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Chapter 1

Introduction

Software engineering of systems and processes is continuously increasing in complex-
ity of design and functionality. One possibility to cope with the resulting requirements
is the application of distributed software systems. The rapid establishment of the In-
ternet and networking technologies sped up the significance of distributed computing,
which is in need of high-sophisticated engineering methodologies. In Artificial Intel-
ligence (AI), distributed problem-solving is considered as a possibility for scaling up
AI-techniques. These trends in computer science are accompanied by similar develop-
ments in business applications. Global competition results in the demand for shorter
product life cycles and forces companies to cut down development and delivery times.
In this context, innovative information technologies in general and flexible as well as
adaptive concepts are of increasing importance for business success. The requirements
for dynamic decision making in this context result in a mutual contradiction: Increas-
ing autonomy creates optimal structures and processes on a micro level, but often fails
to optimize the system as a whole, which is the goal of strategic consideration on the
macro level. Strategic optimization on the macro level on the other hand tends to intro-
duce boundaries for microscopic decisions such that optimal structures cannot evolve
or time and support consumptions increases.

This contradiction arises a key challenge in systems engineering. Conventional
engineering of monolithic software systems provides clear structures and explicit pro-
cesses which allow for consistent management rules, plans, and control at any step and
level of design and implementation as well as runtime behavior. In various applica-
tion domains, such as manufacturing or health care logistics, distributed entities are
existing in the real-world. Thus a natural approach to cope with the inherent complex-
ity and dynamics of these applications is the implementation of distributed systems.
In the early days of distributed software engineering, parallel computing, i.e. scal-
ing of computational power was in the center of research. The inherent requirements
of those real-world applications as well as further developments in AI, lead to an in-
creasing amount of ”slack” in execution of actions according to predefined plans. The
autonomous behavior of such systems extends from reactive systems over deliberative
approaches to autonomous systems. In consequence, the problem of contradictions be-
tween autonomy and strong regulation becomes increasingly important in the area of
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2 CHAPTER 1. INTRODUCTION

software engineering.

1.1 Balancing Autonomy and Strategic Management

Intelligent agents represent an area of research in Distributed Artificial Intelli-
gence (DAI) for implementing autonomous systems. These agents are software
entities, which can act autonomously, communicate with other entities, are goal-
oriented (proactive), and use explicit knowledge about their application domain
[Knirsch and Timm, 1999]. They are able to collaborate and solve problems in a dis-
tributed manner. The German Priority Research Program funded by the Deutsche
Forschungsgemeinschaft (DFG) on ”Intelligent Software Agents and Business Ap-
plications” has shown, that agents are a beneficial approach to incorporate flexibil-
ity in real-world applications as well as to perform an effective information logistics
[Kirn et al., 2006]. In economics, this gain of flexibility by autonomous subsystems is
considered to be paid off by a loss of control for the strategic management, such that
a contradiction arises between strategic control of the system and autonomous system
parts [Dembski and Timm, 2005].

Autonomous decision making in system parts should include the ability to recog-
nize a decision situation, identify alternatives, assess them, decide, and implement the
decision. Doing so, increased robustness and positive emergence of the system as a
whole should evolve. In consequence, the system should be able to cope with dy-
namics and complexity, distributively and flexibly. Nevertheless, we assume the local
autonomy of distributed software entities may cause suboptimal system states. This
assumption is supported by game theory, which can be used to implement autonomous
decision-making in agents. Let us assume that the agents are acting in an environment
which meets the requirements of non-cooperative games [Holler and Illing, 1990].
Here, the Nash equilibrium theory is used for computing dominant strategies, i.e.,
strategies which are optimal under the assumption that the opponent acts rationally
resp. chooses that strategy, which is maximizing his payoff [Kreps, 1994]. There are
many environments resp. games, where none or more than one Nash equilibrium ex-
ists, such that there is no dominant strategy [Holler and Illing, 1990]. In the latter case
with more than one equilibrium, the outcome resp. chosen strategies of the agents
are non-deterministic and those strategies are not necessarily maximizing the agents’
profit. In consequence, maleficent system behavior may occur. However, even if there
is only one Nash equilibrium, it is not ensured, that the local optimality of an agent
is also beneficial to the global optimum of the system. For example, the well-known
prisoner’s dilemma has the dominant strategy to cooperate even if the strategy of de-
flection followed by both agents would be superior with respect to the system level
[Axelrod, 1997].

Several implications to software systems as a whole arise from that assumption.
One of the key challenges can be found in the heterogeneous levels of decision making
within autonomous processes, i.e., handling contradictory requirements. With a higher
level of autonomy, decision making is supposed to become faster and more flexible,
but it may also lead to a loss of control for the management of the system. This gap
between operational decision-making and strategic management has to be bridged to
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ensure reliable decision-making. Thus, achieving a suitable solution involves organi-
zational (e.g., information and knowledge flow) as well as managerial (e.g., handling
contradictions) aspects.

Finally, it does not seem appropriate to construct distributed software entities,
which are either purely autonomous or strongly regulated. Both aspects, autonomy and
regulation, represent the opposed margins of a scale. The challenge for the engineering
of distributed autonomous software is to realize systems with a situation-dependent,
optimal mixture of autonomy and regulation. This paper discusses research results on
the incorporation of strategic management in autonomous software systems as a pro-
posed solution for balancing autonomy and regulation. Doing so, we deal with differ-
ent levels of autonomy and regulation: strongly regulated subsystems, and operational,
tactical, and strategic autonomy.

1.2 Organization of the Paper

Chapter 2 deals with the different levels of autonomy in software systems. The main
stages of autonomy can be partitioned into the levels: operational, tactical, and strategic
autonomy. In the next chapter (Chapter 3), the incorporation of strategic management
into autonomous systems is proposed. Engineering of autonomous systems is in the
focus of the chapter 4. Here we discuss the engineering process for autonomous sys-
tems with its specific tasks and challenges. Applications for autonomous systems as
well as exemplary approaches are introduced in chapter 5. Finally, we conclude with a
discussion of our results (Chapter 6).
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Chapter 2

Autonomous Software Systems

In software engineering, systems under research and development are of increasing
complexity up to the point where they overwhelm the designers. Therefore, more so-
phisticated approaches to system engineering and algorithm design are required. The
research field of Artificial Intelligence (AI) is dedicated to systems, where it is as-
sumed that intelligence is required for efficient solution [Negnevitsky, 2002]. In the
early research on AI, the objective of AI was defined as to develop systems, which
solve problems that would require intelligence if solved by humans [Boden, 1977].
[Russell and Norvig, 1994] focuses on AI as the development of intelligent entities:

The field of artificial intelligence, or AI [...] attempts not just to understand
but also to build intelligent entities [Russell and Norvig, 1994, p. 1].

Distributed Artificial Intelligence (DAI) extends AI systems by autonomous and
cooperative behavior for scalability, multiple problem-solving strategies, and reusabil-
ity purposes [M̈uller, 1993]. [Findler, 1991, p.23] defines the scope of DAI as follows:

Distributed planning and problem solving systems handle tasks that cannot
be dealt with effectively and efficiently by one single processor.

Various authors, for example [Moulin and Chaib-Draa, 1996], claim that DAI and
especially the multiagent technology have significant advantages over a single, mono-
lithic problem solver with respect to ”faster problem solving by exploiting paral-
lelism; decreased communication by transmitting only high-level partial solutions
to other agents rather than raw data to a central site; more flexibility by having
agents with different abilities dynamically team up to solve current problems; and in-
creased reliability by allowing agents to take on responsibilities of agents that fail”
[Moulin and Chaib-Draa, 1996, p.5]. In the research field of multiagent systems,
a key perspective lies on the analysis and engineering of autonomy [Weiss, 1999],
[Wooldridge, 2002].

Considerable progress has been made in the interdisciplinary research on auton-
omy (cf. German Priority Research Program on ”Socionics” funded by the DFG,
[Nickles et al., 2002]). [Weiss et al., 2005, p. 1] introduce autonomy as an emerging
software property:

5
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In addition to that, the increasing complexity of software in domains like
e/m-commerce, telecommunications, logistics, knowledge management,
and simulation of social and economic processes on the one hand and the
identification of autonomy as an enabler for emerging information pro-
cessing paradigms such as grid computing, (web-)service-oriented com-
puting or ubiquitous computing on the other have given rise to a more
general interest in autonomy as a software property.

2.1 Properties of Autonomy

The definition of autonomy has always been discussed in DAI. There are different
approaches to define it. A naive approach to the definition of autonomy uses the ex-
ternal view on a system. A system is identified as autonomous, if it is acting non-
deterministically, i.e., the system acts differently in two identical situations. However,
this does not mean, that an autonomous system has to be non-deterministic. The ap-
pearance of non-determinism arises from the limited view on the environmental state
(situation). If the internal state of the system is included, an autonomous system might
also be deterministic. A better approach to define autonomy resp. autonomous sys-
tems is the consideration of properties. In this context, autonomy resp. autonomous
systems is best described by the three properties: pro-activity, interaction, and emer-
gence. These properties are the building blocks for autonomous subsystems as they are
described below:

• pro-activity
The decision of a subsystem (actor) is not only performed on the basis of hard-
wired input-output schemes. Furthermore the actor is capable of interpreting the
environment. Doing so, the system activates goals resp. initiates actions without
specific external events. Therefore, the actors require the ability to reason about
its goals and the current situation, i.e., an explicit representation of goals and
environment is required.

• interaction
The autonomous system is capable of interacting with its environment. This
includes the perception of and the interaction with the environment as well as
the communication with other autonomous systems. The actor should increase
the individual utility as well as indirectly the utility of the overall system. A
fundamental assumption for interaction is, that there is some ”slack” in the coor-
dination resp. interaction of autonomous agents.

• emergence
The elements introduced so far, pro-activity and interaction, are properties of
autonomous systems, which have to be implemented within an actor. If there
are more than one autonomous subsystems building a larger system, the larger
system should contain properties, which emerge from the interaction of locally
resp. pro-actively acting subsystems. The naive formulation of this fundamental
assumption is, that the system is more than the sum of this parts.
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In our research, the understanding of emergence and its aspects is essential for the
consideration of autonomous software systems on a strategic level. In the following,
the different perspectives of emergence in DAI are discussed. For further details refer
to [Timm et al., 2002] and [Timm et al., 2001d]. Emergent behavior became one of the
most important criteria for the evaluation of autonomous software systems like multia-
gent systems from the very beginning in agent research. Most authors use this term in
a metaphorical and undefined manner. Here, a definition based on three major aspects
will be used. The first aspect is focused on emergent properties as a large-scale effect
of locally interacting autonomous systems: ”Emergent properties are often surprising
because it can be hard to anticipate the full consequences of even simple forms of inter-
action” [Axelrod, 1997, p. 4]. Jacques Ferber’s view is more centralized on emergent
organization. ”They [organisational structures] can also be defined a posteriori, and
we then speak of emergent organisations. These most frequently contain only reactive
agents and are characterised by the absence of any predefined organisational structure,
their structure being entirely the result of interactions between agents. In this case,
positions and relationships are not determined in advance, but appear as the product of
the behaviours of each of the agents. More precisely, the distribution of functions and
tasks follows an auto-organisation procedure, which permits an organisation to evolve
and to adapt easily to modifications in the environment and to the needs of a group of
agents” [Ferber, 1999, p. 114]. The third aspect links emergence with the transition
from reactive agents to deliberative ones. Doing so ”the idea that intelligent behavior
emerges from the interaction of various simpler behaviors” [Wooldridge, 1999, p. 49]
arises within this theoretical basis.

A closer look at all three aspects shows that interaction resp. communication is the
main reason for achieving global structures by local interaction, dynamic organization
by simple (communication) rules, and intelligent behavior of an autonomous system
as a whole. Considering the emergent behavior of a autonomous systems should result
from interaction of the autonomous subsystems. On the one hand the cooperation and
coordination follows local optimization criteria (goals), and on the other hand it has to
take a joint optimization criterion (goals of autonomous systems) into account. This
collaboration should lead to a global optimum of the system (emergent effect).

2.2 Levels of Autonomy

In recent research, there are discussions on different levels of autonomy
[Rovatsos and Weiss, 2005], [M̈uller, 1997], [Falcone and Castelfranchi, 2000]. In
early multiagent research, [Castelfranchi and Conte, 1992] discuss a very high degree
of autonomy, such as the influence of predefined norms, behavior patterns, or proce-
dures is irrelevant, resp. the relevance is very low with respect to the action-selection-
process within an agent. Nevertheless, autonomy is a property, which may lead to
partially unwanted system states resulting from conflicting or inconsistent goal sets.
The dynamic and complex interdependencies of autonomous subsystems can lead to
systems, which are organization emerges at runtime. Thus, software engineers of au-
tonomous systems may not consider any possible constellation of subsystems at design
time.
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(a) strong
regulation

(b) operational
autonomy

(c) tactical
autonomy

(d) strategic
autonomy

Figure 2.1: Levels of autonomy in autonomous systems

The detailed discussion of autonomy in this paper follows a systematic approach
using the levels of decision making known from economics and system theory: opera-
tions, tactics, and strategies (cf. [Hentze et al., 1993], [Küpper, 1997]). Consequently,
we introduce four levels of autonomy (LoA) refining the autonomy-regulation scale
mentioned in the introduction: strong regulation, operational autonomy, tactical au-
tonomy, strategic autonomy (cf. Figure 2.1). Autonomous systems are situated in an
environment with the capability to perceive and interact with it. The complexity of
the deliberation process within an agent is strongly related to different environmental
properties. In [Russell and Norvig, 1994] and refined in [Russell and Norvig, 2003],
the following properties for the classification of agent environments are proposed:

• observable
The propertyobservableindicates whether any information of the environment
is accessible to any agent (full, partial)

• deterministic
This a property of the environment, which specifies whether an action has a
single guaranteed effect (deterministic, stochastic)

• episodic
In anepisodicenvironment, the performance of an agent is based on a discrete
episode, i.e., there is no link between the performance of the agent which is
involved in multiple scenarios. In contrast to episodic environments, sequential
environments does not consist of independent scenarios resp. any action of the
agent may have consequences in any scenario where the agent is involved in

• static
The dynamics of the environment is described by this property. In static envi-
ronments, any changes are caused by actions of agents. Semi static environ-
ments contain changes within the autonomous systems which are not necessarily
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grounded on the perception of the environment. Finally, dynamic environments
contain operation processes next to the agents, which potentially change the en-
vironment.

• discrete
Further differentiation of environments follows the propertiesdiscreteor contin-
uous. In discrete environments, e.g., games like chess, actions and perception
are arranged in some kind of rounds. In continuous environments there is no
structure in acting and perceiving, e.g., robot navigation.

• agents
This property distinguishes between environments where only one (single agent)
or multiple autonomous systems (multi agent) are involved.

In the following, we use this categorization to specify the levels of autonomy and
to describe their respective adequacy in application domains. Table 2.1 summarizes
the levels of autonomy with respect to the environment properties. Within this pa-
per, we use the BDI architecture for intelligent agents and the Discourse Agents as
an extension as an example for the implementation of different levels of autonomy
[Rao and Georgeff, 1995].

