

Abstract—Today, manufacturing systems face an increasing

dynamic environment. This results in a need for adaptive control
strategies. Autonomous Control enables logistic objects to render
their own local decisions. The logistic performance of autonomous
systems depends on a careful design of the system. Therefore, it is
necessary to model and test autonomous processes before
implementing them. The Autonomous Logistic Engineering
Methodology is designed to develop autonomous processes. To
enable testing and validating the models, the methodology is
extended by a simulation component. This article presents a
procedure, to transform the process models into executable
simulation models. This procedure uses concepts and techniques of
the Model Driven Architecture.

Keywords—Autonomous Processes, Modeling, Model Driven
Architecture, Model Transformation, Simulation

I. INTRODUCTION
OGISTIC systems face growing complexity and the
influence of an increasingly dynamic environment. One

strategy to cope with this development is the application of
autonomous control, as it decentralized decision competencies
and therefore reduces the complexity of each local decision.
The Collaborative Research Center 637 (CRC 637)
investigates the advantages and restrictions of autonomous
control in logistic systems.

In the course of applying autonomous control to real world
systems, it is necessary to model and simulate autonomous
logistic processes, as well as to evaluate their performance and
feasibility before implementing them.

The Autonomous Logistic Engineering Methodology
(ALEM) [1] assists logistic experts in modeling autonomously
controlled logistic systems. To support an evaluation of the

Manuscript received October 29, 2010. This research is funded by the
German Research Foundation (DFG) as part of the Subproject B2 of the
Collaborative Research Center 637 “Autonomous Cooperation Logistic
Processes – A Paradigm Shift and its Limitations” (CRC 637).

B. Scholz-Reiter is with the BIBA – Bremer Institut für Produktion und
Logistik GmbH at the University of Bremen, Hochschulring 20, 28359
Bremen, Germany.

D. Rippel is with the BIBA – Bremer Institut für Produktion und Logistik
GmbH at the University of Bremen, Hochschulring 20, 28359 Bremen,
Germany (phone: +49 421 218-9793; fax: +49 421 218-5640; mail:
rip@biba.uni-bremen.de).

St. Sowade is with the BIBA – Bremer Institut für Produktion und Logistik
GmbH at the University of Bremen, Hochschulring 20, 28359 Bremen,
Germany.

models, ALEM is currently extended by a simulation
component. Due to the structure of the ALEM models, they
cannot be executed directly within a simulation platform.
Consequently, the models have to be preprocessed to enable
simulation.

This article presents a transformation concept to transform
ALEM models into arbitrary, executable simulation models.
The concept adapts several elements of the Model Driven
Architecture (MDA) [2] to achieve this goal. The article
shortly introduces autonomous control, the ALEM framework,
and the advantages of simulation in general. Finally, it
proposes the MDA-based approach to transform ALEM
models into executable simulation models.

A. Autonomous Control
Various scientific disciplines, like physics, biology,

artificial intelligence, control theory, and the engineering
sciences, use the term autonomous control [3]. In the context
of logistic systems, Hülsmann and Windt define autonomous
control as “processes of decentralized decision-making in
heterarchical structures. It presumes interacting elements in
non-deterministic systems, which possess the capability and
possibility to render decisions independently. The objective of
Autonomous Control is the achievement of increased robust-
ness and positive emergence of the total system due to distri-
buted and flexible coping with dynamics and complexity” [4].

Up to now, different decision-making strategies have been
developed for manufacturing systems as well as for logistic
transport scenarios. Although it is impossible to predict the
overall system’s behavior, simulation studies, applying the
different decision strategies, demonstrate the positive effects
of autonomous control on the system’s performance,
flexibility and robustness (see for example [5], [6], [7], [8]).

The application of autonomous control in manufacturing
systems delegates planning capabilities to commodities.
Instead of one global master plan, the commodities proceed
through production, based on their own local decisions. For
example, once they enter a shop floor, they autonomously
request manufacturing from suitable machines or
workstations. The commodities use objectives to select the
most preferable resource. For example, objectives can demand
that the commodity proceeds through manufacturing quickly
or that it selects those resources with minimum costs.

