementation unchanged. Furthermore they are using a relative weak notion 
of agency, and do not consider deliberative agent structures.  

A conservative synchronization approach is discussed as part of the MPADES 
framework, a middleware for building (distributed) simulation environments [24]. 
Furthermore there are some contributions in place concerning the distributed simula-
tion through federation of agent-based simulation environments using the High Level 
Architecture (HLA), a generic, language-independent specification, that allows the 
integration of different sequential simulators, and was originally initiated by the De-
partment of Defence and meanwhile committed as an ISO standard [25],[26].  With 
HLA simulators, referred to as federates, can be integrated into a global simulation 
context known as federation. A strict hierarchical tree-oriented model is used to struc-
ture respective federations. Communication between certain simulators is enabled by 
predefined gateways. Thus HLA can be considered as a centralized coordination 
approach to distributed simulation resources. HLA_AGENT for example introduces 
support for distributed simulation to the SIMAGENT toolkit [26]. HLA_REPAST is 
another distributed simulation environment that uses HLA to parallelize simulation of 
the artificial life-toolkit REPAST [25]. HLA clearly focuses on the interoperability 
between different sequential simulation toolkits and is not designed to gain speedups.   

To enable the simulation of large-scale agent system the MACE3J system by Gas-
ser and Kakugawa provides services, for registration, scheduling and messaging of 
so-called ActivationGroups [27]. These groups again consist of Active Objects, i.e. 
the agents within the system.  Scaling up is on main design criteria of the system. The 
time management relies on a conservative synchronization regime. MACE3J has been 
run with up to 5000 agents on a shared memory system too prove scalability; admit-
tedly, agents have not changed any messages in this test. In [28] scalable multi agent 
simulation using the grid approach is discussed. This contribution clearly aims on 
providing an infrastructure for distributed simulation, without treating synchroniza-
tion issues in detail. 

The first simulation framework that gives support to optimistic time management 
is the well-known JAMES system [29]. Actually, there is no report about using any 
adaptive optimism schemes. Furthermore, JAMES does not support a general simula-
tion model, since it comes with predefined agent architecture. Another contribution 



from Logan et al proposes a metric to compute the degree of optimism based on the 
shared state of the agent system. This metric is used to define a moving time window 
for constraining optimism. To test their approach they are using an external library 
together with the SIM_AGENT toolkit [11]. This approach is comparable to our 
simulation service, since it relies on the idea of constraining the optimism of the 
simulation model.  

To enable testing to a wide range of real world agent applications Helleboogh et al 
propose a semantic duration model to capture timing requirements that reflect the 
semantic of agent activities in an explicit way [30]. This time management approach 
is primary meant to ensure causality within a simulation run. Beyond this, it is not 
supporting efficient simulation or distributed simulation by default. At last several 
time management policies have been introduced within the context of conventional 
parallel discrete event simulation [10]. However, these approaches of course do not 
consider the deviations of agent-based simulation approach effectively, but could be 
easily combined with our policy.  

Although MABS has received a lot of attention in recent years there are only a few 
contributions that deal with the problem of efficient time management. Moreover, 
only a small set of agent-based simulation toolkits does support distribution of simu-
lation over multiple hosts. In fact, most currently existing simulation environments 
support a simple time-stepped model, which is inappropriate to simulate multitude 
real world system in reliable manner (see section 3). Namely, the JAMES simulation 
toolkit [29] and contributions by Lees and Logan [31] explicitly make use of an opti-
mistic synchronization scheme within the context of multi-agent-based simulation. 
Beside this, nearly all existing general-purpose simulation frameworks are lack to be 
compatible with the FIPA standard. Mostly, they refer to a particular type of agent 
model respectively application field, like artificial life or social science. Since they 
oblige to some particular agent architecture, there is a low degree of freedom to the 
application developer left. 

7 Conclusion  

Simulation is one of the key features for testing and evaluating distributed systems 
[1]. However, the simulation of multiagent systems or the simulation using agent-
based models is still under research. It is commonly assumed, that the inherent distri-
bution of multiagent systems could also be used for scale-up resp. speed-up simula-
tion. However, in practice this does not has to be true. The objective of our approach 
outlined in this paper was to introduce a new time management approach to agent-
based simulation. The approach integrates time warp synchronization with con-
straints. Therefore a hybrid framework for synchronization in simulation has been 
introduced consisting of policies to avoid excessive rollbacks as well as too high 
deviations in simulation time of the various agent processes. As we’ve pointed out, 
using interaction protocols within agent-based simulation can offer an appropriate 
way to constrain optimism of the underlying simulation model.  First experimental 
results show a significant benefit of this hybrid approach compared to pure time warp 
based solution.  



The evaluation of the proposed algorithm is still going on; concurrently with the 
integration of new simulation models from manufacturing and logistics domain. Ad-
ditional performance improvements, as well as the introduction of advanced load 
balancing schemes are planed, to support scalable simulation for a wide range of 
agent based models.  
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