LoA observable deterministic episodic static agents
0: strong
regulation full deterministic episodic static single
1: operational
autonomy partial deterministic episodic static multi
2: tactical
autonomy partial stochastic episodic semi multi
3: strategic
autonomy partial stochastic sequential dynamic multi

Table 2.1: Task domains and levels of autonomy

LoA 0: Strong Regulation

Strongly regulated systems are the class of systems usually dealt with in ”traditional”
software engineering. In strongly regulated systems, there is no part of the system with
autonomous capabilities. Any decision – regardless of the decision level – is predefined
or determined by an external entity. Conventional monolithic systems are examples for
this class of systems. They proved to be effective in environments with limited com-
plexity characterized by full observability, determinism and episodic structure without
further autonomous systems and with a mainly static behavior. Limitations occur, if
the autonomous systems are situated in environments where tasks have to be solved,
which differ from this setting.

In the manufacturing domain, process planning and production control has been
effectively managed and realized by monolithic systems as far as line production with
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only few disturbing and unexpected events are in question. However, the trend of
individualization reduces the planning horizon in production control, such that even
without an increasing number of disturbances monolithic systems reach their structural
limitations [Tönshoff et al., 2001a].

LoA 1: Operational Autonomy

The first step of increasing autonomy is associated with the operational level of decision
making. Here, an autonomous software system gains the competence to decide on an
operational level with a specific ”slack” in the behavior. However, this decision still
follows the tactical and strategic boundaries of the system. In agent technology, the
operational autonomy may be implemented using reactive agent architectures. In the
BDI approach, operational autonomy means that there is no flexibility in the desires or
the intention selection mechanism, i.e., the desires and intentions cannot be modified
by the agent. However, the agent is capable to reflect or refine plans. In Section 2.4, an
approach to operational autonomy will be presented (cf. [Timm, 2004a]) on the basis
of adaptive action plans.

With respect to the categories introduced by [Russell and Norvig, 2003], software
systems implementing operational autonomy are effective in environments which are
partially observable, deterministic, episodic, and static. Obviously, multiagent envi-
ronments do not prevent operational autonomy. The benefits of operational autonomy
are that the underlying algorithms allow for an efficient implementation and immediate
response to (episodic) disturbances. However, operational autonomy is restricted to
reactions on the basis of short term episodes and therefore does not consider mid- or
long-term objectives.

LoA 2: Tactical Autonomy

Tactical autonomy extends operational autonomy with respect to the tactical level. Tac-
tical decision making in autonomous software systems enables the system to deliber-
ate on different alternatives for operational behavior. While in operational autonomy,
plans are under consideration, e.g., linearization of partial plans, tactical autonomy is
performed at the level of goals resp. intentions. Considering BDI agents, the plan-
ning and execution level is associated with the operational autonomy. The deliberation
step of a BDI agent, where an agent selects resp. creates an intention with respect
to its desires and its current state, is the corresponding level for tactical decision-
making. Tactical autonomy includes some kind of algorithmic variety in generating
options and intentions on the basis of a current state. In Section 2.5, an approach to
enable tactical autonomy on the basis of capability management will be introduced (cf.
[Timm and Woelk, 2003a]).

Following the categories of [Russell and Norvig, 2003], software systems incor-
porating tactical autonomy are able to cope with stochastic and semi-dynamic task
domains in addition to the capabilities of operational autonomous systems. The lim-
itations of tactical autonomous systems arise if the environment contains a sequen-
tial problem structure, i.e., the dynamics of the environment become part of the task
[Russell and Norvig, 2003].
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LoA 3: Strategic Autonomy

The strategic aspects represent the highest level of decision making within a software
system and are conventionally determined by the system’s designer in advance or by
external influence, e.g., the user, during runtime. The architecture of each individual
agent incorporates static strategies, e.g., by the definition of individual desires and
specific algorithms. In conventional BDI, strategic autonomy by the agent itself is
not feasible as the desires are determined statically. The selection of desires for the
option selection process is based on an accessibility relation, i.e., the agent’s beliefs are
used for computing a relation identifying those desires, which are accessible by action
sequences starting with the current state. In Section 2.6, we introduce an approach for
strategic autonomy as an extension to conventional BDI. Here the agents are enabled
to dynamically compute interdependencies between desires and intentions with respect
to the current state of the agent. The approach is based on conflict management as the
interdependencies between desires and intentions are handled as conflicts of interest
[Timm, 2004b].

Obviously, strategic autonomy increases the computational complexity within an
agent. Additionally strategic capabilities of agents reduce the human control of the
entire system. The combination of both aspects results in less acceptance of such sys-
tems in special applications for example in medicine. Consequently, it is not useful
to apply strategic autonomy for any task in any domain. Following the classification
of [Russell and Norvig, 2003], strategic autonomy should be applied in environments
where the system is completely dynamic, i.e., where the agent, the environment, and
the opponent agents change over time.

2.3 Definition of Discourse Agents

There is a close connection between research on autonomy of software systems and
research on multiagent systems, as autonomy is one of the key features attributed to
such systems, i.e., software agents are assumed to behave autonomously. The agents
act on behalf of other agents or humans, and should therefore act without direct inter-
vention from human users or other entities, i.e., agents should at least have some partial
control about their behavior and their internal states [Wooldridge and Jennings, 1995],
[Ferber, 1999], [Tecuci, 1998]. Agents are applied to those domains, where complex-
ity and dynamics of the application prevent efficient use of predefined resp. hard-wired
behavior. Consequently, agents are designed and implemented with respect to enabling
autonomous behavior, i.e., the principal of the agent is not providing an action sequence
to the agent but the agent contains planning algorithms to generate action sequences by
itself [Kalenka and Jennings, 1997]. Thus, agents are not regulated externally during
runtime but contain algorithms and methods for individual planning. Russell & Norvig
describe the degree of autonomy in this context as follows [Russell and Norvig, 2003]:

”To the extent that an agent relies on the prior knowledge of its designer
rather than on its own percepts, we say that the agent lacks autonomy.”
[Russell and Norvig, 2003, p. 37]
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The work presented here is based on the formal conceptualization and specification
of Discourse Agents introduced in [Timm, 2003] resp. [Timm, 2004b]. The Discourse
Agent approach specifies an architecture for agent behavior, knowledge representation,
and inferences. This basic approach strictly separates internal and external aspects due
to privacy and security issues. Following the MECCA multiagent architecture intro-
duced by [Lux, 1995], the Discourse Agents are based on a three layer architecture
consisting ofcommunicator, working on a low-level realization of speech acts,con-
troller, determining general agent behavior, andexecutor, i.e. an interface to existing
components, e.g. enterprise resource planning (ERP) systems and further information
sources [Timm, 2004b], [Timm, 2001b].

The communicator should be implemented with respect to standardization efforts,
like FIPA [Poslad and Charlton, 2001]. In the case at hand, the communicator is real-
ized on top of a FIPA compliant agent toolkit (JADE, developed by CSELT S.p.A.1).
The executor is the most domain dependent part of the agent, as it has to be imple-
mented according to its directly connected resources, e.g., machine tools. While the
communicator and executor layer is constructed in a straightforward manner, the design
of the controller layer is more sophisticated: The controller implements two innovative
concepts: conflict-based agent control (cobac) for the strategic autonomy and open,
adaptive communication (oac) for the operational autonomy.

The agent deliberation is handled by the controller, i.e., the behavior control
of an agent is performed within the controller. The controller collects informa-
tion by perception and interaction with other agents and can derive new knowledge
by inferences. The deliberation process in the controller is based on the deliber-
ative agent architecture BDI [Rao and Georgeff, 1995]. The formal foundation in-
troduces a new (multi-) modal logic, which integrates the formal approaches VSK
logic [Wooldridge and Lomuscio, 2000] for inter-agent behavior and the LORA logic
[Wooldridge, 2000] for deliberative agent behavior. The Discourse Agent logic is a
(multi-)modal sorted first order logic with an underlying branching temporal struc-
ture [Timm, 2004b]. For further definitions, letΩ be the set of well-formed formulas
with respect to the grammatical definitions of this logic;B ⊂ Ω is denoting the set of
possible beliefs. The key concepts for the definition of Discourse Agents are briefly
introduced in the following paragraphs. For details please refer to [Timm, 2004b].

1 DEFINITION (DISCOURSEAGENT) A Discourse Agent is given by a 7-tuple:
Ag = 〈L,Act, see, reflect, decide, execute, l0〉,
wherel0 ∈ L denotes the initial state.

WhileL, Act, anddecide are introduced in the next section,see (perception func-
tion) , reflect (knowledge revision function), andexecute (action selection function)
are not in the focus of this paper. As basic concepts within an agent controller we de-
fineactions, the agent is capable ofplansas dynamic action sequences andlocal states
as explicit state representations.

2 DEFINITION (ACTION) Letαc be a communicative action executed in the commu-
nicator layer andαe an executive action performed in the executive layer, then the sets

1http://sharon.cselt.it/projects/jade/
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Actc = {αc
0, . . . , α

c
m} andActe = {αe

0, . . . , α
e
n} denote the communicative resp. ex-

ecutive actions of an agent. Together they build the action potentialAct = Acte∪Actc.

In analogy to AI planning, plans in the Discourse Agent architecture are formally
defined as tuples consisting of pre and post conditions, a set of available actions, and
the mappingsstatus andselect.

3 DEFINITION (ACTIONPLAN ) Let ϕpre, ϕpost ∈ Ω be a pre resp. post condition,
B ⊂ Ω the set of possible beliefs of the agent, andA ⊂ Act a set of available actions,
thenplan = 〈ϕpre, ϕpost, A, status, select〉 is called action plan, iff

• status : B×ϕpre×ϕpost 7→ x, withx ∈ R0 andB ∈ B, is a mapping denoting
the execution status of the plan and

• select : status× B → A is a mapping, which selects an action as the next step
of the plan.

The setPln denotes the set of all action plans of an agent.

A local state is the core component of BDI agents and is therefore specified using
the mental categoriesbeliefs, desires, andintentionsas follows:

4 DEFINITION (LOCALSTATE) The local state is defined as the 5-tuple:
L = 〈B,D, I, P lan, γ〉 iff

• B ⊂ B is the set of current beliefs,

• D ⊂ B is the set of current desires,

• I ⊂ D × Pln is the set of active intentions,

• Plan ⊂ Pln is the set of available plans, and

• γ : B ×D → R is a mapping computing the relevance of a desire in the current
situation2.

2.4 Operational Autonomy

As discussed above, operational autonomy enables an autonomous behavior in the ex-
ecution of plans. In the following, an approach for operational autonomy on the basis
of adaptive plans is introduced. For more details see [Timm, 2004a], [Timm, 2004b],
[Timm et al., 2001d], and [Timm, 2001a].

In the last section, we introduced action plans on an abstract level. From the BDI
perspective, action plans represent the operational level of behavior, i.e., the delibera-
tion process came up with a decision resp. an intention, which is pursued by an action
plan. To enable operational behavior, the concept of action plans is specialized. The

2The mapping is simplified for this paper, the Discourse Agent approach define a more sophisticated set
of mappings, which are assessing desires with respect to user relevance, potential, and risk.
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adaptive action plans have been developed to enable flexible communication behavior
in agents, i.e., the actions are mapped to message classes in the communicator. How-
ever, the concept has been formalized for any action classes including executive ac-
tion classes. The approach is called open, adaptive communication and extends action
plans with learning capabilities. As discussed in Section 2.1, communication is one of
the key mechanisms for achieving emergent behavior. Therefore, an adequate selec-
tion and configuration of communication protocols is required. Known approaches to
agent-oriented analysis and design lack an intuitive methodology to generate and cus-
tomize agent communication protocols (cf. Section 4.1). Furthermore, communication
protocols are often defined within a static structure, which cannot be directly adapted
by the agents during runtime. To address this problem we propose an approach of open,
adaptive communication protocols (oac). By the oac approach three main extensions
of classical concepts are implemented:

• The use of communication is not restricted to a given set of protocols and proto-
cols of opponents do not have to be known (open),

• dialogues do not have static structures only, but are flexible and can be adapted,
refined and even synthesized during runtime (adaptive), and

• conflict management determines the strategy for an agent’s behavior within a
concrete dialogue.

Note that in contrast to agent systems with fixed communication protocols this
approach uses a generalized view on dialogues. In classical approaches a dialogue
defines an agent communication protocol, e.g., a contract net protocol or a Dutch-
auction protocol. The concept of dialogues as action plans integrates communicative
as well as executive actions.

The basis of the adaptive plans are Markov models, i.e., temporal homogeneous
Markov chains. For the specification of adaptive plans potential actions of the agent
are discriminated into a (finite) set of action classesα1, α2, α3, ..., αn. The classifi-
cation of action classes is based on an equivalence relation between different actions.
Here, the equivalence relation is simplified by the application of performatives. Two
communicative actions are handled as equal if they have the same performative. These
action classes form the state space of the Markov processes; the time scale is modeled
in a discrete manner(t = 1, 2, 3, ..).

5 DEFINITION (ADAPTIVE PLAN ) LetXt be the random variable of the process and
the(n×n)-matrix withP = (pij) the transition matrix. The corresponding probability
distribution is defined by the equation:

Prob(Xt = αj |X(t−1) = α∗i ) = pij for all t = 1, 2, 3, ...

The current state of the Markov model is indicated by the agent’s or other agents’
action classαi. E.g., actions mean message received or an action of an opponent agent.
The correct termination of a plan execution is modeled with a specific action classαf .
This class contains the terminating actions, i.e., the transition probability from this state
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to any other state is0. The concrete specification of adaptive plan uses two Markov
models which form an interaction pattern. One model is used for the representation
of incoming events (matrixP ∗) and the second model is used as a decision model
for the agent (matrixP ∗). Each pair of transition matrices specifies a generalized
communication protocol. In those protocols, the next action class is not determined
directly, but is chosen probabilistically. This approach can also be used for modeling
conventional communication protocols (cf. Figure 2.2).

Figure 2.2: FIPA request protocol as Markov chain

The analysis and design of these protocols is done with minimum effort as only
required protocol structures must be defined and initial communication protocols must
be generated. The agents modify their protocols autonomously during simulation and
application as follows:

• Adaptation
The execution of existing communication protocols leads to an adjustment of the
selection probabilities (transition probabilities in the model) of the next action
due to prior experience with this dialogue partner, the dialogue partner’s team,
or the overall multiagent system. This adaptation is formalized by multiplication.
Note that consequently all zero transition probabilities always keep their value.

• Refinement
By refinement an agent extends protocols by adding new ”states”Xi, i.e., speech
act types out of a given set of basic communicative acts, e.g., FIPA/ACL. The re-
spective transitions are initialized in a straightforward manner. Another method
of refinement is to keep the states as they are, but to implement ”new” transitions
by setting zero transition probabilities toPij > 0, or to remove certain transi-
tions annulling their probabilities. Refinement is selected if an existing protocol
tends not to lead to a satisfying result according to the agent’s goals and the
multiagent system’s goals.

• Synthesis
The automatic generation of protocols is the methodology of choice for the cre-
ation of new communication protocols. The basis for this method is a predefined
set of dialogue ”skeletons” as they occur within known communication proto-
cols. The first step of the synthesis is to select one of them as a core model.
The necessary extension and customization of this rudimentary model follows
the adaptation and refinement steps described above.
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Evaluation

Electronic market-places with local communication-rules are settings where it is as-
sumed that operational autonomy shows a beneficial behavior. Therefore, the eval-
uation of oac as an approach for operational autonomy is performed in a simulation
scenario based on an electronic marketplace with varying communication rules and
conventions (conservative, communicative, aggressive). The success criteria of the
adaptation on an operational level is measured by the workload of the agent as well as
how much it has ”earned” in a virtual currency. In order to gain statistically significant
data, simulation runs with comparable settings but also a wide range of settings have
been evaluated. This statistical analysis is based on 215 experiments and 1.4 million
dialogues.