In case of a malfunction, the commodities react
dynamically. Once they are aware of the situation, they

Modeling and Simulation of Autonomous
Logistic Processes

Bernd Scholz-Reiter, Daniel Rippel, and Steffen Sowade

L

request manufacturing from another machine with similar
characteristics. With regard to their product structure, they can
shift the sequence of manufacturing steps. This allows
postponing problematic production steps and helps resolving
bottleneck situations [9].

To enable autonomous control in manufacturing systems,
the involved logistic objects have to be equipped with the
necessary logical and technological infrastructure. On the
technological side, the logistic objects have to be able to
perform communication, data storage, data processing, and
decision execution [10]. On the logical side, a suitable
decision-making strategy has to be selected and applied to the
logistic system. As it is impossible to predict the overall
system’s behavior, the selections have to be validated and
compared to different alternatives. Therefore, simulation
provides a tool to experiment with different setups. The next
section shortly introduces simulations and their advantages.

B. Simulation in Logistics
According to the VDI Guideline 3633 sheet 1, simulation

resembles the process of replicating a system in form of a
model. The simulation model covers the system's dynamic
behavior. It is used to draw experimental conclusions that can
be carried over to the real world [11]. Following this
definition, simulation studies allow examining a system, apart
from its real world counterpart.

There are two main areas of application. First, simulations
assess the impact of modifications to an existing system, for
example while upgrading an existing system to make use of
autonomous control. Second, simulations evaluate the
feasibility of a newly designed logistic system prior to its
implementation. In both cases, a simulation study provides
insight into the systems behavior and performance. In
particular, during the design process, simulation supports the
identification of errors in the modeled processes and prevents
these from being implemented in the real world system. Due
to the comparably low costs of modifying a simulation model,
simulations allow comparing different autonomous decision-
making strategies and configurations, with the aim of
identifying the best settings for one particular logistic system.

A simulation consists of three main components: the
simulation platform, the simulation model, and of a set of
experiments [11]:

• The simulation platform defines a framework for the
simulation and is able to execute the simulation model.

• A simulation model describes a scenario, using the
notation provided by the platform. A simulation model
usually represents the real world system.

• An experiment describes one certain situation within the
system. While the simulation model defines the
scenario itself, an experiment defines one definite
situation.

Some simulation platforms omit the distinction between
simulation models and experiments. These platforms require
modeling of the actual systems state in the simulation model

itself. They treat different states as distinct models [11].
There exist several simulation technologies, for example

material-flow simulation, process-based simulation, multi-
agent simulations, or mathematical simulations. Those
simulation technologies differ in the selection and focus of
simulated elements. For example, material-flow simulations
focus on materials, related resources and physical material
flows [12], while process-based simulations use activities as
primitive simulation elements and focus on their logical and
temporal dependencies [13].

In the context of autonomous control, multi-agent
simulations (MAS) provide suitable means to simulate the
logistic systems. MAS focus on the system's objects and their
interactions. They are used to represent and analyze systems
that are made up from interacting and communicating entities
[14]. The autonomy of intelligent logistic objects and agents
constitutes another conceptual similarity between MAS and
autonomously controlled systems. Scholz-Reiter et. al. pointed
out, that agents are one option to interpret intelligent logistic
objects [3]. Due to the high degree of freedom, concerning the
implementation of agents, a MAS was selected to simulate the
ALEM models.

II. AUTONOMOUS LOGISTIC ENGINEERING METHODOLOGY
The Autonomous Logistic Engineering Methodology

(ALEM) is developed within the CRC 637. It provides tools
and methods to develop models of autonomously controlled
systems. It offers a notational concept, a view concept, and a
procedure to model autonomous systems. The methodology
relies on decisions about the desired system infrastructure and
the system's architecture. Additionally, ALEM provides a
software tool (ALEM-T) which supports the creation,
simulation, and evaluation of the model. Fig. 1 depicts the
framework's structure.

