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Abstract— In order to set up assistance systems in intelli-
gent vehicles or to control an autonomous vehicle a num-
ber of cognitive functions has to be realized in an integrated
architecture. In this paper we propose a knowledge-based
risk assessment procedure in order to identify objects which
might be dangerous for the own vehicle. Having an advanced
vision system with gaze control in mind a knowledge-based
risk assessment can determine where to concentrate the at-
tention. The approach is evaluated by simulating different
traffic scenes.

1. INTRODUCTION

Recent developments in the field of intelligent vehicles have
shown that nowadays it is possible to provide the driver with
useful assistance systems like, e.g., lane departure warning,
lane change assistants, adaptive cruise control, or even letting
a car drive autonomously over long distances on highways

[41, [71.

In order to set up assistance systems in intelligent vehicles
or to control an autonomous vehicle a number of cognitive
functions has to be realized in an integrated architecture (Fig.
1). As processing tasks for perception, situation assessment,
behavior decision and actual control of the vehicle have tight
time constraints, it is necessary to focus on relevant objects
in the environment. We propose a knowledge-based risk as-
sessment in order to identify objects which might be danger-
ous for the own vehicle. Having an advanced vision system
with gaze control in mind as proposed by Dickmanns [8]
a knowledge-based risk assessment can determine where to
concentrate the attention.

Risk assessment as scientific topic is basically known from
management science, finance, and health care. Therefore a
number of methodologies for organizational risk identifica-
tion and management can be found in the literature [9], [17].

Risk identification is described as the ongoing risk manage-

ment task of identifying the significant risks to the success of
an endeavor. The proposed techniques are of organizational
nature, i.e., checklists of risks and their factors, brainstorming
of risks and their factors, cross functional teams, interviews
with stakeholders and domain experts, etc. In the recent lit-
erature much attention is paid to software engineering risk
management [13], [14], [26] which tends to adapt existing
methodologies to the special needs of software development
projects.

In sociology and ethology a great deal of research is done on
human risk handling [17], [21], [25], [29] which also includes
the ways human perceive and communicate risk. Risk sensi-
tive professions like aircraft pilots — to give just one promi-
nent example — are subject to specialized studies which aim
on identifying the influence of liability on coping with risk
[10]. Work focusing on the cognitive models of risk and risk
perception can lead a way towards better understanding how
knowledge influences the identification of risks.

An upcoming field is the development of computer-based
tools to assist in the risk management process. Zoysa and
Russel [30] give an exhaustive overview on ,computerized
knowledge-based methodologies [...] to capture and reuse
risk-related knowledge®. An additional interesting approach
which fits in this category is proposed by Kim [12].

Knowledge-based risk identification based on sensory data
(in contrast to specific software-guided user input), i.e., a
fully automated knowledge-based risk management system
has not yet been proposed to the best of our knowledge. This
paper simplifies the rather manifold notion of risk sketched
above as it sees risk mainly as the approaching of environ-
mental situations which might endanger the intelligent vehi-
cle and its passengers or other traffic participants.

In the field of intelligent vehicles most of the approaches to
identify critical situations are rather specialized to the appli-
cation domain. Different systems address functions like adap-
tive cruise control (ACC), lane change detection, intersection
assistance, and lane change assistance [3], [5], [6], [20], [22],
[27]. In these approaches usually sensory information is more
or less used directly on a quantitative level in order to iden-
tify critical situations. The approach presented here addresses
risk identification qualitatively and thus allows for integrating
background knowledge and describing complex situations in
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Figure 1. Architecture adapted from Dickmanns

a comprehensible way.

The paper is organized as follows: Section 2 gives an
overview of the overall architecture. The qualitative scene
representation is described in Section 3. Section 4 introduces
our approach to knowledge-based risk assessment. The paper
closes with some experimental evaluation and conclusions in
sections 5 and 6.

2. ARCHITECTURE

The architecture presented here is a refinement of Dick-
manns’ architecture ([8], see Fig. 1). Dickmanns’ architec-
ture consists of different components in order to realize vari-
ous cognitive functions in an intelligent vehicle. Fig. 2 shows
a refinement of the higher-level components: situation assess-
ment, behavior decision, and mission planning. These three
components have different characteristics w.r.t. time critical-
ity. While mission planning can be done in rather long cycles,
situation assessment must be able to identify risks quickly.