The hypothesis is that oac is beneficial for realizing operational autonomy for au-
tonomous agents. This means in the context of this scenario, that an agent is capable
of adapting to different kind of market places resp. opponent agents. The behavior
is compared to agents, which do not implement operational autonomy. Furthermore,
the operational autonomy is assessed in an environment consisting of operational au-
tonomous agents. In the simulation scenarios, a transport agent visits each market
place which defines its tour and negotiates in each market place additional load. The
tour is repeated by a specified number of rounds. The evaluation settings are defined by
numerous parameters; the most important ones are the number of market places in the
system, the amount of agents per market place, the number of rounds, and the opponent
agents’ profiles. For the evaluation experiments with the following settings have been
performed:

• Experiments with 5 market places, each consisting of 10 agents, and 100 rounds
(5000 negotiations per experiment)

• Experiments with 10 market places, each consisting of 10 agents, and 100 rounds
(10000 negotiations per experiment)

• Experiments with 5 market places, each consisting of 10 agents, and 200 rounds
(10000 negotiations per experiment)

For each experimental setting, 10 experiments with an operational autonomous
(learning) agent and 10 experiments with a non-operational autonomous (non-learning)
agent are performed. Variance analysis is applied to statistical analysis, v. The key per-
formance indicator in the statistical model is derived from the summarized learning
effect as well as from time. The operational autonomy is tested in four groups: con-
servative Discourse Agent in aggressive markets (KO), conservative Discourse Agent
in conservative markets (OK), and offensive Discourse Agent in mixed markets (OM).
These groups are tested in varying configurations with respect to the amount of markets
per tour and amount of tours (cf. Table 2.2).
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Identifier Experiments Amount of Tours Amount of Markets
KO-5-100 TI1 – TI20 100 5
KO-10-100 TI21 – TI40 100 10
KO-5-200 TI41 – TI60 200 5
KM-5-100 TI81 –TI100 100 5
OK-5-100 TI61 – TI80 100 5
OK-10-100 TI141 – TI160 100 10
OM-5-100 TI101 – TI120 100 5
OM-10-100 TI121 – TI140 100 10

Table 2.2: Configuration of repeated experiments

In the first group of experiments for example, a conservative agents in an aggressive
market are evaluated with respect to the operational autonomy on the basis of 250.000
negotiations. There are three experimental settings dealing with conservative agents
in aggressive markets. The cumulative means and standard deviations are printed in
Table 2.3. The associated success rates are illustrated in Figure 2.3. The results proof,
that agents with operational autonomy defined by oac are well capable to adapt their
communication structure to new and unforeseen environments even if they differ from
their initial environment.

Experiment Sum Price Success Initial
Mean SD Mean SD Mean SD Mean SD

KO-5-100 Learning 40,27 12,69 1,17 0,18 33,44 6,37 1611 153
KO-5-100 Non-Learning 11,96 0,53 0,69 0,01 17,21 0,75 0 0
KO-10-100 Learning 92,53 20,04 1,26 0,13 72,71 9,46 1684 100
KO-10-100 Non-Learning 23,97 0,84 0,69 0,01 34,53 1,26 0 0
KO-5-200 Learning 41,01 12,84 1,18 0,18 33,78 6,33 1613 157
KO-5-200 Non-Learning 12,12 0,52 0,69 0,01 17,49 0,80 0

Table 2.3: Cumulated results for groupsKO

(a) KO-5-100 (b) KO-10-100 (c) KO-5-200

Figure 2.3: Success rate of conservative agents in aggressive markets

The comparison of these operational autonomous resp. LoA-1 with conventional
agents following strong regulation i.e. LoA-0 agents is performed on the basis of dif-
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ferent key performance indicators. An obvious result from explorative analysis is sup-
ported by statistical analysis: the development of the key performance indicators be-
tween learning agents is superior to the non-learning agents (cf. Figures 2.4, 2.5, 2.6);
these figures indicate a low deviation. These effects have been observed in any of the
three experimental groups showing a high reproducibility of the experiments as well
as a dependable behavior of the learning algorithm. The variance analysis ANOVA
(cf. [Timm, 2004b]) supports this assumption. For all four key performance indicators
there are highly significant differences (p < 0.0001) between learning (LoA-1) and
non-learning agents (LoA-0).

Figure 2.4: Success of learning and non-learning Discourse Agents (KO-5-100)

Additionally, the learning effect over time is also highly significant (p < 0.0001,
cf. Figures 2.4, 2.5, and 2.6). Finally the interdependencies between these effects are
highly significant, as the strongly regulated agent (non-learning) shows no trend of
improvement over time while the operational autonomous agent (learning) improves
significantly over time.

Figure 2.5: Success of learning and non-learning Discourse Agents (KO-10-100)
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In consequence, the hypothesis behind this experiments holds for the scenario. For
the results of the experiments with the Discourse Agents in further settings, please refer
to [Timm, 2003] and the appendix.

Figure 2.6: Success of learning and non-learning Discourse Agents (KO-5-200)

2.5 Tactical Autonomy

The standard approach to tactical autonomy is to apply a reasoning infrastructure such
as the BDI architecture to an agent. This enables an agent to select its intentions from
the desires with respect to concrete situations. In our research, we extended this ap-
proach of autonomy covering intentions by reasoning on capabilities. Next to goal
activation within an agent it is crucial for an agent to decide on its capabilities with
respect to the tasks which may not be known at design time. Providing services within
multiagent systems, an agent has to register itself with a distinct description of its
main capabilities in some kind of yellow page services; following the FIPA standard-
ization, a directory facilitator is used as a service directory [FIPA, 2002]. If another
agent requests to solve a specific task, it has to be decided whether or not the requested
agent is capable of performing the task successfully. We assume that task require-
ments as well as capabilities are specified using ontologies. Decision is easy if the
concepts of requested task requirements are directly mapped to concepts of provided
capabilities. However, concept inequality may occur. Thus, enhanced methods like
ontology-based capability management introduced in [Timm and Woelk, 2003b] are
established to address this problem. In the following, mutual concepts will be intro-
duced; for further details please refer to [Timm et al., 2006b], [Scholz et al., 2004a],
and [Scholz et al., 2004b].

Capability management becomes a key source for cooperative distributed prob-
lem solving (CDPS), one of the main features of multiagent systems. Communication
of capabilities facilitates a very flexible way of organizing collaborative work among
agents [Conen and Neumann, 1998]. The process of CDPS can be divided into three
stages: (i) problem decomposition, (ii) sub-problem solution, and (iii) answer synthesis
[Smith and Davis, 1980]. An implicit assumption is, that each of the problem solving
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agents has knowledge about its capabilities. However, in this approach of tactical au-
tonomy, a more sophisticated solution is required asking:How does a problem-solving
agent knows whether or not it is capable of solving the requested problem?

The approach to tactical autonomy in this approach is based on the contract net
protocol as a common representative for a task decomposition algorithm [Smith, 1988].
The contract net can be described step-wise: in each step, problems are broadcasted to
any problem solving agent, these agents provide a complete solution by itself or it
decomposes the task. For the next step, it changes the role and requests solutions for
each sub-task. Of course, a problem solving agent has to be able to decide whether
it has the capability to solve a specified task. In real-world applications, there are
methods to solve a problem, which are not equal but equivalent. E.g. drilling is the
standard operation for creating a hole in a work piece, but in some cases and with
specific machine tools milling can produce an equivalent result. Nevertheless, both
actions are not equal. In this context, the mapping of capabilities to tasks and vice
versa, which is not based on simple concept or string equality is an open issue.

In the definition of local states, we introduced desires as (multi-)modal formulas
which are satisfied in some future state. Transferring this concept to the specification of
problems, problems are formulas, which describe pre and post conditions. We assume
that an explicit formal ontology is provided for the specification of the semantics of
used symbols in these conditions. There are multiple approaches to formally define
an ontology. In this context, we use a minimal definition of ontologies following the
assumption that an ontology has at least a set of concepts and a taxonomic relation.

6 DEFINITION (ONTOLOGY)
LetC be a set of concepts andrt a taxonomic relation then a tuple
Onto = 〈C, rt〉
is called ontology.

As abbreviation we uselengthas a symbol for the minimal amount of edges be-
tween two nodes,length(n) for the length of the shortest path from the root node to
noden, andlength(n,m) for the length of the shortest path between noden and node
m. The mappingmscc maps a pair of concepts to the most specific common concept.

The capability management to enable tactical autonomy is based on the setting, that
the agent receives a problem description. Then, the agent uses its ontology as well as
the explicitly specified capabilities and performs the cobac* algorithm to decide how
appropriate the agents capabilities are for the specified problem. Following the defi-
nition of Discourse Agents, capabilities are determined by a set of plans. Each action
plan describes a single capability as a transformation from a state which satisfies its pre
condition into a state which satisfies its post condition. Taking the taxonomic relation
from the ontology into account, the agent can extend its capabilities by subsumption.
The approach of capability management extends not only capabilities but also prob-
lem descriptions. If a problem description uses a specific concept and the capability of
an agent matches to the super-concept, the capability may be sufficient. The cobac*
approach introduced in [Timm et al., 2006b] is based on the general procedure of the
conflict based agent control (cobac) and will be introduced briefly in the next section
(cf. Section 2.6). The underlying idea of cobac is to evaluate conflict and synergy
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between two goals which is based on partial correspondence and contrast of complex
formulas. In opposite to this, the cobac* algorithm introduces a conflict measure based
on the evaluation of proximity and distance in a taxonomic relation of an ontology.

The algorithm aims at identifying that capability which fitsbestto the requested
problem. The formal representation of a problem is defined as a tuple of pre (starting
state) and post conditions (goal state), i.e.,problem = 〈ϕp

pre, ϕ
p
post〉. cobac is based on

conflict and synergy assessment and the optimization problem of minimizing conflict
and maximizing synergy. The same principle is applied to the capability management
process. Here, the compatibility of capability and problem is in question; the optimiza-
tion should reach a solution where the level of compliance and diversity. The resulting
algorithm consists of the following steps:

1. Option generation,

2. Problem-oriented conflict and synergy assessment,

3. Option selection.

The algorithm starts with creation of options, i.e., identification of capabilities
which could be used for solving at least a minimal aspect of the problem. In con-
text of the formal definition, cobac* checks the available capabilities of the agent, i.e.,
the capabilities, which pre conditions are satisfied in the current state.

7 DEFINITION (OPTIONGENERATION)
A set of optionsOpt is constructed for a problem〈ϕp

pre, ϕ
p
post〉 as specified by:

Opt = {〈ϕpre, ϕpost, A, st, se〉|ϕpre → ϕp
pre and〈ϕpre, ϕpost, A, st, se〉 ∈ Plan}

In the next step proximity and distance between options and problem are assessed.
Therefore, each optioni is put into relation to the problem and the distance and proxim-
ity values are calculated for each pair of concepts inϕp

post, ϕ
i
post. The distanceκ(p, oi)

and proximityσ(p, oi) potential is computed for each option as the sum of all of its
distance and proximity values.

8 DEFINITION (PROXIMITY AND DISTANCE)
For each optionoi ∈ Opt and problemp = 〈ϕpre, ϕpost〉 with a taxonomic relation
rt of the ontology, the distanceκ and proximityσ potential are calculated as follows:

κ(p, oi) = Σ
ci,cp∈Ct∧ci∈ϕp

post∧cp∈ϕi
post

k(cp, ci) (distance) and

σ(p, oi) = Σ
ci,cp∈Ct∧ci∈ϕp

post∧cp∈ϕi
post

s(cp, ci) (proximity).

The proximity and distance values of a tuple of conceptsci, cj are determined by the
length in the taxonomic relation:
k(ci, cj) = length(ci, cj) and
s(ci, cj) = length(mscc(ci, cj)).
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Finally, the option selection step is applied to the proximity and distance potentials
for identification of themostappropriate option for the requested problem. Therefore,
the quotient is computed as follows:ψ(p, oi) = κ(p,oi)

σ(p,oi)
. The integrated proximity and

distance potential is minimal if there is no distance between the concepts and maximal
(resp. infinite) if no proximity could be identified. The option with the lowest quotient
ψ is used as resulting capability, which is proposed as solution to the task agent. If
this quotient is zero, the proposed problem solving capability is equal to the requested
problem.

In the approach introduced in our research, e.g., [Timm et al., 2006b], is focused
on tactical autonomy of a problem solving agent. The perspective of an agent, which
requests a solution is not in the focus of our research. For a requesting agent, the tac-
tical autonomy includes the decision on the question, if a proposal for an approximate
solution should be accepted. We propose to use the conflict-based agent control cobac
algorithm (cf. Section 2.6) for identifying valid solutions with respect to its desire and
the adaptive communication oac (cf. Section 2.4) for cost bargaining if the solution is
only similar and not equal to the requested problem.

Alternatively, cobac* can be used to build an equivalence relation within the ontol-
ogy: A simplified approach uses the taxonomic relation of the ontology and a maxi-
mum distance valuemdv. This value determines if a solution provided with the capa-
bility ci is valid for the problemcp: (length(ci, cp) < mdv).

2.6 Strategic Autonomy

Agents can be used as ”enterprise delegates” for supporting tasks like the management
and integration of planning, scheduling, and controlling processes. The approaches
introduced in the last two sections, enable agents to act autonomously with respect to
operational and tactical decisions. However, the agent is still bounded by the desires
which are pre-defined by the user and may not be adapted easily following the con-
ventional BDI approach. The implementation of real-world applications requires the
definition of objectives and the instantiation of algorithms for goal creation. Strategic
components may be introduced into BDI architecture if previously contradictive gen-
eral goals are allowed. The strategic task of the agent is to create new goals as strategic
compromises meeting the contradictive set of goals as well as possible and to follow
these new goals as strategic concepts in its decisions. Thus conflict resolution is the
key to strategic autonomy of agents.

A new approach was introduced to the identification of synergy and conflicts of
interest in the desires as well as the intentions. On this basis, a conflict resolu-
tion mechanism is applied for minimizing conflicts and maximizing synergy. In this
step, new goals as compromises of desires might be created. The algorithm, formal
specification as well as an extensive evaluation are provided within the paper prov-
ing the beneficial behavior of an explicit conflict-based selection process. More de-
tails on this approach have been published in [Lorenzen et al., 2006], [Timm, 2004b],
[Timm, 2001b], [Herzog et al., 2001], and [Timm et al., 2001a].

The main decision function isdecide. If this function is computed, the following
four steps are processed:
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1. Intention reconsideration,

2. Option generation and assessment,

3. Conflict management and resolution, and

4. Option selection.

In the first step, current intentions of the agent are reconsidered. The result of
intention reconsideration is a revised set of intentions, which does not include in-
tentions, which do not fit the criteria of the pre-defined level of commitment (blind,
single-minded or open-minded commitment) [Rao and Georgeff, 1991]. In the delib-
eration process an option is defined as a tuple of a desire and a plan (cf. intention,
o = 〈des, plan〉, with des ∈ D andplan ∈ Pln). The option generation process
builds a set of optionsO, which contains the complete set of intentionsI and new op-
tions. New option is created for a desire, if no intention is pursuing it and the desire is
accessible. The accessibility relation is defined in consideration of the branching tem-
poral structure [Wooldridge, 2000]; modifications to this relation are done with respect
to decidability and efficiency. During the creation of a new option a plan is selected for
pursuing the desire in question using a plan allocation function.