Fig. 1 The ALEM Framework

ALEM's notation bases on the Unified Modeling Language

(UML) and extends it by several elements and diagrams
specific for this domain of autonomous logistic processes. For
example, knowledge maps, a layout diagram, and product
structure diagrams have been added [15], [16].

Process- and system-models are usually associated with a
high degree of complexity [17]. Hence, ALEM applies a view
concept (Fig. 2) [18]. Views focus on single aspects of the
overall system. They enable editing of lesser complex
segments of the model [19].

ALEM’s view concept uses five primary views to divide

the model into single, semantic aspects. These views are
grouped further in static (structure, abilities and knowledge)
and dynamic aspects (processes and communication
protocols). While static aspects describe unchanging features
of the model, dynamic aspects subsume procedures performed
by the logistic objects. In addition, the contents of the
semantic views are further differentiated into micro aspects,
concerning object internal model elements, and macro aspects,
which describe for example the overall systems structure.

Communication

Structure Knowledge Ability

Process

• UML–Activity Diagramms
• UML–State Machines

Communication

• UML–Class Diagrams
• UML–Sequence Diagrams

Structure

•UML-Class Diagrams
•Layout Diagrams

Knowledge
•UML Class Diagrams
•Product Structure
Diagrams

•Knowledge Maps

Ability

•UML-Class Diagrams
• Knowledge Maps Dynamic

Static

Micro

Macro
Fig. 2 ALEM View Concept

The semantic views differentiate between the system's

structure, knowledge, abilities, processes, and communication.
Each view uses multiple diagrams to depict a certain aspect.

• The structure view contains the structural features of
the system. It defines all logistic objects present in
the system and the relationships between them. In ad-
dition to the definition, this view includes the spatial
layout of the modeled scenario. This semantic view is
a static view, primarily containing macro aspects.

• The knowledge view covers all aspects concerning
knowledge, and the objectives. UML-Class diagrams
are used to represent the logistic object's knowledge
in form of attributes. In addition, it uses more
specialized diagrams, like product structure diagrams
and knowledge maps. This semantic view is a part of
the static view and mainly contains micro aspects.

• The ability view uses a UML-Class diagram to
represent abilities, which can be performed by the
logistic objects. It applies knowledge maps to assign
abilities to specific logistic objects. This semantic
view belongs to the static view and covers micro as
well as macro aspects.

• The process view uses UML-State Machines and
UML-Activity diagrams to describe the behavior of
logistic objects. It is a part of the dynamic view and
incorporates micro and macro aspects.

• The communication view contains UML-Class and
UML-Sequence diagrams. The class diagram defines
messages exchanged by logistic objects, while
sequence diagrams represent communication
protocols. This view is dynamic and mainly contains
macro aspects.

A tool for modeling autonomous logistic systems was
proposed as a part of the ALEM framework [20]. Fig. 3
presents a screenshot of the tool and highlights the most
important areas. On the left, it displays the model explorer and
the model overview. The explorer provides access to different
models, while the overview shows the different diagrams of
one particular model. These are ordered in accordance to the
view concept. The overview allows to create and open the
different views’ diagrams. In the center, there is the graphical
diagram editor, having the drawing palette on its right side
and the property sheet at the bottom. The property sheet
provides editing capabilities for a selected element's properties
like a class' name or an attribute's type. To the right, there is a
dynamic view, which gives access to inter diagram relation-
ships. According to the currently edited diagram, it provides
different functionalities. For example, while editing the
structure view’s class diagram, it enables the assignment and
creation of life cycles (process view) for logistic objects [15].

Fig. 3 Screenshot of the ALEM-Tool

The ALEM-Tool is implemented as a set of plug-ins within

the Eclipse Rich Client Platform (RCP). The ALEM-Tool
relies on several open source frameworks, like the Eclipse
Modeling Framework (EMF) to realize the ALEM models
[21], [22]. Additionally, EMF-based implementations of the
Unified Modeling Language are used to cover default
diagrams. Graphical editors were generated for all diagrams
using the Eclipse Graphical Modeling Framework [23].

By linking the tool to an existing simulation platform, it
will be possible to validate and to iteratively enhance the
models. The goal is to enable a user of ALEM-T to directly
execute the models within or from the application.