The situation assessment analyzes the situation perceived by
the sensory information and recognizes situation patterns.
Some decisions have to be made already at this level based
on the current situation if they need a fast intervention to the
maneuver control. The central component here is the quali-
tative representation of the information perceived by the sen-
sors, which is mapped into a qualitative abstraction (see Sec-
tion 3). The current situation can be evaluated by considering
matching situation and behavior patterns. If a dangerous situ-
ation is identified a direct interaction with the vehicle control
might be necessary in order to avoid a collision with some ob-
stacle. Having formalized the current situation and possible
actions of traffic participants future world states can be com-
puted (“possible worlds™). This allows for identifying risks
in the near future.

The main task of the behavior decision is to create a short-
term plan about the next actions of the vehicle. Here, the next
mission goal (from the mission planning component) and the
current situation must be taken into account. This also in-
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Figure 2. Higher-level components

cludes the plans of other traffic participants which might in-
terfere with the own plan. The risk assessment on this level
evaluates possible conflicts in the plan.

Mission planning is on the most abstract and least critical
(w.r.t. time) level. Here, decisions are made on a very high
level, e.g., for basic strategies (e.g., economic vs. time-saving
driving) or route planning. The selected goals are passed
to the behavior decision component where planning is per-
formed on a more detailed level.

3. QUALITATIVE SCENE REPRESENTATION

We propose a symbolic representation of the world within the
higher layers of the architecture. The quantitative data origi-
nating from the sensors is mapped onto a qualitative abstrac-
tion. This builds the basis for higher level tasks like situa-
tion assessment, planning, and behavior control. In order to
create such a representation, time series of different measures
are divided into intervals by monotonicity-based or threshold-
based segmentation algorithms [18]. This leads to time inter-
vals for different properties of objects or object pairs, e.g.,
intervals where the distance between two objects decreases
monotonically, or intervals where the velocity of an object
can be described by a qualitative class (e.g., “high speed”).
Using such an abstraction spatiotemporal patterns can be de-
scribed in a human comprehensible way, e.g., “A approaches
B” if the distance between those two objects decreases mono-
tonically. The temporal dimension is represented by time in-
tervals. This representation can be easily mapped to a quali-
tative representation like Allen’s interval logic [1].

In order to create such a qualitative scene representation qual-
itative mapping modules have to observe different quanti-
tative time series or have to obtain information from other
sources (e.g., object classification modules). The qualitative
mapping is done cyclically. During each cycle an update of
the knowledge base (KB) is performed, i.e., new facts are in-
serted into the KB or existing intervals are extended (if a re-
lation is still valid). The performance of the mapping cycles
is crucial as it must be fast enough to provide information to



the higher level components in order to allow the intelligent
vehicle to act in time.

Our knowledge base allows for storing relevant information
for describing traffic situations, e.g.:

« Object classes: This includes classes (e.g., truck), class
properties (like capabilities or special traffic rules for a class),
class hierarchy, and the assignment of instances to classes.

« Topological information: In order to represent the position
of dynamic objects in relation to the ground regions RCC-5 is
used in this approach [2]. With these relations it can be repre-
sented whether an object region is disconnected, overlapping,
inside, part of, or (spatially) equal to a ground region.

« Spatial relations: It is useful to use other spatial represen-
tation in order to represent relations between objects, e.g.,
before/behind relations from an egocentric point of view.

« Speed information: Information about speed and accelera-
tion of single objects (e.g., high speed, decelerating). In this
domain lateral speed, acceleration and position (w.r.t. to a
lane) are also important.

« Distance information: Distance classes and the develop-
ment of distances between object pairs (e.g., close, approach-
ing; cf. [19]).

« Road network: Information about roads, lanes, junctions,
lane regions and their connectivity. This is needed in order to
know which region transfers are possible and allowed.

« Traffic situation: Different information about signals, signs
and traffic rules (possibly assigned to lanes and thus to vehi-
cles on these lanes).