An evaluation function is assessing each option of the option setO, using the desire
assessing functionγ and the current state of the plan, such that an option with an almost
completed plan will receive high priority within the option filtering process. Next to the
intention reconsideration, this evaluation function implements the commitment to an
intention and should ensure that important and almost completed tasks will be finished
first.

In the next step the options will be filtered. The filtering uses conflict assessment
and resolution introduced with the Discourse Agent architecture. For each pair of op-
tions, a synergy as well as a conflict value is calculated. Two options receive a high
synergy value if they are pursuing similar desires and the plans are not contradictory,
e.g., the post condition of plan A is not prohibiting the pre condition of plan B. Figures
2.7 and 2.8 show the conceptual idea of synergy and conflict.

Figure 2.7: Conflict value Figure 2.8: Synergy value
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A conflict and synergy potential is calculated as the sum of each conflict and syn-
ergy value and used as a performance indicator within the process of conflict resolution.
The conflict classification and resolution algorithm is motivated from the field of inter-
personal conflict studies [van de Vliert, 1997]. A conflict taxonomy is introduced in
[Timm, 2001b], where each pair of options is classified as a leaf in this taxonomy (cf.
Figure 2.9, for details refer to [Timm, 2004b]). For each type of leaf, there is a res-
olution strategy taking the cooperation or conflict potential into account, e.g., if two
objectives are very similar, they can be merged in a cooperative setting.

Figure 2.9: Conflict classification scheme

The last step of thedecide-function is to filter the options to create a new set of
intentions. Thus, each option must meet a minimum evaluation value to be treated as
an intention. Thedecide-function is formally defined as follows:

9 DEFINITION (DECIDE) The mappingdecide : L → L
with decide(〈B,D, I, P ln, γ〉) 7→ 〈B,D, I∗, P ln, γ∗〉 is called conflict-based agent
control iff

• irf : 〈B, I〉 7→ I0 is an intention reconsideration function,

• go : 〈B,D, I0, P ln, γ〉 7→ O is an option generation function,

• crf : 〈〈B,D, I0, P ln, γ〉, O〉 7→ 〈〈B,D, I0, P ln, γ∗〉, O∗〉 is a conflict resolu-
tion function, and

• filter : O∗ 7→ I∗ is an option filtering function.
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Evaluation

The evaluation of the cobac algorithm is performed in the IntaPS scenario (cf.
[Timm et al., 2004], [Lorenzen et al., 2006], Section 5.1). The agent which uses the
cobac resp. a comparison algorithm represents a machine tool (resource) within a shop
floor. Here, order agents representing manufacturing orders negotiate with resource
agents to implement an integrated process planning and production control system. In
this setting, the resource agent is responsible for its own schedule as well as the nego-
tiation with the order agents. There is an explicit probabilistic failure model included
for the resources. In order to assess the behavior of the cobac algorithm, an evaluation
with 1700 experiments and 163.200 decision cycles has been performed. Additionally,
a state-of-the-art intention selection algorithm based on dynamic priorities has been
implemented in order to benchmark the cobac algorithm. While the cobac algorithm
represents an approach to enabling strategic autonomy, the priority-based comparison
algorithm implements tactical autonomy with simplified BDI reasoning. The cobac
algorithm as well as the priority intention selection algorithm are each tested with a
set of generic desires (five desires) and an extended set of partially composed desires
(seven desires). The underlying branching temporal structure of the cobac algorithm
is analyzed within the evaluation, too. Different computing modes for the accessi-
bility relation for desires have been implemented varying from constant over linear
to exponential computational time usage. The experiments have been used to assess
the behavior of the cobac algorithm in different situations as well as to benchmark it
against the priority intention selection.

The experiment groups are varying with respect to the amount of goals (five or
seven), the computation of the temporal structure (n.a., simplified structure, restricted
structure), and the decision mechanism (reference point, cobac, priority). The resulting
experiment groups are defined as follows:

• No computation of branching temporal structure:
reference point (IR), five desires (cobac: ISCN, priority: ISPN)
seven desires (cobac: IXCN, priority: IXPN)

• Simplified computation of branching temporal structure:
five desires (cobac: ISCL, priority: ISPL)
seven desires (cobac: IXCL, priority: IXPL)

• Restricted computation of branching temporal structure:
five desires (cobac: ISCC, priority: ISPC)

• Varying configurations (increased failure rate):
reference point (I2R), five desires (cobac: I2SCN, priority: I2SPN)

• Varying configurations (reduced failure rate):
reference point (I3R), five desires (cobac: I3SCN, priority: I3SPN)

These experiments are used to analyze the behavior of the cobac algorithm includ-
ing its limitations compared with an alternative algorithm. The hypothesis is, that the
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cobac algorithm is beneficial in comparison to priority based intention selection. Fur-
thermore, the question arises, if the design and structure of desires has impact on the
quality of an agent’s behavior. Thus, the experiments with seven desires include desires
which are compromises of the other five desires. Here, the benefit of cobac should be
significantly decreased. For an overall performance evaluation, an almost optimal solu-
tion has been implemented, which is a static solution specialized for this setting using
internal information on error probability rates etc.. Further experiments are dedicated
to the analysis of limitations of the approach (variation of error probability rate).

(a)

(b)

Figure 2.10: Statistical test for money indicator (ISCN versus ISPN)

In direct comparison of a cobac based and the priority-based agent, cobac is su-
perior in any of the five experiment groups (cf. [Timm, 2004b]). In the case of five
desires, the distance between cobac and priorities is even higher, i.e., cobac gains more
than twice the amount with respect to the money performance indicator (cf. Figure
2.10). This distance decreases – as expected – if results of the cobac algorithm are
integrated into the desire set (cf. Figure 2.11). The benefit of cobac is based on the



2.6. STRATEGIC AUTONOMY 27

ability to dynamically generate new intentions as combination resp. compromise of
existing desires. The priority-controlled agent shows a significant statistical spread in
the success parameters, especially the number of accepted but not processed orders is
a major problem for the priority-based agent, since it fails to handle the backlog when
it reaches a certain amount. The Discourse Agent using the cobac algorithm appears to
be more stable and overall superior to the priority-based agent.

The benefit of cobac is supported by the statistical analysis where the deviation
of cobac to priorities is highly significant (p < 0.0001) with respect to the indicators
money, maintenance level, production, and order list. However, there is an exemption:
the maintenance level is not significant if the branching temporal structure is computed
(p = 0.1006 resp.p = 0.1063 by Kruskal-Wallis-Test).

(a)

(b)

Figure 2.11: Statistical test of indicator money (IXCN versus IXPN)

For the evaluation of the cobac approach it is also important to consider the influ-
ence of desire sets to the performance of the algorithm as well as to the comparison
between priorities and cobac. The results of those experiments, where no branching
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temporal structure was computed, is highly significant proving the benefit of a larger
desire set with pre-combined desires with respect to the order list (p < 0.0001). For the
money indicator, there is also a significant benefit of the larger desire set (p < 0.0001
for the t-Test andp = 0.0314 for the Kruskal-Wallis-Test, cf. 2.12). If a branching
temporal structure is computed, there is not that clear result. However, for the order list
the results are still highly significant for the larger desire set (p < 0.0001).

(a)

(b)

Figure 2.12: Statistical test of indicator money (ISCN versus IXCN)

An interesting side effect of this statistical analysis is that there is no proven benefit
of computing complex temporal structures with respect to statistical significance. In
any of the experiment groups with varying temporal structures (e.g., Figure 2.13) there
are undetermined effects to this result. Nevertheless, there is a problem with computing
the restricted branching temporal structure: caused by the exponential memory usage,
the calculation was restricted to four steps into the future. There is a surprising malefi-
cent behavior here. However, as this question has not been regarded in the experiment
design, these results are of exploratory value only but may constitute a starting point
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for more research on this topic.

(a)

(b)

Figure 2.13: Statistical test of indicator money (ISCN versus ISCL)

For the evaluation of the boundaries and dependability of the cobac approach, the
scenario was varied with respect to the failure probability: The experiments in the
group I2 have been performed with an increased failure probability ((1.00) while the
experiments in the group I3 have been simulated with a decreased failure probability
(0.05). The results indicate, that cobac compensates this effect adequately, i.e., there
is no significant deviation between the experimental groups in the money and order
list indicators (e.g., Figure 2.14). However, there is a significant deviation between
the settings with respect to the maintenance level in the reduced failure probability
setting. Here, the benefit of reduced failures supports a better performance with respect
to the order list (cf. [Timm, 2004b]). The comparison between cobac and priority-
based intention selection is similar to the original scenario, i.e., the superiority of cobac
is significant for the maintenance level indicator and highly significant for the other
indicators.
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Finally, the cobac algorithm has been compared to an algorithm designed specif-
ically for this scenario. in The results of this algorithm can be considered as local
maxima. In table 2.4, the results of cobac and the priority-based algorithm are listed in
percent with respect to the local maxima.

(a)

(b)

Figure 2.14: Statistical test of indicator money (ISCN versus I2SCN)

It is obvious, that the cobac achieves about 70% in average while the priority-based
algorithm results is less than 30% of the reference point when considering the small
desire set. This changes for the larger desire set; however, there is still a benefit between
the cobac and the priority approach. The main problem indicated by these results is the
size of the order list. The order list with the cobac algorithm is doubled to tripled in
comparison to the reference point. These results support the effects identified by the
statistical analysis mentioned before. For further details on the experiments, statistical
exploration, and statistical analysis, please, refer to [Timm, 2003].
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Experiment Group Money Maintenance Production External Buy Order List
IR 100,00 100,00 100,00 100,00 100,00
ISCN 74,03 98,85 38,80 112,00 198,76
ISPN 35,46 88,61 5,16 107,14 591,66
ISCL 74,10 97,26 37,52 112,84 201,74
ISPL 30,52 90,16 5,91 104,84 625,68
ISCC 70,60 96,15 38,68 111,93 206,35
ISPC 33,69 89,74 5,38 105,53 608,32
IXCN 78,59 97,30 47,25 110,83 162,12
IXPN 66,81 103,21 17,13 113,93 303,26
IXCL 76,70 97,05 48,60 110,84 160,68
IXPL 64,38 103,16 17,76 113,93 284,92

I2R 100,00 100,00 100,00 100,00 100,00
I2SCN 75,23 98,32 38,09 109,01 222,31
I2SPN 39,72 88,31 4,37 104,05 579,29

I3R 100,00 100,00 100,00 100,00 100,00
I3SCN 68,72 95,41 37,99 113,44 172,81
I3SPN 31,07 88,37 6,80 107,21 636,87

Table 2.4: Reference point in comparison to cobac and priority
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Chapter 3

Strategic Management of
Multiagent Systems

As introduced before, intelligent agents are an adequate means for implementation of
autonomous software systems on the respective level of autonomy. However, intel-
ligent agents are assumed to establish an emergent effect within groups or systems
of agents, the so-called multiagent systems. The question arises, if such an emer-
gent behavior, i.e., a macroscopic behavior on the basis of microscopic interactions,
is beneficial for the global system. In the beginning of multiagent research, this as-
sumption was stated as a fact. Recent research focuses on sophisticated design of the
autonomous subsystems to enable a positive effect of the whole system [Liu, 2001],
[Liang and Zhu, 2005]. [de Wolf and Holvoet, 2005] propose an approach for engi-
neering self-organizing systems. Their approach is based on the analysis of the system
after implementation and before delivery. Because of the well-known complexity of
testing concurrent systems, the approach seems to be adequate for systems with a mod-
erate amount of internal states, where no extensive internal states or static strategic
behavior exists.

In this chapter, we introduce roles and structures for multiagent systems as a start-
ing point for strategic management. For the adaptation to concrete situations, we pro-
pose a versatile management for the dynamic reorganization of multiagent systems.
However, this approach does not consider the effects of strategic management to indi-
vidual agents. Thus, we discuss an approach for reflection. The autonomy of individ-
ual agents is considered with respect to the multiagent systems performance. In critical
system states, the autonomy of the agents is adjusted.

3.1 Roles and Structures in Multiagent Systems

So far we discussed single autonomous systems. In context of the strategic manage-
ment, we focus on whole systems consisting of autonomous subsystems. This research
has a strong analogy to multiagent research. A conventional approach to establish
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some kind of management in the system is the introduction of roles and structures in
the system.

The implementation of strategic, tactical, or operational objectives in autonomous
systems requires the interaction of the underlying autonomous subsystems. These goals
can for example be addressed to shared information, coordination, or flexible conflict
resolution. [Ferber, 1999] introduced interaction as a core functionality for emergent
organization of multiagent systems. Therefore he identifies a set of assumptions: the
presence of agents capable of acting and/or communicating, constructs which can serve
as a meeting point for agents, and dynamic elements allowing for local and temporary
relationships between agents [Ferber, 1999].

On an operational level, agents interact on the basis of sequences of messages, e.g.,
protocols or oac plans. Communication on this level is very flexible for coordination.
However, the organization of the agents resp. groups has to be negotiated for any
problem solving process again and cannot be reused easily. Hence, there could be a
significant overhead for coordination in the initialization step between agents leading
to high communication costs and complexity. For the tactical autonomy in systems
of autonomous subsystems it should be assumed that their beneficial organization pat-
terns could be reused in further coordination processes. Doing so, a mid-term behavior
could be established in subsystem organization. In economics and organization theory,
there are two main concepts to specify actors in an organization: structure and roles
[Kieser and Kubicek, 1992]. In DAI research, these concepts have been transferred
from economics to multiagent research [Kirn, 1996]. With respect to autonomous sys-
tems, the concept of roles is restricted to the representation of cognitive states as the
basis of permissions or responsibilities. Therefore, these concepts can be used for the
implementation of organizational views on internal representations of even huge world
models, which allows for efficient inferences [Timm et al., 2006d]. Recent approaches
towards the design of open multiagent systems are explicitly modeling social models
including roles, which are not limited to cognitive states [Petsch, 2002]. The concept of
roles focuses on different views on individuals and realizes an abstraction of individual
abilities, goals and behaviors. Due to external expectations on roles, communication
efforts should be reduced significantly. Roles can be beneficially applied to the capa-
bility management for implementing tactical autonomy in autonomous subsystems.

Inter-role conflicts still have to be solved by communication in each interaction
again. To establish long-term cooperations as strategic perspective in a system of au-
tonomous subsystems, we propose the introduction of structures. For organizing large
scale systems, structures can be used to establish reusable cooperation patterns. In
real-world organizations, there are specific concepts for individuals joining or leaving
structures with respect to task classes, tasks, and capabilities [Hill et al., 1998]. Organi-
zational structures are abstracting from a group of individuals to an external representa-
tion which group details. Therefore, hierarchic autonomous systems can be engineered
where an autonomous system is implemented by a group of autonomous systems, e.g.,
an enterprise participating in a supply chain can be represented by its buying depart-
ment. Further details on the application of roles and structures in multiagent systems
as well as properties of multiagent systems are provided in [Timm et al., 2006d].
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3.2 Versatile Management for Multiagent Systems

The conventional approach to the design and implementation of a software system is to
specify the system as a whole or to identify clear interfaces and modules at design time.
In autonomous software systems with strategic autonomy, we assume that the configu-
ration resp. organization of the system is part of the runtime behavior. Each software
system has a principal, i.e., an owner or organization, which has deployed the system
or is responsible for its behavior. In systems of autonomous subsystems, however,
the subsystems can belong to different principals. Software systems should follow the
strategic perspective of their respective principals. In our research, we outlined an ap-
proach on versatile management for a pre-organized system of autonomous entities in
the manufacturing domain. The approach allows the system of autonomous subsystem
to identify change indicators and initiate re-organization accordingly. This approach is
closely related to our research on emergent virtual enterprises [Tönshoff et al., 2002a].
This approach can be generalized with respect to strategic management of autonomous
software systems. For more details on agent-based versatile management, please, refer
to [Scholz et al., 2005a].

