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Abstract 
 
The concept of autonomous logistic processes addresses the emerging requirements in current and 
future logistics by applying the latest information and communication technologies. They enable 
autonomous systems that operate and cooperate as local representatives of logistic entities. The 
analysis and design of these processes is subject to simulation studies. Two simulation systems for 
the analysis of autonomy in logistics – an agent-based and a discrete event approach – are pre-
sented. Inspired by the time concept of discrete event simulation, a new synchronisation technique 
is proposed that allows for a dynamic adaptation of simulation time progression in multiagent-
based simulation depending on the granularity currently needed. 

1 Introduction 
The dynamic nature of modern transport networks increases the complexity of decision-
making in today’s logistics. An exact or even heuristics-based solution for global optimi-
sation becomes almost impossible. Since the distribution of planning and decision-
making to autonomous components is a widely accepted promising solution to handle 
complex problems (Jen01), we consider it an appropriate set-up for logistic systems. 

Autonomous logistic processes aim at managing logistic processes in a highly distributed 
way by transferring decision-making competencies to the logistic entities, e.g. in trans-
portation, transshipping facilities, means of transport, or even single freight items, repre-
sented by autonomous software systems. These entities coordinate in dynamic, 
transorganisational, and even competitive environments to perform the processes depend-
ing on their respective goals and abilities. 

A logistics system based on the above principles allows the transfer of more decision 
competence from the logistics service provider to autonomous representatives of the 
logistics system user. Furthermore, it creates a new approach to routing and mode-choice 
problems. The investigation of algorithms is supposed to include different approaches 
from artificial intelligence, operations research, and communication networks. 

The field of Artificial Intelligence (AI) attempts to build such intelligent entities (RN03). 
In Distributed Artificial Intelligence (DAI) AI is broadened for cooperative problem 
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solving of multiple intelligent entities thereby providing scalability, flexibility, and effort-
less reusability. In this context, Multiagent Systems (MAS) are the state-of-the-art ap-
proach for implementing autonomous and interacting software systems. A software agent 
is a program that acts autonomously, communicates with other agents, and reasons about 
its actions with respect to goals (Wei99). In order to achieve interoperability agent com-
munication has been standardised by FIPA (FIPA02). For autonomous logistic processes, 
logistic entities and services may be represented as software agents interacting with each 
other to coordinate the logistic process. 

The Collaborative Research Centre 637 (CRC 637) aims at providing fundamental meth-
ods and prototype solutions for the paradigm of autonomous local control in logistics. 
This is enabled by technologies from AI as well as communication and sensor technolo-
gies. In order to evaluate, analyse, and compare approaches for autonomy of logistic 
entities simulation studies are carried out. In this paper we present two simulation envi-
ronments designed for different but overlapping purposes or aspects. A Multiagent-Based 
Simulation (MABS) environment is applied to survey behaviour, interaction, and per-
formance of agents representing logistic entities. Communication behaviour and require-
ments of autonomous logistic entities as well as routing algorithms are evaluated with a 
Discrete Event Simulation (DES) environment. 

One aim is to integrate those systems for large-scale global simulations while preserving 
each system’s advantages as far as possible. The crucial difference between both systems 
is their time management. MABS is performed in an inherently parallel and distributed 
way. It therefore requires sophisticated synchronisation mechanisms. Based on a com-
parative analysis of both systems we investigate methods for MABS synchronisation 
regarding runtime performance, flexibility, ease of development, and simulation result 
accuracy. 

The remainder of this paper is organised as follows: In Sect. 2 we present and compare 
the two simulation systems for logistic processes. Sect. 3 discussed time management in 
MABS and proposes an improved synchronisation mechanism with first experimental 
results. The paper concludes with a summary and a prospect to further research. 

2 Simulation of Autonomous Processes 
At CRC 637 two simulation environments were developed resp. adapted to model logistic 
scenarios and evaluate autonomous logistic processes. The systems use different simula-
tion technologies that are considered adequate for their particular purpose. On the one 
hand the MABS system aims at testing mechanisms for implementing autonomous be-
haviour of coordinating logistic entities in a realistic scenario. The DES system on the 
other hand focuses on the evaluation of new routing algorithms as well as communication 
needs and costs arising from decentralisation of decision-making in logistics. 