« Background knowledge: Here, different rules can be set up
in order to allow for deriving information from atomic facts,
e.g., the definition of a one-way street (if all neighboring lanes
just allow for driving in the same direction).

4. KNOWLEDGE-BASED RISK ASSESSMENT

This section introduces our approach to knowledge-based risk
assessment. In the following subsections the representation
of risk patterns, the use of an inference engine for pattern
matching, and gaze control as application are presented.

Risk Patterns

We define a risk pattern as an abstract description of a situa-
tion where certain objects are dangerous for the own vehicle
or some other traffic participant. The patterns are based on the
qualitative representation in the knowledge base. Complex
patterns can be composed of the different basic predicates.
Allen’s temporal relations between these predicates can be
used for a more concise definition of risk patterns. Risk pat-
terns extend the pattern description described in [15] by the
definition of risk variables and corresponding risk values.

In the patterns “a child approaches the lane where the car is
driving” or “an unknown object is moving fast at a close or
medium distance” risk values would be assigned to the ob-
jects “child” and “unknown object”.
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Figure 3. lllustration for gaze control to dangerous objects
(children approaching bus)

A risk pattern for a child that approaches at a high speed a
bus stop where also a bus is approaching (see Fig. 3) can be
represented by?:

approachi ng(child, busstop),

speed(child, fast),

appr oachi ng(bus, busstop).

Pattern Matching

A pattern matching module observes the KB and notifies the
risk assessment if certain patterns are detected. In each risk
assessment cycle all risk patterns are evaluated and all valid
assignments are derived by an inference engine. An assign-
ment maps constants (i.e., objects) to variables. The inference
engine just returns valid assignments w.r.t. the defined pattern
and its temporal interrelations.

For all objects which are identified as risky by at least one
pattern, a risk value is assigned. If more than one pattern
matches for an object, the risk value is computed by taking
into account all values of the matching risk patterns. Right
now we use a simple risk function by assigning the maximum
risk of all matched risk patterns for a single object, i.e., if an
object is risky due to more than one pattern the highest risk
value is assigned.

The risk assessment component continuously analyses the
KB triggering further action on every risk pattern found. The
result of the risk assessment is a list of dangerous objects with
their respective risk values (Fig. 4). This list of risky objects
is available for the behavior decision for gaze control.

Gaze Control

More attention should be paid to objects with high risk val-
ues, e.g., if their class membership is not recognized, if they
constitute a very high danger, or if their behavior is known
to be highly unpredictable. It is crucial to get further, more

IThisis asimplifi ed representation for a better understanding.
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detailed information about such objects, thus they should be
especially considered during perception of the environment.
Advanced vision systems as proposed by Dickmanns [8] en-
able intelligent vehicles to control gaze and pay attention to
certain important regions of the environment.

The approach presented here identifies possibly dangerous
objects which should be focused by the vision system. Based
on the risk values it can be decided in what order and to which
extent objects are to be examined. This leads to knowledge-
based behavior decisions for gaze control (Fig. 4).

The behavior decision for gaze control selects which object
should be focused in the next gaze control cycle. We propose
a simple scheduling where the most risky object is focused (if
it was not examined in the cycle before). In order to prevent
objects with low risk values from being ignored forever due to
other objects with higher risk values the risk value of all non-
examined objects is increased by a constant in each cycle.
Achieving optimal scheduling was not the main focus of this
work. Scheduling algorithms are well-investigated, e.g., in
the field of operating systems.

5. EXPERIMENTAL EVALUATION

For the evaluation of our approach a prototype was devel-
oped. The ASKOF demonstrator allows for setting up traffic
situations with different regions (like roads, lanes, crossings)
and dynamic objects (traffic participants). The movements in
the simulation are mapped onto the qualitative representation
which is shown in Section 3. For the qualitative mapping dif-
ferent mapping modules were realized, e.g.:

« SpeedMapper: Creates intervals with different speed
classes (e.g., high speed) and the development of the speed
(e.g., acceleration).

« DistanceMapper: Creates intervals with different distance
classes (e.g., far distance) and the development of the distance
(e.g., approaching).

« ClassMapper: Assigns the recognized class(es) to objects
in the dynamic scene.

« TopologyMapper: Creates the topological information be-
tween objects and ground regions.