Figure 3.1: Architecture for change management

In the manufacturing domain, versatility is a key challenge for competitive enter-
prises. The versatility in focus of our research is addressed to the structural reorgani-
zation of shop floors. Transferred to strategic management of systems of autonomous
subsystems, organizational structures of autonomous systems should be reorganized
with respect to changes in the environment. The approach is based on indicators for
organizational changes. The key challenge is to identify situations, where a change of
the structure is indicated. Reorganization of the structural system is classified as first
and second order change. First order changes are adaptations of the system structure
with respect to minor changes in the environment. The modification of the structural
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system is based on observations of the environment and can be part of a continuous im-
provement process. If the minor changes are not sufficient for the improvement of the
system, a second order change takes place. Here, the system structure is reorganized in
a ”revolutionary” way.

The research on versatile management in the manufacturing domain, lead to an ar-
chitecture for change management of autonomous systems as conceptualized in Figure
3.1 [Scholz et al., 2005a]. In the following, we will introduce the abstract architecture
and shortly describe the required components. Change management is based on a three
layer architecture: Identification layer, generation layer and decision layer.

The change management architecture enables a system to initiate a change for two
purposes: flexibility and reactivity. Information on change in regard to flexibility in-
cludes factors for spontaneous disruptions in the normal operation of the system. Dis-
ruptions, e.g., traffic jams in logistics, lead to minor adaptations of the system follow-
ing the first order changes. Generally, The second component on the identification
layer, reactivity, is addressed to problems which require reorganizations with respect
to changes in the environment (first order change). Additionally, tactical aspects are
evaluated in this component, i.e., the mid-term adaptation or the tactical autonomy of
systems of autonomous subsystems can be implemented by this component. For long-
term adaptation of the system, the anticipatory component is applied. This component
is activated if the system structure prevents efficient system behavior, for example new
resources, i.e., autonomous subsystems, enter the system and cannot easily be inte-
grated in the system structure. This component enables the system to take upcoming
chances and therefore is part of second order change.

After the identification of change potential, the second layer is initialized. Here, the
system generates alternatives to the current structure with respect to first or second or-
der change. In the case of disruption as a change indicator, the system generates options
to cope with the disruption in a reorganized way. In the other case, chance detection as
change indicator, the chance management is initialized, which computes possible reor-
ganizations under consideration of the emerged possibilities. In chance management,
the decision for a newly generated option is enriched by feedback acquired from the
decision component. Thus, the system is enabled to react more quickly when similar
disruptions occur. The generation of alternatives is aimed to maximize the identified
improvement potentials and results in a set of possible change measures. Analogously
to disruption management, feedback on the decisions for or against alternatives may be
received automatically.

On the basis of the alternatives generated in the second layer, the decision layer has
to decide which alternative should be used for a change of the system. For sophisticated
evaluation of alternatives, a risk management is included. The context-dependent as-
sessment of risk versus chances is computed for any alternative resulting in a weighted
list of alternatives. After a decision has been made, a feedback loop allows for an
adaptive change management.

The change management introduced so far is by itself in need of implementations
for strategic autonomy, for decision making on change alternatives, tactical autonomy,
for identifying different alternatives on the basis of capability management, and oper-
ational autonomy to cope with minor disturbances in the application without initiating
a change immediately.
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3.3 Reflection in Multiagent Systems

Multiagent systems consist of autonomous agents, which interact on a local – mi-
croscopic – level. Optimal macroscopic behavior does not necessarily emerge from
those interactions. As discussed in section 1.1 microscopic optimization can lead
to local optimal situations. However, a key benefit of multiagent systems is as-
sumed to be a positive emergence on a system level. In social science, the phenom-
ena of microscopic-macroscopic interaction is widely researched [Schegloff, 1987],
[Bohman, 1993], [Alexander and Giesen, 1987]. Norms and regulations are introduced
in a social system to establish a better system performance. The research outlined in
this section is focused on the question, if results from social science can be fruitfully
applied to multiagent systems. Therefore, we consider the theory on reflection intro-
duced by [Luhmann, 1984]. In this work, a system has the ability to reflect about its
overall performance explicitly within negotiations. In an interdisciplinary research,
[Timm and Hillebrandt, 2006] conceptualized a social mechanism as an explanatory
model for societies based on the work of [Luhmann, 1984]. On this basis, a conceptual
model for reflection in multiagent systems has been developed.

The multiagent conceptualization of reflection is based on the assumption that a
multiagent system was chosen deliberately as a system design. In consequence, au-
tonomy of the agents is not a side effect but one of the key features. If dependability
on the multiagent system is in question, then some dynamic mechanism is required,
which allows for context-dependent adjustment of the individual agents’ autonomy.
The framework for reflection in multiagent system consists of four stages as illustrated
in figure 3.2.

Figure 3.2: Reflection in multiagent systems

The approach is based on a group of agents with operational, tactical, and strategic
autonomy as a core element. This group can be formed dynamically in runtime or spec-
ified at design-time. In either way, it is assumed, that the group of agents have some
common goals and the fulfilment of this goal can be measured the group of agents.
Furthermore, for each goal, there are different levels of goal satisfaction, i.e.,0 implies
that a goal is completely unsatisfied and1 indicates that the goal has been satisfied.
For utility-based goals a continuous scale is assumed while for logic-based goals the
goal-satisfaction is a binary function. Furthermore, we assume that the consideration
of global goals in every deliberation step would be inadequate with respect to compu-
tational or memory consumption.

In the observation stage, each agent reports its performance to a blackboard or
central entity (group coordinator) within the group. The blackboard resp. the group
coordinator computes the goal satisfaction on the basis of the individual results. To-
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gether with the concrete satisfaction level, the goal satisfaction is broadcasted to resp.
available for any agent of the group. If the goal-satisfaction is classified as deficient,
the agents should adjust their operational autonomy. Doing so, the agents should plan
the next action resp. action sequence under consideration of the global goal. E.g., as-
sume that a BDI agent has instantiated an intention and associates this intention with
a partial global plan. The agent would now chose an linearization of the global plan,
which is most suitable for supporting the global goal.

The observation stage is used for normal system performance. If the system perfor-
mance with respect to a specific goal is critical, the multiagent system’s state changes
to the analysis stage. In this stage, the agents have to communicate their currently
pursued goals. The analysis is performed by the agents cooperatively or by a central
entity resp. group manager. We assume, that the implementation of a group manager is
adequate for the following stages. Here, the group manager has to identify the interde-
pendencies of goal selection of the individual agents and missing system performance
on the group level. These interdependencies are published. Under consideration of the
autonomy of individual agents, the tactical autonomy has to be adjusted by the agents.
Each agent should consider the effects of its goal instantiation, e.g., in our example the
step of associating a plan to intentions, with respect to the group performance.

In the case of a severe system performance, the group of agents is transformed
into the joint solution group. Here, the group manager mediates the negotiation about
individual agents goals. The agents are assumed to improve their strategic autonomy,
i.e., the agents instantiate those goals, which help the group performance. This step is
part of recent research and has to be elaborated in more detail.

The solution, which has been negotiated in the group and which restored sys-
tems performance, is generalized as a social rule for later usage in severe sit-
uations (stage four). This approach has been worked out in more detail in
[Timm and Hillebrandt, 2006].

3.4 Strategic Control

In section 3.1, we introduced roles and structures for implementation of a basic tac-
tical and strategic autonomy in systems of autonomous subsystems. The change
management approach introduced in 3.2 is dedicated to the autonomous adaptation
of structures within autonomous systems. In this section we propose an approach
for a sophisticated use of roles in systems with autonomous subsystems of different
provider, principals, or owners. Generally, roles can be considered as a collection
of services [Kirn, 2002]. In open environments, e.g., the internet, autonomous sys-
tems provide services by exploitation of service descriptions The key challenge for the
strategic control in the context of open autonomous systems is to decide on the qual-
ity of service provided by other autonomous systems. In [Scholz et al., 2005b] and
[Scholz et al., 2005c], an agent-based approach was introduced for third-party quality
of service certification enabling reliable distributed problem solving which has been
evaluated by a prototypical implementation. Evaluating quality of service is a chal-
lenge by itself; in systems with a high dynamics, it is crucial to evaluate the quality of
service dynamically at runtime.
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Figure 3.3: Architecture for the dynamic certification of services

In [Scholz et al., 2005c] we propose a conceptual framework for certification man-
agement in open systems. We assume, that there is no authority to guarantee the quality
of a provided service. Therefore, our conceptual framework integrates identification,
evaluation, and selection of services for the reliable behavior of autonomous software
systems. The conceptual framework consists of three main components:

• Capability management for the identification of roles, which are adequate for
problem solution. The underlying assumption is that roles are defined in the
notion of capabilities [Timm et al., 2006b].

• Certification management for dynamic evaluation of roles.

• Catalogue management as an integrating infrastructure of capability and certifi-
cation management.

Additionally, the conceptual framework includes interaction protocols for retriev-
ing a role and certification of roles. In order to enable a reliable behavior, the frame-
work requires an autonomous system to certify its roles resp. capabilities prior to
registration. As quality of service is not only determined by objective measures, the
framework allows for user feedback. In Figure 3.3, the architecture of the certification
management system is outlined.

Certification of roles is structured as follows: a set of problems as well as a stan-
dard solution is generated. However, problems are domain specific, and are either
created autonomously or taken from the problem database (PDB). The problems are
communicated to the autonomous subsystem under certification and are solved by this
subsystem. In the next step, the certification management receives the solutions from
the subsystem and evaluates the quality of solution resp. service. The resulting assess-
ment of the service is stored in the catalogue management resp. the quality of service
database. For further details on our specification and implementation of certification
management, please refer to [Scholz et al., 2005c].
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Evaluation

The approach to certification management was evaluated in an exemplary scenario.
The implementation is based on a multiagent system. The scenarios are based on route
planning as a capability of the agents. The agents, which should be certified by this ap-
proach, are implementing one search algorithm each, i.e., the greedy search, breath-first
search, depth-first search, and iterated depth-first search agents were implemented. For
the certification step, a problem generator was realized, which generates graphs with
an increasing amount of nodes and edges. For performance evaluation, the complete
and optimal search algorithm A* has been implemented. The quality of service is mea-
sured as the ratio of optimal divided by computed length. The simulation follows two
phases: In the first phase, the problem solving agents, i.e., the agents implementing the
search algorithms, are certified. In the second phase, there are two agents requesting
service from the problem solving agents. The first agents selects the problem solving
agent by random; the second chose that agent with the highest quality of service.

(a) box plot (b) progress

Figure 3.4: Experimental results for the quality of service

These agents generate problems, asking for the shortest path in a random graph
- with a varying amount of nodes (from5 to 500). Each of the agents creates
2.500 problem graphs. The results significantly show a superior behavior of the con-
sumer using the certified service (cf. Figure 3.4). Further results are discussed in
[Scholz et al., 2005c]. Summarizing the results, there is evidence for the benefit of
certification management in this experimental setting. The prototype and experiments
can be considered as a feasibility proof of our approach in this specific domain. How-
ever, this is a first result and further experiments, especially in different domains, are
required for further conclusions.



Chapter 4

Engineering Autonomous
Systems

The approach of autonomous software systems as well as systems of autonomous sys-
tems is applied with the perspective, that decisions usually made at design time are
transferred into runtime. Doing so, the design especially with respect to requirements
analysis and interaction design but also verification resp. testing is changing signif-
icantly. Here, it is possible, that contradicting requirements lead to conflicting sets
of desires or performance measures within the intelligent agents. Thus intelligent
agents have to be enabled to cope with such situations, e.g., by strategic autonomy
[Timm and Dembski, 2005].

Engineering of autonomous software systems uses the well known features of con-
ventional software engineering including established methodologies and tool support.
Each software engineering process may be structured by the following tasks: require-
ments analysis, specification resp. design, implementation, and testing. Additionally,
knowledge engineering captures the necessary aspects of integrating knowledge.

However there is still a gap between software and knowledge engineering
methodologies as discussed in [Timm et al., 2006c]. Especially aspects in the field
of validation, verification, and testing remain open. In the research presented
in [Timm et al., 2006c] as well as earlier approaches in [Timm et al., 2001a] and
[Tönshoff et al., 2000b] we analyzed the specific requirements of multiagent engineer-
ing and consequences for the design of intelligent agents.

In [Timm et al., 2006c] we identified mandatory process steps for agent-oriented
software engineering, splitting up the conventional process steps mentioned above: re-
quirements analysis, architectural and interaction design, semantics and dependability
specification, implementation and testing (cf. Figure 4.1). In concrete software devel-
opment, there might be a variation of the ordering of these steps, especially interaction
and architectural design should be intertwined. As in software engineering, there are
different approaches to organize the development phase: sequential, agile, and iterative
processes.

Nevertheless, special requirement arise for the engineering process of multiagent
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Figure 4.1: Mandatory process steps in AOSE

systems, such that conventional approaches without incorporated knowledge engineer-
ing are not sufficient. Knowledge engineering per se is not sufficient too with respect
to tool or method support. In principle, engineering of autonomous systems could
benefit from both: conventional tool and methodology support and the advantageous
know-how about model building, knowledge representation, and inference in knowl-
edge engineering (cf. [Schreiber and Wielinga, 1996]). Combining both aspects the
development of multiagent systems requires a general theory of engineering processes.

In our work on a generalized engineering process, we focussed on three of the major
challenges [Timm et al., 2006c]. In the next sections, interaction design, specification
of semantics, and verification of autonomous systems is discussed.

4.1 Interaction Design

In section 2.1, we pointed out that interaction is one of the key properties of au-
tonomous systems like agents. Interaction is used for coordination of a system of
autonomous subsystems, e.g., multiagent systems. The challenge in engineering au-
tonomous systems with respect to interaction is to create interaction designs flex-
ible enough for emergent behavior and efficient performance but stable enough to
enable reliable system behavior. The outlined interaction design presented here is
based on our research on emergence and interaction in multiagent systems. For more
details please refer to [Timm et al., 2001d], [Timm et al., 2002], [Timm, 2004a], and
[Krempels et al., 2006].