2.1 Multiagent-based Simulation 
As a generic platform for simulating and evaluating logistic scenarios with logistic enti-
ties as autonomous actors, an agent-based simulation system has been developed. This 



system allows for a flexible mapping of logistic entities to software agents and provides 
logging, evaluation, introspection, visualisation, and interaction features. In general, the 
simulation platform is designed to support arbitrary logistic scenarios. However, the 
current simulation scenarios are focused on transportation logistics and road traffic, i.e., 
agents are chiefly representatives of trucks or their load. 

Architecture and Control 

The platform is designed upon the FIPA-compliant Java Agent DEvelopment framework 
(JADE) (BCPR03). It supports the distribution of the simulated logistic entities to multi-
ple computers. The top-level simulation control instance is an agent called Simulation-
Manager. It is responsible for the handling of simulation state transitions (e.g., starting, 
pausing, and stopping), the set-up of the scenario and its agents including distribution to 
multiple computers, and agent synchronisation. For each computer configured to partici-
pate in the simulation the SimulationManager starts a sub-controller agent, called Con-
tainerManager, on the respective machine. This sub-controller is the primary contact 
point when sending (broadcast) control messages and events to the agents in the simu-
lated scenario. The sub-controller forwards these messages to the agents on its computer, 
thereby avoiding cross-platform communication traffic. 

The agent-based simulation is synchronised by sending events for discrete steps. These 
steps have a fixed but configurable length in simulation time. The computation time for 
one step varies depending on the calculations of the slowest agent. 

Configuration and Logistic Model 

The configuration of an agent-based logistics simulation on the platform incorporates 
different aspects, e.g., (1) the initial state of the logistics scenario, (2) the mapping of 
logistic entities to software agent classes, (3) the computers that host the distributed simu-
lation, (4) the visualisation of different maps and logistic entities.  

Agents may be, e.g., suppliers, customers, means of transport, transshipping facilities, 
traffic nodes, cargo, or services like routing, traffic information, or logistics services 
brokers. The initial state includes the participating and autonomous logistic entities and 
their respective types, and properties. Another important part of the scenario specification 
is the transport network which consists of a directed graph with typed and annotated 
nodes and edges. The scenario is specified in a formal, machine-processable way using 
an ontology in the W3C standard web ontology language OWL (MvH04). 

Background knowledge on the logistics domain is described in several ontologies for 
different aspects of logistics, e.g., transportation. Ontologies not only define the initial 
scenario state, they provide a common formal language for the agents to represent and 
communicate the state of the simulated world. 

2.2 Discrete Event Simulation 
Development Basis and Architecture 

The DES environment used for the research presented here was developed based on the 
Communication Networks Class Library (CNCL), a class library developed at RWTH 



Aachen for the simulation of communication networks (GJW93). This class library pro-
vides all the basics that are needed for event-based simulation like scheduling, event 
handling, random generators, statistical analysis as well as other general classes. The 
major components of a CNCL-based simulation are the scheduler and the event handlers. 
The event-processing simulation objects have to be modelled as event handlers derived 
from a generic event handler class. 

In the DES, the objects send events to the scheduler which include information about the 
event’s destination, the time the event has to be executed and in some cases objects that 
are attached to the event. When the time for the event has come, the scheduler forwards it 
to its destination. In the object receiving the event, the event handling method executes 
the object’s actions depending on the content of the event. So the logistic objects are 
modelled as object-oriented objects with event handlers. The autonomy of the logistic 
objects is implemented in the event handling method. 

The simulation covers the interrelated communication and transport problem. This means 
it is neither a simulation of just transport nor a simulation of just communication, but an 
interconnected simulation, where each autonomous logistic object acts on its own and its 
communication need is recorded. The integration of communication investigations into 
the simulation is because the autonomous cooperation is not only to be investigated with 
respect to the impact on the logistic performance, but also with respect to the communi-
cation system requirements. By monitoring the communication traffic, it is possible to 
measure the amount of data that is communicated and therefore the bandwidth that is 
required. Furthermore, the robustness of the autonomous cooperation concepts under 
limited availability of communication networks can be investigated by interrupting com-
munication flows. 