« RelativeDirectionMapper: Assigns egocentric direction
information relative to the direction of an object (e.g., be-
fore/behind).

« LateralPositionMapper: Creates intervals with different
lateral positions within a lane (e.g., left, center, right) and the
lateral movement (e.g., moving left, moving right).

The different mapping modules create and update facts rep-
resenting the belief about the world and assert them to the
KB. For the ASKOF prototype we decided to use F-Logic as
representation language because of its representational power
[11]. As implementation we used Flora-2 [16], [28] which is
based on XSB [23], [24]).

Different sample risk patterns have been defined. In Table
1 the different patterns and their corresponding queries and
risk values are shown. S and E represent the start and end
values of an interval where this pattern is valid. The KB is
queried with the risk patterns, all results are collected, and
corresponding risk values are assigned to the risky objects.

Table 1. Risk pattern examples and their risk values

Risk pattern Formalization Risk value
Dynamic object in | maxDistHolds(medium_distance, Actor, 0.1
medium distance iv, S, E), relationHolds(ahead, Actor,

iv, S, E),isMemberOfClass(Actor, dy-

namic_object)
Unidentifi ed object isDirectM emberOfClass(U, object) 0.5
Child aheadinclose | dynamicObjectPropertyHolds(iv, speed, 0.6
distance, low speed slow, S, E), maxDistHolds(far, Actor,

iv, S, E), relationHolds(ahead, Actor,

iv, S, E), isDirectMemberOfClass(Actor,

child)
Child ahead inclose | dynamicObjectPropertyHolds(iv, speed, 0.75
distance, medium medium_speed, S, E), maxDis
speed tHolds(close, Actor, iv, S, E), rela

tionHolds(ahead, Actor, iv, S, E),

isDirectM emberOfClass(Actor, child)
Child ahead inclose | dynamicObjectPropertyHolds(iv, speed, 0.9
distance, high speed fast, S, E), maxDistHolds(close, Actor,

iv, S, E), relationHolds(ahead, Actor,

iv, S, E), isDirectMemberOfClass(Actor,

child)

For an evaluation the approach was tested on different sce-
narios. In the basic setting of the scenarios there are four
dynamic objects in the scene: the own vehicle, a bus, and
two children. In the simulation the own vehicle has a camera
attached to the car body which can be directed to focus dif-
ferent objects. The experiments show that risky objects are
identified correctly and that the gaze control is directed to-
wards these objects. The gaze control scheduling algorithm
mentioned above causes the camera to look at different ob-
jects at each gaze control cycle. Fig. 5 shows a screenshot of
the ASKOF prototype. On the right three tables give informa-
tion about gaze control, risk assessment, and pattern match-
ing. The table at the top shows the objects which currently
have been identified as risky. The object presently observed
is marked with a red box. The table in the middle shows the
history of the risk objects. The table at the bottom shows all
patterns that have matched so far.

6. CONCLUSION

In this paper we presented an approach to knowledge-based
risk assessment. This approach presumes a qualitative scene
representation which has to be created by a qualitative map-
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Figure 5. Screenshot of the ASKOF prototype

ping. Risk patterns are defined by combining different predi-
cates from the KB and possibly setting them into temporal in-
terrelations. Relevant information about the scenes are stored
in a KB. The KB is queried in order to identify dangerous ob-
jects. The different objects identified by the risk assessment
are focused by gaze control.

Existing approaches for recognizing or avoiding dangerous
situations are usually not generic and do not allow for in-
tegrating background knowledge, i.e., very often these ap-
proaches are specialized in performing one single task (e.g.,
warning the driver that a lane change might be dangerous).
Some situations demand background knowledge to be taken
into account in order to accurately assess a risk value. For
non-standard or complex traffic situations (e.g., in cities) it is
usually hard to formulate all possible aspects relevant for risk
assessment. A knowledge-based approach allows for realiz-
ing abstract rules and background knowledge and to use an
inference engine in order to evaluate a situation.

Future work will address the learning of behavior patterns and
their application in order to create adaptive intelligent agents.
It has to be investigated to what degree the performance of
agents can be increased by learning and applying such pat-
terns.
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