III. SIMULATION OF ALEM MODELS
ALEM models use a variety of standard diagrams.

According to the ALEM view concept, several types of
diagrams apply in different contexts. For example, UML-
Class diagrams depict the systems structure, the logistic
objects' knowledge, as well as their abilities. Therefore, the

semantic meaning of syntactically equal elements differs. To
reflect the meaning of an element, the model's structure
closely conforms to the ALEM view concept. Structural
elements are stored in one part of the diagram, while
knowledge related elements are stored in another segment. In
contrast, simulation models focus on the objects or the
processes. They store all information regarding one entity
(e.g. agent, object, activity) at the entity itself. Consequently,
the syntactic and semantic structure of ALEM models differs
from simulation models. For this reason, ALEM models have
to be preprocessed and transformed to be executable within a
simulation environment.

A. Model Driven Architecture
This section proposes a general transformation procedure,

based on concepts from the Model Driven Architecture
(MDA) [2], to transform ALEM models into models of an
arbitrary simulation platform. The procedure takes an ALEM
model as input and creates an executable simulation model for
the selected target platform. For each target simulation
platform, a RCP plug-in will be implemented which creates
the necessary models and files.

An MDA-based approach was selected, as MDA proposes
the paradigm to implement programs apart from platform
specific requirements as models. In this process, MDA applies
transformations to specialize generic models to comply with a
specific target structure, like source code or equal highly
specific models. Mellor et al. [24] provide an overview over
the MDA's basic concepts and the relationships between them.
MDA's primitive types are models and meta-models. A model
is an instance of a meta-model. If a meta-model describes
elements specific to a certain platform, its implementations are
called platform specific models (PSM). If the meta-model is
more abstract, the models are called platform independent
models (PIM). The structure of each formal modeling
language can be expressed using a meta-model, describing
which elements are allowed in which context.

B. Transformation Process
To enable simulation, ALEM models have to be

preprocessed and transformed on both the semantic and the
syntactical level. Therefore, the transformation procedure
covers three major steps: first, it restructures information and
thereby identifies ambiguous or missing information. Second,
it obtains all information necessary to simulate the model and
resolves ambiguities by instantiation. Finally it refines the
extended, restructured model into an executable simulation
model (Fig. 4).

On the semantic level, the first transformation step collects
and restructures information that is present in an ALEM
model. The restructuring process can identify missing or
ambiguous information and point these out to the user.
Moreover, it converts semantic elements of ALEM into
respective representations of the target platform. For example,
the transformation matches an intelligent logistic object,

represented as a class in ALEM, to the simulation model’s
representation of a transportation device. The second trans-
formation step, the instantiation, acquires missing information
from the user. By instantiating the simulation elements, the
user creates the simulation model, including one particular
simulation experiment. He assigns initial values and setups to
the simulation elements. On the syntactical level, the third
transformation step translates between different model
formats, like EMF, XML-Schemes, modeling languages or
program code.

ALEM Model (PIM)

Executable Simulation Model (PSM)

1. Restructuring of
ALEM information

3. Refinement

2. Instantiation

Meta-Model

Model Instantiation

Conceptual Simulation Model (PIM)

Fig. 4 Model Transformation Concept

The first two steps require the assistance of an intermediate
model. This model conforms to the executable simulation
model with respect to semantic aspects, but omits syntactic
aspects. It operates on conceptual levels without regarding
characteristics of the target simulation platform. It is called a
conceptual simulation model (CSM). The first transformation
step collects and restructures present information. Thereby, it
creates a meta-model for the later insanitation (CSM-Meta-
Model). By instantiating this meta-model, a human expert
adds and embeds missing information into the CSM. Finally,
the CSM’s instance is refined to be executable on one
particular simulation platform. This last step executes the
syntactical conversion into platform specific languages.

Following the concepts of the MDA, the CSM, as well as
the ALEM-Model itself, are considered to be platform
independent. Although the CSM conforms to one particular
simulation technology (e.g. MAS), it omits platform specific
characteristics.