Logistic Model 

The DES model is based on a scenario description which contains transport related com-
ponents as well as communication components. The transport related components are 
instances of the following types: 

Fixed components form the geographic layout and the transport needs in the scenario. 
Locations where the direction can be changed and/or load can be transshipped are 
called vertices. Their complexity can range from a road junction to a fully equipped 
transshipment centre. They can be extended by sources that generate transport de-
mand (packages and their orders). The scenario description specifies details for the 
generation such as generation rates and destinations, the latter implicitly defining 
the respective vertices as sinks. The vertices are connected by edges. Edges are con-
sidered to be directed, this means there have to be two edges between two vertices if 
travelling is allowed in both directions. 

Mobile components are those components that move from vertex to vertex, i.e. the vehi-
cles and the packages they carry. Vehicles are only allowed to move on edges of a 
suitable type, i.e. a road vehicle cannot travel on rails. Packages are the goods to be 
transported. A package is considered to be indivisible, i.e., if a load is divisible, it 
consists of more than one package. 



Furthermore, the scenario contains the following communication relevant objects: Com-
municationUnits are the devices enabling the logistic objects to communicate. A logistic 
object may have multiple CommunicationUnits for different communication networks. 
They are managed by a CommunicationUnitManager (one per logistic object) which 
selects the appropriate CommunicationUnit according to current requirements. Outside of 
the logistic objects, one MetaCommunicationUnitManager performs the actual commu-
nication and enables tracking of the amount of communicated data. 

Most of the logistic and communication components mentioned here have a couple of 
attributes, e.g. a vehicle has a capacity, a maximum speed and others. The scenario de-
scription is given in XML formatted input files. At the initialisation of a simulation, these 
input files are parsed and all objects contained in the scenario are created and initialised 
with the respective attributes. 

The output observed in the DES is the packet travel time, utilisation of the vehicles, stor-
age usage in vertices, etc. in the format of histogram and probability density function. 
Furthermore the routes taken by packages and vehicles are recorded to track their ways 
through the logistic network. The total amount of data communicated, amount of data per 
vehicle, per communication system etc. is output with respect to the communication. 

2.3 Comparative Analysis 
The described systems share the goal of simulating aspects of autonomous logistic proc-
esses. However, they differ in a variety of important aspects because they were designed 
for different purposes and application areas. In the following, the two simulation envi-
ronments are briefly juxtaposed with a focus on time management. A more detailed over-
all comparison can be found in (BWG+06). 

In (BWG+06) it was discussed that the strength of DES is reproducibility of simulation 
results (given a common random seed) and runtime performance. MABS enables distrib-
uted simulations and is more flexible w.r.t. changes in scenarios and agent behaviours. 
Concerning statistical evaluation, both approaches provide similar tooling. 

The multiagent simulation system provides a flexible test bed to analyse and compare 
different algorithms for autonomy in complex environments. Its major advantage is that it 
perfectly meets the notion of autonomous logistic entities that directly interact with each 
other. Thus it is supposed to be easily transferable for real-world applications. 

But problems in run-time performance are apparent in comparison to DES. In similar 
medium-size transportation scenarios with 25 nodes, 250 trucks, and 1000 hours simu-
lated model time the DES system was clearly superior to the MABS system regarding 
run-time performance (>300 times faster). Besides the efforts for text parsing in agent 
message passing, the stepwise simulation process is one of the major performance prob-
lems. This synchronisation mechanism causes a considerable administration overhead in 
large-scale simulations and thus neutralises the advantage of parallelism. 



3 Time Management in MABS 
Time management is a crucial issue in parallel simulation - in parallel discrete event 
simulation as well as in multiagent-based simulation - as discussed in (Fuj00; LLT04; 
PT06). While the presented DES system is strictly sequential, MABS based on agents 
running as single processes is inherently parallel. Although this enables distributed simu-
lations and thus the advantage of scalability and increased performance, synchronisation 
needs arise that again may significantly decrease performance. In parallel simulations 
each partial simulation is a separate logical process (e.g., an agent in MABS) with its own 
simulation time, called Local Virtual Time (LVT). Whenever two or more agents interact 
by communication or actions in a common (simulated) environment, they need to syn-
chronise their LVTs, e.g., to prevent the physical impossibility of two trucks overlapping 
in space-time (without crashing). That is, every agent has to process events (percepts and 
messages) in increasing event timestamp order, called local causality constraint (LCC). 