While conventional software engineering is focused on standardized interac-
tion and interface design engineering of autonomous systems requires flexible
interaction design. In a system, autonomous subsystems have to solve prob-
lems either cooperatively or competitively depending on the application domain.
[Rosenschein and Zlotkin, 1994] analyzed different application domains with respect
to the interaction mechanisms by means of consideration of the world states within
multiagent systems. They identified three categories ranging from general to specific:
worth-oriented, where agents evaluate any state with a private value, task-oriented,
where agents assess only the final states, and state-oriented, where evaluation takes
place. Interaction design for autonomous systems can be supported by this classi-
fication. These application domains have strong implications to the appropriateness
of specific interaction mechanisms, for example, in task-oriented domains interaction
should mainly rely on behavior whereas monetary assessments as in auction protocols
seem less suitable. Further details are discussed in [Krempels et al., 2006].
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There are two principal approaches to multiagent communication, shared memory
and message passing. Shared memory has been introduced by [Newell, 1962]. He
invented the blackboard metaphor, which may be described as follows:

Metaphorically we can think of a set of workers, all looking at the same
blackboard: each is able to read everything that is on it, and to judge when
he has something worthwhile to add to it. This conception is just that of
Selfridges Pandemoneums’ a set of demons, each independently looking
at the total situation and shrieking in proportion to what they see that fits
their nature.

Blackboard architectures have been widely used in the area of distributed problem
solving. An advantage as well as a restriction of this approach is the fact that agents do
not have to know from the existence or the address of other agents. The main drawback
is that all agents have to use the same language and representation of the problem. The
blackboard method has to face common problems of concurrent manipulations and the
priority design.

Being aware that communication is the intentional exchange of informa-
tion the message exchange approach seems to be more flexible and adequate
[Russell and Norvig, 1994]. It is based on the production and perception of signs
with mutual unique semantics for each communicative pair or channel. These complex
structured systems of signs are arranged in so called agent communication languages
[Pitt and Mamdani, 1999].

A general and conceptual description of communication via message passing (agent
communication protocol) has to integrate mutual knowledge about its topics (domain),
the general process of the dialog, and its current state [Carron et al., 1999]. Thus, the
structure of communication protocols may be divided into a domain dependent (con-
tent, problem, topic) and a domain independent part consisting of process knowledge
(methods of communication, address of partners, dialog structure). A more general
approach can be found in the definition of pattern-based communication as introduced
in [Krempels et al., 2006].

Standardized models like FIPA/ACL specify messages between agents by means of
action, the so called communicative acts. They are defined by syntax (message model)
and semantics (formal model) [FIPA CAL, 2001]. The semantic perspective is used for
classification of equivalent acts. The semantics of the message is specified in analogy
to AI planning by pre-conditions as indicators if an action is applicable, and by an
effect describing world-state changes after the execution of the action. Rational and
”irrational” behavior is captured by appropriate semantics.

The engineering process has to ensure that the agents are capable to select specific
actions resp. performatives for achievement of a goal, e.g., to produce for another com-
pany. There is a strong relation to AI-planning as message sequences (conversations)
are instantiations of plans. FIPA standardizes a library of reusable interaction patterns
resp. protocols. As discussed in [Krempels et al., 2006], interaction protocols reduce
the complexity of the plan space as the number of possible actions is limited. The
FIPA-Request protocol, for example, uses 6 out of 22 possible performatives with a
plan length of three actions. In consequence the combinatorial complexity is reduced
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by a factor of almost 50 (63 vs. 223). This reduction ensures efficient integration
of possible answers of an agent’s opponent in the communication process without the
need for complex plan recognition algorithms.

In the last decade, benevolence of the agents was a common assumption in mul-
tiagent engineering, i.e., the agents share common goals – at least implicitly – and
there is no potential for conflicts of interest between the agents [Wooldridge, 2002]. In
real-world business scenarios the assumption of benevolent agents or cooperative set-
tings does not hold in general. Frequently, the system has to incorporate self-interested
agents which do not necessarily share common goals. Theoretically, encounters of such
agents resemble games where agents have to act strategically in order to achieve their
goals cooperatively or competitively.

In competitive settings, the engineering of interaction has to ensure reliable sys-
tem behavior even in the context of divergent agents interests. Generally, there
are various mechanisms for interaction, e.g., auction protocols, bargaining, so-
cial choice. For a concrete design, the software engineer has to decide about
a suitable set of interaction mechanisms. Widely used criteria for such deci-
sions have been introduced by [Rosenschein and Zlotkin, 1994] and [Sandholm, 1999].
[Rosenschein and Zlotkin, 1994] based the decision process on the following prop-
erties: efficiency, stability, symmetry, simplicity, and distribution. They discussed
these criteria in the context of the categorization of application domains as intro-
duced before. [Sandholm, 1999] has proposed similar criteria using social welfare,
Pareto efficiency, individual rationality, stability, computational efficiency, as well as
distribution and communication efficiency. Obviously, both approaches are closely re-
lated and we proposed to integrate them for practical use in multiagent engineering
[Krempels et al., 2006]. This unified approach is restricted to three major categories:
efficiency, reliability, and complexity. Efficiency is dedicated to the assessment of indi-
vidual, group, and, system outcome resp. payoff. The reliability integrates the stability
criterion, e.g., defined by Nash-equilibrium, and symmetry ensuring that both sides of
an interaction reach comparable payoffs. Complexity regards to technical efficiency
defined by computation, communication, and speed up through distribution.

An essential requirement for successful communication remains: The interact-
ing autonomous systems have to understand the content of the message, i.e., sender
and receiver are able to decode messages with the same semantic conclusions. This
does not imply, that a single specific content language has to be implemented,
but mandatory requirements for content languages have to be defined. Therefore,
FIPA/ACL consists of three main specifications: Communicative acts, interaction pro-
tocols, and content languages [FIPA SL, 2002], [FIPA KIF, 2003], [FIPA CCL, 2001],
[FIPA RDF, 2001]. To capture the agent context, i.e., beliefs, abilities, and wants, an
effective content language is often based on (multi-)modal logics in DAI. However,
ontology languages like OWL can easily be adapted to the requirements and addi-
tionally offer a well structured representation of knowledge disregarding the seman-
tics of the agent’s context. Further aspects regarding the semantics are discussed in
[Scholz et al., 2006]. There is an ongoing challenge in designing interaction in het-
erogeneous environments. Here, the agents are in need of explicit methodologies to
handle heterogeneous ontologies. For further details on this problems as well as solu-
tions refer to [Stuckenschmidt and Timm, 2002a], [Stuckenschmidt and Timm, 2002b]
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and [Visser et al., 2002].

4.2 Semantics

Software engineering of intelligent agents and multiagent systems is not only dedicated
to interaction design but has to deal with explicit semantics of agent architecture and
interaction behavior as well as formal specification of knowledge. A short outline on
semantics for representation of intelligent agents and multiagent systems is given in
this section. More details are provided in [Scholz et al., 2006], [Timm, 2004b], and
[Timm et al., 2002].

The formalization of agent behavior by semantics provides a descriptive level that
abstracts from the agent’s architecture as well as from algorithmic details. A well
known example for such an abstract description is the modal logic [Wooldridge, 2000]
proposed for modeling BDI agents. Formal semantics simplifies in many cases the
proof that the system’s specification matches the expectations about its functionality
(i.e. the agent’s behavior). Rao, for instance, describes a simple BDI-logic that is decid-
able in linear time. Such proofs perform a useful tool for the engineer as well as for the
user who interacts with the autonomous agent, too. According to [Singh et al., 1999],
the challenge addressed by formal semantics lies in developing ”techniques for ensur-
ing that agents will behave as we expect them to - or at least, will not behave in ways
that are unacceptable or undesirable”.

Engineering autonomous software systems has to keep a balance between the ex-
pressiveness of the formalism and its computational complexity, however. While even
highly sophisticated formalisms may be helpful for the designer to ensure the required
behavior, the internalization of such formalism into the single agents may produce
problems. Consequently [Singh et al., 1999] distinguished two different objectives
which can be followed by the developer of an agent formalism.

• Specification: External Use of the Formalism. This is the objective of the agent
designer who uses a logical language to specify the agent’s behavior. Tools from
logic (e.g. model checking) are applied to analyze whether the specification is
consistent.

• Reasoning: Internal Use of the Formalism: The agent’s deliberation processes
are implemented by reasoning within the formalism. This is the objective fol-
lowed by most work on multiagent systems.

The time scale underlying both aspects of formalization is crucial. Time available
for specification computations is by orders of magnitude superior to the time avail-
able for the agent’s internal reasoning. Thus the price for internal use of complex
formalisms may be prohibitively high though they may be helpful for engineering and
analysis purpose. Agents reasoning in such formalisms would often fail to act rapidly
enough under the temporal constraints of their environment. Every perception-action-
cycle of a soccer agent playing in the RoboCup Simulation League for example lasts
less than a second, whereas several days of computation are a common time schedule
for design and model checking in order to verify the consistency of specification in a
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safety-critical application. Summing up, it seems unrealistic to expect that a single for-
malism should be equally adapted to both, agent specification and internal reasoning.

The interaction with human users causes another type of problems. The typical
user is no expert in agent technology. He tends to rely on general-purpose reasoning
strategies adapted to everyday reasoning problems in a heuristic way. Such mental rea-
soning strategies differ substantially from algorithms employed for model checking or
theorem proving. In order to optimize the user-agent interface we admit the following
objective that the designer of an agent formalism could aim to achieve:

• Interaction: mental Use of the formalism. For planning his interaction with an
agent, the user needs some abstract description of the agent’s behaviors. It should
be easy to obtain behavioral predictions by mentally reasoning with the formal-
ism. Also, it should be possible to base high-level interaction with the agent, e.g.
communication about goals on the formalism.

Although interface agents are a topic of intensive research, the suitability of agent
formalisms for mental reasoning strategies has received only little attention until now.

Various formalizations defining and specifying multiagent systems and their prop-
erties have been proposed. Their majority focused on intelligent behavior within agents
mostly based on explicit, cognitive models of beliefs, desires, and intentions (BDI).
The underlying idea is that by observations and its actions an agent is creates an ex-
plicit world model (beliefs). Additional sets of persistent objectives (desires) and of
goals which are currently pursued (intentions) creates the framework of its behavior.
The agent pursues its goals by autonomously created plans. BDI-agents are ”the domi-
nant force” in formal approaches [d’Inverno et al., 2004] for which [Wooldridge, 2000,
p. 7] already identified three major reasons:

• It is based on a widely accepted theory of rational actions of humans

• They are successful in a great number of complex applications

• There is a large family of well-understood, sophisticated, and formalized ap-
proaches available

Standard BDI approaches however do not focus on system behav-
ior but on agent internal knowledge representation and decision making.
[Wooldridge and Lomuscio, 2000] introduced VSK as a formal model for the
entire multiagent systems based on (multi-)modal logic. This approach takes into
account that different agents create different pictures of the world, which may be
only partly visible in general and especially for the single agent. Formally a (global)
visibility function (visibility) and an agent depending perception function (see) are
introduced in addition to local states (knowledge) in terms of (multi-)modal sorted
first order logic including the possible worlds semantics of BDI. While the underlying
idea of VSK is convincing, it suffers from the problems introduced before. For further
details on formalization of agents, agent’s behavior, and multiagent systems refer to
[Scholz et al., 2006], [Timm et al., 2002], and [Timm, 2004b].



4.3. TESTING 47

4.3 Testing

An essential part of software engineering is dedicated to verification and validation.
Non-determinism however makes verification of AI software difficult, this difficulty is
increased if concurrent, distributed or object-oriented systems as multiagent systems
are in question. Evaluation and validation became bottlenecks for agent technology as
there is no standard for verification and assessing available ensuring adequate quality
of multiagent systems, i.e. the fulfillment of predefined requirements. To overcome
this gap of a glance towards mainstream software quality approaches may be useful.
In conventional software engineering the software product quality can be defined as
follows [Riedemann, 1997]:

• Functionality is a set of properties with respect to the existence of a set of func-
tions that implement the specified requirements:

– Adequacy indicates the existence or applicability of the software for the
specified tasks,

– Correctness is used for deciding if the results or effects of a software are
correct,

– Interoperability considers the applicability to interact with predefined sys-
tems,

– Normative adequacy is used for estimation of satisfaction of application
specific norms or commitments or juridical rules of the software,

– Security deals with aspects of unauthorized access to the program or data.

• Dependability is the capability of the software to keep a performance portfo-
lio in predefined conditions over a specified time period and is defined by the
properties of:

– Maturity is used for determining the frequency of failures or fault states,

– Fault tolerance describes the appropriateness with respect to a predefined
performance level of a software in situations where either unspecified ac-
cess to interfaces or soft-ware failures occur,

– Recovery is the possibility of a software to be recovered on a prior perfor-
mance level including retrieval of data in adequate time.

• Usability is the property which is related to the effort required for using the soft-
ware as well as an individual assessment of using the software by a predefined
group of users.

• Efficiency is a set of properties which indicates the ratio between the perfor-
mance level of software and the amount of used resources in predefined condi-
tions.

• Adaptability is related to the necessary effort for performing given modifications
(corrections, improvements, or adaptations)
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Figure 4.2: Classes of evaluation in AI

Quality management covers constructive as well as analytic activities
[Riedemann, 1997]. Constructive quality management ensures distinct proper-
ties of the emergent product during analysis, design, and implementation phases
of the engineering process. Analytic quality management analyzes the fulfill-
ment level of the quality properties by verification, validation and evaluation. As
[Hoppe and Mesegeur, 1993] emphasize that misconceptions arise if terms like
verification are used in a different way as in artificial intelligence we apply the term
evaluation to express the determination of how far agreed, prescribed, or expected
features of an object are fulfilled. [Menzies and Pecheur, 2004] differentiate evaluation
with respect to the required amount of expertise and strength of proof: testing, runtime
monitoring, static analysis, model checking, and theorem proving (cf. Figure 4.2).

Following this classification software systems may be evaluated by formal proofs
of correctness (theorem proving) with highest strength of proof and highest need for
expertise or with less effort of expertise and less strength of proof by model checking
of formal specification and model satisfaction. In contrast to static analysis, runtime
monitoring analyzes systems by their runtime behavior with specified input parame-
ters resp. predefined conditions. Testing uses special programs that simulate input
sequences and analyze the results with respect to the requirements. Here the expertise
(insight into the black box) may be short but the strength of proof is poor, too.

Formal approaches as discussed in the last section are widely used for agent design.
Formal representations of requirements became a key tool for developers or customers
in order to validate or even verify that the software system meets the requirements.
However, the correctness proofs are at most not terminating or decidable for formal
languages like multi-modal logics or first-order logic. Thus formal verification is often
limited to very specific aspects. In current applications, description logics are widely
used for representing communication content such that formal prove of interaction be-
havior should be feasible.
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The evaluation of intelligent agents and agent systems though far more complex
may profit from the conventional software evaluation approaches outlined so far. The
first expansion is that reflecting the autonomy of the agents requirements have to
be specified primarily as goals or context for agent behavior. Furthermore, specifi-
cation of formal requirements has to include complete state models of the environ-
ment and the agent. Common agent-oriented methodologies contain a software en-
gineering process, which in some cases like MaSE [DeLoach, 2004] or Prometheus
[Padgham and Winikoff, 2004] is closely related to object orientation. While early ob-
ject oriented methodologies claimed for a natural reduction of evaluation efforts and
enhanced quality later studies showed that the actual error rate in object oriented code
is even higher than in conventional software. The increased modularization is accom-
panied by increased but mainly implicit interdependencies between modules. Cross
reference of methods or classes, hidden information (esp. polymorphic inheritance)
and high dimensional possible states are further sources of problems.