To assure compatibility with the ALEM-Tool, the CSM
models have to be implemented using EMF. Therefore, it is
necessary to evaluate the semantic structure of the target
simulation platform and to formalize a description of the
CSM-Meta-Model’s structure. Exemplary, Fig. 5 depicts an
EMF description of the structure of a CSM-Meta-Model for a
multi agent simulation platform. All CSM-Meta-Models
derived by the first transformation step, comply with this
structure. Therefore, this description is the CSM-Meta-
Models’ meta-model.

Fig. 5 Sample CSM 2nd level meta-model for a multi agent simulation (EMF/eCore Notation)

This CSM’s main simulation elements are agents. Those
consist of a set of attributes, different kinds of operations
(actions and abilities), and a state machine, describing the
agents’ behaviors. Actions and abilities differ in their scope.
Actions affect the simulation’s world model. For example,
actions describe movement or the loading or unloading of
cargo. In contrast, abilities only affect the agent internal states,
like the calculation of its objectives or the planning of a route.
The state machines consist of states and conditional transition.
Each state can either be a state machine on its own, or it refers
to an ability or action. This structure enables reusability of the
state machines. Tasks are default data types, which describe
an agent’s primary goals, like being manufactured or
transported. Using this description of the CSM-Meta-Model’s
structure, the first transformation step can derive a valid CSM-
Meta-Model from an ALEM-Model.

1) Restructuring

The first transformation step instantiates the
aforementioned description of the CSM-Meta-Model’s
structure (e.g. Fig. 5), to create so called agent templates.
These templates form the CSM-Meta-Model. Therefore, the
step gathers information from the different ALEM diagrams
and combines the information. All elements of the ALEM
structure view’s class diagram are converted either to agents
or to data types, depending on the existence of an associated
life cycle. In both cases, the transformation copies all
attributes and operations, defined in the respective views, into
the templates. The process view’s UML-State-Machines and
UML-Activity-Diagrams are transformed into the CSM’s state
machines and are associated to the respective agents.
Therefore, the transformation introduces empty pseudo-states
into the activity diagrams, to convert them into state machine.

2) Instantiation

The second transformation step is the instantiation of the

CSM-Meta-Model. The user creates the simulation experiment
by instantiating the agent templates. This includes the
definition of the scenario’s spatial layout as well as of the
agents’ initial attribute values.

To enable this task, ALEM’s structure view includes a
layout diagram. The corresponding editor is generated using
the CSM-Meta-Model’s structural description to handle
arbitrary CSMs. It provides modified a palette and property
sheets to access the agent templates instead of the generic
agent type described in Fig. 5. As a result, the user can edit
and spatially position the agents’ instances.

3) Refinement

The refinement transformation step converts the scenario’s
formal EMF model (the CSM instance) into an executable
simulation model. Depending on the target simulation
platform, different technologies must be applied to perform
this step. Target platforms can require models in a textual
form (e.g. XML or source code) or in form of formal models
like EMF or different internal model formats.

In case of textual models, the Eclipse Model-To-Text
(M2T) project provides several script-based languages to
convert EMF models into specified texts. For example, EMF
itself uses the Java Emitter Templates (JET) to generate
executable Java code out of its models [22].

The Eclipse Model-To-Model (M2M) project provides
different standardized model transformation languages. All of
these focus on EMF, which enables an efficient
transformation within the ALEM context. Nevertheless,
although the source models (instances of the CSM) are created
using EMF, there is no guarantee that the target models
conform to EMF. In this case, a direct transformation may be
impossible or has to make use of import functions provided by
the simulation platform (e.g. XML Import). This directly
influences the selection of the target simulation platform, as
appropriate formats or import functions must be available.

The proposed transformation procedure can be imple-
mented for several target simulation platforms. Nevertheless,
each platform requires the implementation of a suitable CSM,
as well as an implementation of the required transformations.

Once the process is implemented, a majority of the
transformation executes automatically. Commonly, the logistic
expert, using ALEM, has to define the scenario/experiment
(instantiation) as well as the simulation elements’ basic
functionalities (e.g. operations or abilities). The use of
templates for common basic functions (e.g. default decision
strategies, or operations like loading or unloading cargo) eases
the instantiation for the logistic expert.