The MABS environment presented in Sect. 2.1 prevents LCC violations by discrete time 
steps for equal LVTs triggered as events by a simulation controller. All agents perform 
their actions within these steps, report when they have finished, and wait for the next time 
step event afterwards. This is considered the easiest way to achieve agent synchronisation 
with respect to implementation efforts. 

On the other hand, discrete steps of homogeneous length create a number of problems. 
First, there is a considerable synchronisation overhead due to the explicit report of each 
agent that has finished its time interval followed by the event of the next step that has to 
be sent to all agents afterwards. Secondly, the granularity of time steps influences the 
accuracy of the simulation results. With longer synchronisation intervals accuracy de-
creases, e.g., because agent interactions wear on several time steps but would have ended 
within a split second in real world. On the other hand, when scaling down all time steps 
for accuracy, nothing might have happened in the meantime, thereby slowing down the 
simulation. 

3.1 Dynamic Adaptation of Time Progression 
As a result of the comparative analysis (Sect. 2.3, (BWG+06)) and the above discussion 
of synchronisation issues we extended the MABS system by a dynamic step size adapta-
tion. In this approach each agent determines the point in simulation time when it needs to 
deliberate next. Within an agent multiple behaviours determine this next time respec-
tively. The minimum time is decisive. Alternatively an agent or agent behaviour may 
omit this time statement to indicate that it is passively waiting until something happens. 

The desired next deliberation time is communicated to the simulation sub-controller (i.e., 
ContainerManager) as an additional parameter to the signal denoting that the agent has 
finished its deliberation. In a hierarchical process of social choice each container manager 
determines the minimum requested time. This time is reported to the parent controller, 



i.e., the simulation manager as top-controller. The overall minimum time is chosen as the 
next point in simulation time for deliberation of all agents. This is reported as a time 
event to the container managers and subsequently to each agent in simulation thereby 
starting an agent’s new deliberation cycle. The process is depicted in Fig. 1. 

In our simulation model agent deliberation is considered to take no or a minimum amount 
of simulation time, i.e., an agent does not have to take into account time passing by while 
reasoning but may reason as long as needed in actual computation time. Agents may 
communicate within their deliberation cycle and choose their actions at cycle end. The 
action results are processed in the next cycle. The next requested simulation time is 
greatly influenced by the actions to be performed (or scheduled). Agent communications 
are a special case discussed in Sect. 3.3. 

The dynamic-step-size approach adapts the idea of discrete event simulation with time 
progressing in heterogeneous steps. At the same time it preserves the ability of pro-active 
agent behaviour by scheduling their deliberation events instead of just simulation events, 
e.g., a truck arrival at some destination. The mechanism is relatively easy to implement 
by not scheduling general events but synchronisation points integrated in the existing step 
size control. Furthermore, communication efforts are distributed and reduced locally by 
means of sub-controllers that manage groups of agents. 

3.2 Optimistic Synchronisation 
The presented time management prevents violation of local causality constraints by con-
servative synchronisation. That means that all agents are steadily in sync. In optimistic 
synchronisation approaches possible causality violations are caught by rollbacks if an 
incoming event has a timestamp in the past with respect to LVT. Rollbacks require undo-
operations for every action performed and message sent after the event’s timestamp. This 
again may cause a chain reaction in other logical processes (i.e., agents). In order to avoid 
extensive rollbacks there are also hybrid approaches that constrain the degree of opti-
mism by a maximum time window for LVT deviation (LLT04; PT06). As an additional 
problem, indirect interactions in a common environment are not imperatively obvious to 
recognise, particularly in complex models like large-scale logistic scenarios. 

Figure 1: The simulation synchronisation process as simplified agent interaction diagram. 



Thus, optimistic synchronisation is more challenging in implementation. The adaptive 
conservative approach outlined in this paper is a compromise between ease of develop-
ment, simulation accuracy, run-time performance, and flexibility in agent development. 
Anyhow, we are planning to test optimistic synchronisation as introduced by Paw-
laszczyk & Timm (PT06). 