One has to be aware that the process of evaluation of multi agent systems will
suffer from similar difficulties, but another dimension of complexity evolves from the
key feature of multi-agent systems, emergent effects, emergent properties or emergent
organization. Emergence, often considered as non-deterministic, arises at runtime. It
produces flexible solutions (emergent effects), constellation and types of agents. The
system properties may be changed (emergent property) and new interaction schemes
may occur (emergent organization). Emergence is per definition not specified in ad-
vance leaving the system partially unspecified. The evaluation of a system that con-
tains properties that are not specified and modeled in advance results in an incomplete
analysis.

Emergence is not the only source of obstacles for the evaluation process of multi
agent systems: Agents are assumed to act autonomously following there individual
goals. Obviously, this may cause concurrency problems. Evaluation of concurrent
software is an enormous challenge even in conventional software engineering. There
is still another complication compared with conventional software evaluation: non-
deterministic environments may cause additional problems increasing if mobile agents
are in question.

Many open problems around these aspects have been identified in the agent
community, but there is still a comparably small amount of publications which
propose convincing solutions. In concurrent system evaluation for example,
[Riedemann, 1997] proposes explicit control on schedule, time, and invocation of
methods. [Gomez-Sanz et al., 2004] reported that current research is focused on formal
verification. Formal approaches however -if applicable in the special case- often suf-
fer from complexity requesting unrealistic high expertise from designer and user and
overextended computational efforts, which is not feasible for most practical purposes
in the engineering process. Few methodologies of multiagent engineering incorporate
evaluation tools in an adequate way, e.g., Tropos [Mylopoulos et al., 2001].

The state of the art surveys from [Weiss and Jakob, 2005] however emphasize the
necessity of verification in real-world applications.

Summing up, the evaluation intelligent agents and multiagent system is a chal-
lenging task. We propose to develop solutions with respect to any of the classes
of evaluation (testing, runtime monitoring, static analysis, model checking, and the-
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orem proving) depending on the field of application. In the following, we discuss
approaches to testing and runtime monitoring. For further approaches please refer to
[Timm et al., 2006a].

Testing

In conventional software engineering there are multiple testing methods available
which may be applied to the agent engineering process. A prominent approach is
the unit test during the implementation of functions, methods, interfaces, or classes.
Its key benefit is its repeated and automatic application. The tests are automatically
performed after each change in the unit, even if the changes are not directly connected
to the test object. Unit tests working on object oriented implementations are well sup-
ported by many tools and development environments. We propose to apply the unit test
methodology to the design and implementation of agents, since their structural imple-
mentation is usually object oriented. In order to adapt the unit test to multi agent system
engineering one has to address specific problems as described above. Knowledge rep-
resentation, inference as well as interaction resp. communication in the multiagent
system have to be considered.

Concerning knowledge representation conventional unit test approaches are appli-
cable as long as the representation is implicit because the knowledge representation
is part of the code and architecture in this case. In more sophisticated architectures,
explicit knowledge mainly based on description logics (ontologies), or Prolog is used.
Such representations are suitable for model checking or theorem proving, which can
be combined with conventional unit testing, for example to execute a description logic
reasoner within object-oriented code.

Interaction in multi agent systems is emerging at runtime causing special challenges
for the testing procedure. There are boundaries for this emergence however, usually
specified by valid sequences of messages, i.e. interaction protocols with mandatory
interactions and propositions on the content. Tests should check the agents’ compli-
ance with these interaction boundaries. The special unit test proposed here considers
the agents as units and constructs a controlled test environment for them. For def-
inition of allowed sequences we propose to use grammar as syntactical specification.
Messages in an interaction are considered as words of a language and sequences as sen-
tences. Structural consistency is tested by application of syntactic checkers like parsers.
The content of messages may be tested matching content on equivalence, e.g., string
comparison or by use of matching algorithms for formal content representation, e.g.,
subsumption for description logics. Especially such formal content representations
constitute an effective compromise between computational complexity and problem
adequacy.

Testing nondeterministic behavior however, makes the test far more complex than
for conventional object oriented software. It has to specify the environment with its
variation and analyze the variance of the expected results resp. sequences of the inter-
action.

An interaction test framework that incorporates these aspects is shown in figure
4.3. The test environment consists mainly of the tester with test case generator for the
generation and selection of appropriate test cases. These are assigned to concrete mes-
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Figure 4.3: Interaction test framework

sages which are evaluated by the validator component using the specified grammar and
the set of allowed sequences. This framework facilitates the test of agent interaction
behavior in a controlled way without postponement of the test to the runtime of the
system. In order to establish this interaction test procedure in practical engineering of
multi agent systems, however, tool-support is needed.

Runtime Monitoring

Runtime monitoring establishes a controlled environment and a control structure for
tests under specific configurable conditions, too. The focus of this method of evalu-
ation is the system behavior and not the specific units, however. Thus the distributed
and partially non-deterministic character of the system are more in the center of run-
time monitoring compared with unit tests. The evaluation by runtime monitoring has
to deal with a situation where internal structures or details of coding are hidden or the
non-deterministic behavior of agent inferences causes problems, prohibiting simple
white box settings. Thus grey- or black-box approaches have to be used. In our pa-
per [Timm et al., 2006a] we discuss two pragmatic approaches to runtime monitoring:
simulation covering both agent and multiagent runtime monitoring, and certification
management only for agent runtime monitoring. In the following we restrict the dis-
cussion to some general aspects of the first aspect: simulation for runtime monitoring.

Even if there is no domain-independent tool support available for these approaches,
the methodologies can be transferred to concrete engineering projects.

This method uses a controlled environment as well as a control structure and adds
a specific agent collecting and documenting information about the dynamic system
behavior. Moreover a random generator is incorporated establishing a stochastic simu-
lator in order to cope with great variations and unforeseeable states of environment and
multi agent system. The stochastic simulator triggers the control unit and establishes
varying conditions in a high number of sequential runs. By this, the test procedure
becomes a stochastic process and statistical analysis of the system behavior becomes
possible. In this setting (considered as a grey-box test) it is possible to evaluate the
dynamic and adaptive behavior of the agents and the system. The length of each simu-
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lated run of the system depends on the dynamic characteristics and requirements to be
tested. If the system is supposed to reach a balanced state with respect to the relevant
parameters within a given time t0 for example, this requirement will cause a length of
at least t0 for the length of each simulation run. Other relevant parameters of the test
procedure may be derived from the set of agentsgoals resp. system requirements using
analogous arguments. Statistical analysis is focused on both aspects, the dynamical
behavior looking at the parameter development over time (time series analysis) and
the summarizing results (reached state at the end of the run or mean values). Special
statistical methods fit to these tasks, for example t-test, Kruskal-Wallis-test, ANOVA
(analysis of variance). [Timm, 2004b] developed a structured testing environment for
runtime analysis of multi agent systems and proved its usability in different application
scenarios and domains (cf. Chapter 2.4 and 2.6, [Timm, 2004b]).



Chapter 5

Applications of Autonomous
Software Systems

In the last chapters, autonomous software systems have been introduced with respect
to levels of autonomy, strategic management, and engineering issues. In the follow-
ing, we will present our research on applications of autonomous software systems, i.e.,
intelligent agents. The three applications presented here, are dedicated to the general
domain of logistics covering the different scenarios and research issues of process plan-
ning and production control, mass customization, and autonomous logistic processes.
Starting with IntaPS, we introduce a multiagent approach for integration of process
planning and production control. Even though the requirements for the internal reason-
ing within an agent are high, the interaction complexity is limited. In the next section,
we discuss the impacts of high degree of individualization in manufacturing and lo-
gistics (mass customization) to the design and implementation of business information
systems. The logistic chain of mass customization is optimized by the application of
intelligent agents. The third domain, takes the application of autonomous systems to
the next level: agents are widely used in order to enable self-organization in logistics.

As introduced in the section 4.3 on testing of multiagent systems, it is essential to
test and evaluate agent applications. In the context of shop floor systems resp. pro-
cess planning and production control, we have applied simulation successfully for the
evaluation. However, if we consider the evaluation of self-organizing logistics in re-
alistic scenarios, computational complexity as well as memory usage may overextend
standard hardware platforms. Thus, we discuss the application of grid-technologies for
dynamic resource management in large scale multiagent simulation in logistics.

5.1 Process Planning and Production Control

Conventional approaches to manufacturing logistics focus on the economical scale of
the production (enterprise resource planning), i.e., production planning and control
systems, are dedicated to the technological information of the product disregarding
concrete production planning and control (product data management).

53
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Several applications of agent technology in manufacturing focus on digital mar-
ketplaces where intelligent agents act on behalf of enterprises, customers or other or-
ganizations to achieve goals like ”acquire a specific good for the smallest possible
price”. Since enterprises began to consider several departments as individual profit
centers, market-based coordination mechanisms became of increasing concern not only
for inter-enterprise relationship but also for internal processes of enterprises like e.g.
scheduling tasks at the shop floor. These agent systems are autonomous on an oper-
ational level with respect to the classification introduced in Chapter 2. Considering
customized products in small lot sizes produced as a batch job, scheduling becomes a
distributed problem: Orders have to be manufactured by different resources located at
different places at the shop floor. Each resource possesses its own schedule, its own ca-
pabilities to perform different manufacturing operations and its own economical profile
(e.g. specific machining costs). On the other hand, orders need to be manufactured ac-
cording to customer requirements and due dates. From point of view of the shop floor,
an order schedule must be ”calculated” in cooperation of order and resources, where
each individual resource decides about the price it will offer its capabilities to the order.
Unfortunately, the structure of the shop floor and the orders are not a static since new
machines are taken into operation, other suffer a breakdown, or typical orders change
due to altered customer demands: The shop floor for customized manufacturing is a
very dynamic environment. Following the argumentation in Chapter 2, agent technolo-
gies can be used to overcome traditional problems incorporating strategic or tactical
levels of autonomy.

The conventional management of manufacturing is based on a tayloristic separation
of preparatory activities in planning and implementation activities [Toenshoff, 1999].
Planning activities range from specification of the product, e.g., workpiece geometry,
of the process, e.g., required production methods, to selection of resource types, e.g.,
machine tool type. These aspects are more connected to the technological information
and implementation activities are dedicated to economical information, i.e., amount
of products to produce, e.g., specification of lot sizes, planning and scheduling of the
process steps, selection of resources for production, as well as planning of the human
resources. This approach results in a gap between the involved systems, such that a
dynamic interaction is not possible, i.e., potential loss of time and information occurs.
This gap may be bridged by autonomous systems, which integrate the planning and
implementation systems. However, the operational autonomy is not sufficient for this
problem, as relation between resource capabilities and product features are hard-wired
and cannot be modified at runtime. This requires tactical autonomy for reallocation of
resource-consumer-links. Thus, the IntaPS approach implements a system of intelli-
gent agents, which are capable of integrated process planning and production control
in a very flexible and distributed way. The basic architecture of the IntaPS approach is
illustrated in figure 5.1.

In IntaPS, intelligent agents integrate the two substantial components of earlier
stages of product development and the resources on the shop floor. This link is real-
ized by decentralized planning on shop floor level, i.e., electronic marketplace, and by
rough level process planning. The system consists of three different types of agents:
resource agents, order agents, and service agents enabling decentralized planning on
shop-floor level. The resource agents are representing relevant resources of the phys-
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Figure 5.1: The IntaPS architecture

ical production system, like machine tools, transportation devices, human resources,
or even virtual resources, e.g., information systems together with its real-world envi-
ronment. These agents incorporate the relevant information with respect to process
planning and production control as part of their knowledge bases, e.g., capabilities of
the machine tool or product features. Order agents represent product orders, which
have to be manufactured. Due to its autonomy and pro-activity, an order agent is able
to recognize internal and external disturbances and to react appropriately. The third
type of agents (service agents) is dedicated to maintenance and observation of the sys-
tem. Furthermore, service agents can be used for implementing strategic management
by reflection as introduced in Section 3.3 or for evaluation and verification purposes,
e.g., testing and simulation management.

An electronic marketplace is used for the dynamic coordination of order and re-
source agents. Next to the tactical autonomy, applied here for the match-making of
resource capability and product feature, operational autonomy improves coordination
in the shop floor dynamically. Order agents and resource agents interact according to
three mandatory stages: negotiation, verification, re-negotiation.

Starting with a negotiation, orders communicate required manufacturing skills or
product features and due dates. Thus, order agents identify appropriate resources,
which are capable to perform a specified product feature resp. manufacturing task
with respect to logistical constraints. These logistical constraints take organizational
constraints into account as well as limitations in time, e.g., due dates specified by the
customer. The negotiation on product feature and capabilities follows the ontologi-
cal manufacturing knowledge which is determined by standardization like ”STEP-NC”
ISO 14649. Thereafter, suitable sequences of manufacturing operations result from
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auctions between identified appropriate partners. The optimal sequence of manufac-
turing operations is accepted as detailed plan. Thus, some of the traditional tasks of
process planning are carried out in a distributed manner.

The second stage is dedicated to the verification of the detailed plans. The order
agent examines continuously whether its detailed plan is executable under the current
conditions of the shop floor and its resources. Disturbances (e.g. breakdown of a
machine tool) or emerging chances (extended machine capabilities) cause order agents
to analyze the consequences and to identify those parts of their detailed plans, which
are affected. In this case, the order agent decides whether a modification of the plan is
required.

The order agent initiates the re-negotiation stage if necessary and tenders parts of
the detailed plan for a new negotiation. The re-negotiation phase should lead to an
improved alternative detailed plan which substitutes the previous plan. Afterwards the
verification phase is resumed and lasts until the order is finished.

While the order agents act mainly on an operational or tactical level of autonomy,
the resource agents are more sophisticated within IntaPS. Additional and potentially
conflictive requirements arise from various objectives, which have to be considered by
the resource agents. A classical example is the conflict between the goals of ”short lead
time” and ”small stock size”. Hence, the cobac algorithm to enable strategic autonomy
in the resource agents is integrated (cf. Section 2.6).

In addition to decentralized components of the multiagent system, the IntaPS
project specifies a centralized rough level planning, which integrates preprocessing
of incoming data and generation of rough process plan. The underlying data are given
by geometrical or technological information about the product, further organizational
information related to products and orders. Order agents are synthesized on the basis
of this information and initialized with a rough level process plan. Furthermore, the
centralized part of the IntaPS architecture provides a graphical user interface for inter-
action with the system. Thereby, IntaPS serves as an example for the application of
different levels of autonomy for the integration of two different information systems
within an enterprise (process planning and production control).

The IntaPS project is funded by the Deutsche Forschungsgemeinschaft from
2000 until 2006. Various articles have been published, containing more details on
the approach outlined here, e.g., [Lorenzen et al., 2006], [Timm et al., 2001c],
[Tönshoff et al., 2001b], [T̈onshoff et al., 2000a], [T̈onshoff et al., 2002a],
[Tönshoff et al., 2002b], and [T̈onshoff et al., 2002c].

5.2 Logistics in Mass Customization

Consumers tend to have precise ideas for their product demands on a very individual
level. The management concept of mass customization is an answer to this tendency of
consumer driven production [Piller, 2003]. By combining individuality of customized
goods with adequate low prices as known from mass production, this concept has been
considered to reach high customer’s satisfaction. We assume that future business infor-
mation systems will use service-based computing, i.e., web services and networking
infrastructures like the internet, for collaborative business. The joint research project



5.2. LOGISTICS IN MASS CUSTOMIZATION 57

EwoMacs1, analyzed logistics structures of mass customization in the shoe industry.
The research performed at Technische Universität Ilmenau was focused on the engi-
neering aspects, i.e., the question of how to design a multiagent system on the basis of
business processes. Thus, we introduce the results of this project as illustration for the
engineering of real-world applications.