3.3 Communication and Local Deliberation Termination 
As stated in Sect. 3.1, deliberation and also agent communication is not considered to 
consume simulation time. But again, parallel execution of simulation entities complicates 
implementation. In order to faithfully terminate a deliberation cycle for synchronisation, 
an agent needs to know whether a conversation counterpart will respond within the cur-
rent time step. Two issues have to be regarded here: (1) Explicit knowledge is needed on 
whether a response will be received within the same time step depending on the interac-
tion protocol and the kind of message sent therein. (2) Due to concurrent agent execution 
the opponent might already have finished its deliberation cycle. 

The second issue reveals a general problem in step-oriented synchronisation: the hetero-
geneity of the agents’ end of deliberation cycles. One agent might have finished while 
another is still reasoning. In this case, should an agent be able to react on new incoming 
percepts/messages although its deliberation cycle already ended? If it is not allowed to do 
so this might have consequences on accuracy of simulation results. For instance, a truck 
agent might have finished deliberation when a freight item agent sends a transportation 
request. If the truck handles this request in his next deliberation cycle the freight item has 
to wait for response for the length of step size in simulation time which may be a signifi-
cant delay. 

This problem can be addressed in two ways: (1) one could allow for handling of incom-
ing agent messages between two agent deliberation cycles. (2) Step size could be adapted 
when waiting for responses in order to minimize delays. The approach of permitting 
agent communication although an addressed agent has already finished his current delib-
eration cycle turns out to be complicated. If the agent handles these incoming messages 
they would have to be interpreted as if they were received in advance, i.e., before choos-
ing the next actions and the next simulation time for deliberation. Thus, the agent could 
have to undo his actions and correct his next requested synchronisation point. The latter 
again is difficult with respect to concurrency because the agent needs to be certain that 
the synchronisation point has not been finished globally by the simulation top-controller 
in the meantime. Thus, we favoured the second approach of adapting step size to a mini-
mum when engaged in communication processes. This has the disadvantage of increased 
synchronisation costs but ensures simulation accuracy. 

3.4 First Results 
The dynamic progression of simulation time by means of hierarchical social choice of 
simulation time for next synchronisation and deliberation has been implemented in our 
MABS system. Up to now, the gain in run-time performance was rather low. This is due 
to the dependencies of each agent’s implementation. If agents do not select next delibera-



tion and synchronisation points that allow for larger steps in simulation time the synchro-
nisation costs do not decrease significantly. But we could observe significant improve-
ments in simulation result accuracy. Agent negotiations that could wear on several 
minutes (sometimes an hour!) in simulation time now are handled within a split second. 
Furthermore agents are able to react on events instantaneously. Logistic scenarios that got 
unstable w.r.t. in-time delivery and amount of freight items waiting are now managed 
smoothly. 

The run-time performance could be improved by enhancing the message passing in the 
synchronisation process. Currently synchronisation messages from and to simulation 
agents are FIPA messages that require text parsing. We are going to replace plain text by 
serialized Java objects. As another approach one could replace message passing by a 
shared memory for synchronisation control. The change to dynamic step size also in-
volved a change in the basic agent design that permits four times as much agents to be 
simulated on one computer by reducing the number of operating system threads needed 
for one agent. 

4 Conclusions and Further Research 
In this paper two simulation systems for the analysis of autonomous logistic processes 
were presented. The multiagent based simulation system was enhanced by integrating 
time concepts available in the discrete-event simulator. 

The MABS gains with respect to simulation accuracy due to the introduction of non-fixed 
time steps. At the same time it keeps the ability to concurrently execute parallel actions. 
This results in more comparability between both simulators. Furthermore, the analysis of 
processes in different time scales, e.g., transport (hours and more) and communication 
(minutes and less), has been enabled. Further research in the simulation of autonomous 
logistic processes will comparatively analyse algorithms such as the Distributed Logistic 
Routing Protocol (DLRP) (SRRF06), which are currently implemented in both simula-
tors. 

One major drawback of parallel distributed simulation is its potential breach of causality. 
The synchronisation mechanisms needed to prevent this have been identified as the main 
performance handicap in MABS. Optimistic synchronisation as a means to speed up 
scenarios with slightly interconnected components will be integrated in the MABS sys-
tem. Another step to improve synchronisation is to introduce spheres of influence to 
avoid overall synchronisation between all components. 
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