The project aims to build a system coordinating the respective information logis-
tics. Mass customization is a challenge for the design and implementation of business
information systems of the participating enterprises as a great demand of information
has to be distributed, interpreted, and processed [Pawlaszczyk et al., 2004]. In order
to reduce transaction costs a high degree of automation for information logistics is re-
quired. Moreover the supply chain itself seems simply to design an efficient informa-
tion system (cf. Figure 5.2). However, complexity of the information handled in this
process overextends the capabilities or the costs of conventional centralized data ex-
change processes [Pawlaszczyk et al., 2004].Insufficient coordination between actors,
adversely exploited autonomy of each actor and failing in information transmission are
severe problems for smooth configuration, production, and delivery of MC products.
Hence a system of decentralized and autonomous acting intelligent agents has been
used to overcome these problems. The complexity of the contents of transferred infor-
mation and the different understanding of short communications in everyday language
indicates the use of explicit knowledge representation in this system. Ontologies have
been considered as a promising approach in this situation. The ontology has to ensure
that the customer’s requirements have to be integrated in a product specification and to
supply each actor of the value chain with information about the product and customer.

Figure 5.2: Actors in mass customization

The EwoMacs system deals with the integration of different types of systems, e.g.
production planning, process control, enterprise resource planning, involved into the

1EwoMacs was funded by the German Ministry for Education and Research (BMBF) from 2002 to 2004.



58 CHAPTER 5. APPLICATIONS OF AUTONOMOUS SOFTWARE SYSTEMS

process of customizing, producing, and delivering. There is need for integration of
the involved information systems - at least virtually. Here, problems of data privacy
and security arise as more than two independent companies are interconnected. Only
uncritical data needed for the common processes should be exchanged. The design pro-
cess had to overcome the problem of missing or inadequate standardizations for data
exchange and various, partially contradictory definitions of used concepts. To address
this problem, our approach is based on agents as autonomous software systems, which
are representing enterprises for the automated cooperation in logistic networks. The
multiagent system provides a framework for cooperation within short-term relation-
ships [Knirsch and Timm, 1999].

The conventional approach to design interaction relationships in economy is to per-
form a business process analysis. Modern tools for business process modeling like
ARIS [Scheer, 1995] integrate simulation functionalities for deep analysis. We pro-
pose to use this analysis as a starting point for efficient multiagent engineering in this
domain. Therefore, we developed the DAISIY (Deliberative Agents for Intelligent
SImulation SYstems) framework. DAISIY explicitly integrates simulation is a key as-
pect. Instead of developing a single system supporting mass customization in the real
world, the simulation is used for analysis and identification of scaling up problems in
the application, etc. Furthermore, a highly distributed system, which contains modules
and autonomous systems from heterogeneous enterprises, can hardly be tested properly
(cf. Section 4.3). Thus, simulation is also used to ensure reliable behavior of the sys-
tem. The approaches to this domain are two-fold. On the one hand, simulation systems
are used for analyzing the domain, planning and re-engineering of business processes.
On the other hand, development of management and control systems for information
flow and business processes is of interest.

Figure 5.3: The DAISIY approach
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The DAISIY framework integrates a methodology for analysis, design, simulation,
and implementation. The aim of DAISIY is to guide researchers or practitioners by an-
alyzing the domain, designing processes, and implementing an agent-based control or
simulation system for a specific scenario. DAISIY introduces a five-step methodology
as illustrated in Figure 5.3 [Pawlaszczyk et al., 2003]:

1. Business process modeling using a standard language and tool

2. Transfer of this model to a simulation model

3. Automatic synthesis of a generic agent system on the basis of the simulation and
business process models

4. Enhancement of the agent model: intelligent agents as substitution for au-
tonomous entities along critical paths, in order to preserve structure and behavior
of the real world system

5. Detailed simulation using the multiagent system

For engineering real world applications, the extension of this approach is re-
quired. As mentioned in section 4, a standardized, iterative process should be ap-
plied, following the mandatory steps: requirements analysis, architectural and in-
teraction design, implementation, and verification. The DAISIY approach with
focus on simulation should be integrated in engineering process to meet the re-
quirements of the real-world. Based on the layered architecture in the DAISIY
framework three aspects: real world, simulation and management, are considered.
These aspects are addressed to introduce respective components: modeling for the
real world, multiagent system and simulation. Further details on this approach
may be found at [Dietrich et al., 2003], [Dietrich et al., 2006], [Timm et al., 2001b],
[Timm et al., 2001e], [Pawlaszczyk et al., 2004], [Timm and Pawlaszczyk, 2002], and
[Pawlaszczyk et al., 2003].

5.3 Autonomous Logistic Processes

In the last decade, logistics has changed enormously. Various change driver lead to
a situation, where complex and partially conflicting requirements on logistic planning
and control systems arise. However, currently available strategies, methodologies, and
tools lack limited efficiency in this context [Scholz-Reiter et al., 2004]. An emerging
approach in research may be found in the analysis and design of autonomous sys-
tems in the operationalization of logistic processes. The objective of autonomy here
is to enable processes to interact cooperatively for individual as well as global opti-
mization. To meet the new requirements of modern logistics, new ways of designing,
implementing, and managing logistic processes are required. Therefore, the German
national science foundation (Deutsche Forschungsgemeinschaft) is funding the Collab-
orative Research Center on ”Autonomous Logistic Processes - A Paradigm Shift and
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its Limitations” (SFB 637) at Universität Bremen2. Autonomous cooperation describes
processes of decentralized decision-making in heterarchical structures. It presumes in-
teracting elements in non-deterministic systems which possess the capability and pos-
sibility to render decisions independently. The objective of autonomous cooperation
is the achievement of increased robustness and positive emergence of the total system
due to a distributed and flexible coping with dynamics and complexity. The research
in the CRC addresses the management resp. decision system, the information system,
and the technical system.

The technology of autonomous systems especially multiagent system is a core re-
search object within the CRC as it has the capabilities to integrate the different levels
of a logistical system. The integration of technical level and information level seems to
be obvious. RFID chips can be used as physical container for agent software and agent
software can interact with the real world by sensors and actuators, for example. How-
ever, the decision making in autonomous software systems requires knowledge and
consequently a knowledge management system. However, as in logistics autonomous
subsystems of various enterprises interact, there is the need of competitive knowledge
management. Additionally, knowledge management has to meet requirements of real-
time, distribution, and high dynamics. Conventional knowledge management systems
managed individually by the enterprises can hardly incorporate process knowledge on
collaborative logistics processes. Thus, we propose an emergent knowledge manage-
ment approach [Langer et al., 2005]. Each autonomous system can incorporate roles,
which are related to knowledge management functionalities. In runtime, the coopera-
tion of various autonomous systems interacting on the basis of these roles is creating a
knowledge management system. Cooperation or competition is integrated by specific
interaction patterns, e.g., in competitive environments, knowledge retrieval has to be
paid in a real or virtual currency; the amount has to be negotiated by agent communi-
cation.

While logistics is often handled by the definition of logistic networks, the innova-
tive approach of the CRC is to address the logistic process itself. Consequently, the
degree of complexity of decision making should be reduced as not any consequences
have to be considered with respect to the network. However, there is a potential loss of
control, i.e., it has to be ensured, that the locally interacting autonomous subsystems
act with respect to the whole system. To enable dependable multiagent systems, a sub-
project deals with the explicit integration of risk management to multiagent systems
[Lorenz et al., 2005].

However, the integration of managerial aspects requires more sophisticated ap-
proaches. The strategic management introduced in this paper tries to bridge the gap
between the information system, which can obviously be handled by autonomous sys-
tems, and the management level. From the management perspective, this requires
the delegation of decision-making competence from the managerial to the informa-
tion level. In consequence, the management is losing influence on local decisions. To
compensate this loss of control new instruments and logics are needed for transparency
and dependability issues [Hülsmann and Berry, 2004]. In a standard approach to lo-

2The research on autonomous systems introduced within this paper is closely related and partially funded
by this CRC.
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gistics, autonomous subsystems act on the basis of pre-defined set of rules, short-term
objectives of the enterprise, and current information about their environment. This ap-
proach allows for operational autonomy on the process level. If the tactical or strategic
level of autonomy should be applied, the decisions delegated to the information sys-
tem are of increased complexity as aspects usually handled by the management, e.g.,
contradictions in objectives. The integration of management aspects in the decision
making of autonomous software systems is an open research issue; further details are
published in [Dembski and Timm, 2005].

In our research, applications in the logistics domain are accompanied by re-
search on knowledge and risk management as well as contradiction management.
For further details refer to [Dembski and Timm, 2005], [Langer and Timm, 2004],
[Langer et al., 2005], and [Hammer et al., 2005].

To explore realistic behavior of systems of autonomous cooperating processes, it
is necessary to model large scale application systems, which can be simulated and an-
alyzed properly. Next to simulating the material flows of these nets it is important to
integrate the information flows, as especially autonomous processes are depending on
data, information, and knowledge within the environment. Current research projects
within the CRC are studying the effects and influence of available communication net-
works in the context of large scale logistic networks. To analyze effects like lack of
communication it is required by these projects to simulate huge amounts of autonomous
systems (104 to 106 agents). As conventional multiagent simulation approaches are not
capable of handling these amounts of actors, the question arise if grid technology could
be a beneficial approach to realize large scale multiagent simulation.

The simulation of information intensive large-scale agent systems necessitates high
computational power. Distribution of simulation models is applied for coping with
these challenging requirements. However, the distribution of the simulation model on
different computers leads to further problems, i.e., the synchronizing of events to en-
sure causality and monitoring of the distributed simulation state, load balancing, as
well as dynamic resource allocation [Timm and Pawlaszczyk, 2005]. To address the
issues of failure resistance, load balancing, transparent executing of large-scale sim-
ulation experiments in logistics, grid technology seems to be a helpful infrastructure
for resource allocation and consequently speed up of simulation experiments. We pro-
pose a service-oriented, decentralized, grid-based architecture approach for multiagent
based simulation (cf. Figure 5.4).

In this architecture, the P2P-Grid layer is responsible for dynamic resource alloca-
tion. The middleware implements required simulation functionalities, e.g., supporting
a set of services to distribute passive and active simulation objects (the agents) on the
network or to initialize, start and stop simulation runs. The middleware is also dedi-
cated to event-synchronization, monitoring and reporting. The Agent runtime environ-
ments (Agent RTE) provide the infrastructure for the domain dependent autonomous
systems, i.e., concrete simulation experiments are located at the top-level layer utilizing
the lower level services.

We explored the feasibility of this architecture using the well known traveling sales-
man problem with autonomous systems, which implement evolutionary algorithm for
problem solving. Doing so, the scalability of the system was tested by executing several
thousands computation runs while changing the number of nodes in the Grid environ-
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Figure 5.4: Layered architecture

ment. The results show a superior behavior, i.e., speed up is reached which is signif-
icantly higher than the additional communication costs introduced by our approach.
We observed almost a linear speed up, decreasing computation time by averagely 40
percent when doubling hosts. For further details on this approach, the experiments, and
the results, please, refer to [Timm and Pawlaszczyk, 2005].



Chapter 6

Conclusion

Autonomous software systems are a promising approach to cope with increasing com-
plexity within modern application fields. Here, agents can be used to realize autonomy
on different levels. The levels of autonomy introduced in Chapter 2 can support the
requirements engineering step within multiagent system design to determine which
agent architecture is appropriate for which problem resp. task. We introduced differ-
ent approaches to integrate autonomy on the respective levels within intelligent agents.
Simulation results showed the superior behavior of system incorporating operational
and strategic autonomy. The adequacy of capability management enabling tactical au-
tonomy has to be shown by prototypical implementation and simulation.

Furthermore, the research illustrated in this paper together with the results of
the priority research program on ”Intelligent Agents and Business Applications” (cf.
[Kirn et al., 2006]) indicate, that autonomous systems, i.e., intelligent agents, are ben-
eficial if flexibility is required. The research issue discussed in the second part of
this paper is: ”If the agents optimize themselves locally, does a global optimization
emerges?” To solve this problem, we proposed to introduce strategic management as a
runtime component in multiagent systems. But next to this question, it is an important
to adjust the level of flexibility resp. autonomy needed in the domain. In consequence,
unplanned events should not automatically initiate a global system change. Reflec-
tion as introduced by Luhmann can be transferred to multiagent systems for bounding
flexibility in dynamic manner. This approach meets the challenge of strategic manage-
ment of autonomous systems to keep as much autonomy as possible in the subsystems
and integrate a methodology for adjustable autonomy in the runtime behavior. We ad-
dressed this challenge of strategic management from different perspectives (Chapter
3) with the approaches of versatile management, reflection, and certification manage-
ment. These approaches constitute basic methodologies coping with high dynamics in
the application domains.

The strategic management of autonomous systems includes the software engineer-
ing process, too. In this paper, we analyzed the software engineering process and iden-
tified interaction design, semantics, and evaluation resp. verification as key challenges.
For each of these aspects, we proposed a systematic approach with special focus on
multiagent system engineering. Especially the problem of verifying and testing of au-
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tonomous software systems is in focus of ongoing research in the agent community.
We introduced new approaches dealing with testing and runtime monitoring as special
classes of verification.
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matik, Universiẗat Bremen, Bremen.



BIBLIOGRAPHY 73

[Timm, 2004a] Timm, I. J. (2004a).Adaption und Lernen von und in Organisatio-
nen, chapter Selbstlernprozesse in der Agentenkommunikation, pages 103–127. VS
Verlag für Sozialwissenschaften, Wiesbaden.

[Timm, 2004b] Timm, I. J. (2004b). Dynamisches Konfliktmanagement als Ver-
haltenssteuerung Intelligenter Agenten, volume 283 of Dissertationen in der
Künstlichen Intelligenz (DISKI). infix - AKA Verlagsgruppe, K̈oln.

[Timm and Dembski, 2005]Timm, I. J. and Dembski, N. (eingereicht im Oktober
2005). Implikationen selbststeuernder logistikprozesse - herausforderungen an die
gestaltung und das management in der produktionslogistik.Logistikmanagement.

[Timm et al., 2004]Timm, I. J., Hellingrath, B., Kindsm̈uller, M. C., and Wache, H.,
editors (2004).Proceedings of the First International Workshop on Applied Artifi-
cial Intelligence and Logistics - Special Focus on Mobile Solutions, 27th German
Conference on Artificial Intelligence (KI-2004) Workshop, Ulm. Universität Ulm.

[Timm et al., 2001a]Timm, I. J., Herzog, O., T̈onshoff, H. K., and Woelk, P.-
O. (2001a). Akzeptanz von agententechnologie in der industriellen anwendung
- fortschritt durch transparenz und standardisierung?Industrie-Management,
17(6):13–16.

[Timm and Hillebrandt, 2006]Timm, I. J. and Hillebrandt, F. (2006).Reflexive soziale
Mechanismen, chapter Autonomie und Institutionalisierung von Reflexion - Ein
sozialer Mechanismus zum strategischen Management (zur Steuerung) von au-
tonomen Softwaresystemen, page zur Veröffentlichung angenommen. VS Verlag
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