IV. CONCLUSION AND FUTURE WORK
Simulation provides a suitable technique to validate and test

autonomous business processes. In particular, during the
development of such processes, simulation supports an
iterative enhancement of the modeled processes. As ALEM
models cannot execute directly in an arbitrary simulation
platform, ALEM will apply an MDA-based transformation
process to convert its models into simulation models.

The possibility to simulate ALEM models will support the
application of autonomous control in different ways. First, it
will provide logistic experts with a tool to check the
correctness and feasibility of the modeled autonomous
processes. Second, simulation results can be compared with a
real world logistic system to assess the benefits and drawbacks
of an application of autonomous control to that system.
Furthermore, the logistic expert can experiment with different
autonomous setups to determine the most suitable alternative
for his system.

As a next step, the transformation will be implemented
exemplarily for a specific simulation platform. Thereby, a
library of default abilities will be created, to ease the use of
the transformation. Afterwards, the prototypical
transformation will be tested to assess the limitations of
ALEM-Models regarding their qualification to provide
executable simulation models.

REFERENCES
[1] B. Scholz-Reiter, J. Kolditz, and T. Hildebrandt, “Engineering

autonomously controlled logistic systems” International Journal of
Production Research, vol. 47, no. 6, pp. 1449–1468, 2009.

[2] Object Management Group, Model Driven Architecture, Online, Object
Management Group Std. 1, Rev. 1. [Online]. Available: http://-
www.omg.org/mda/ Last access: 18.10.2010.

[3] B. Scholz-Reiter and H. Höhns, “Selbststeuerung logistischer Prozesse
mit Agentensystemen” in Produktionsplanung und -steuerung:
Grundlagen, Gestaltung, Konzepte, G. Schuh, Ed. Berlin: Springer
Verlag, 2006, pp. 745–780.

[4] M. Hülsmann and K. Windt, Eds., Understanding of Autonomous
Cooperation and Control in Logistics – The Impact of Autonomy on
Management, Information, Communication and Material Flow. Berlin:
Springer Verlag, 2007.

[5] B. Scholz-Reiter, F. Boese, T. Jagalski, and K. Windt, “Selbststeuerung
in der betrieblichen Praxis: Ein Framework zur Auswahl der passenden
Selbststeuerungsstrategie” 2007. [Online]. Available: http://-
www.forex.uni-bremen.de/cgi-bin/forex2/user/-
publish?search=sqn&sqn=00125655 Last access: 18.10.2010.

[6] B. Scholz-Reiter, M. Görges, T. Jagalski, and A. Mehrsai, “Modelling
and analysis of autonomously controlled production networks” in
Proceedings of the 13th IFAC Symposium on Information Control
Problems in Manufacturing (INCOM 09), Moscow, Russia, 2009, pp.
850–855.

[7] S. Dashkovskiy, F. Wirth, and T. Jagalski, “Autonomous control in shop
floor logistics: Analytic models ” in Manufacturing, Modelling,
Management and Control 2004, G. Chryssolouris and D. Mourtzis, Eds.
Amsterdam, NL: Elsevier Science Ltd, 2005.

[8] H. Rekersbrink, T. Makuschewitz, and B. Scholz-Reiter, “A distributed
routing concept for vehicle routing problems” Logistics Research, vol. 1,
no. 1, pp. 45–52, 2009.

[9] B. Scholz-Reiter, S. Sowade, T. Hildebrandt, and D. Rippel, “Modeling
of orders in autonomously controlled logistic systems” Production
Engineering Research & Development, vol. 4, no. 4, pp. 319–325, 2010.

[10] K. Windt, F. Böse, and T. Philipp, “Criteria and Application of
Autonomous Cooperating Logistic Processes” in Proceedings of the 3rd
International Conference on Manufacturing Research . Advances in
Manufacturing Technology and Management, J. Gao, D. Baxter, and
P. Sackett, Eds., 2005. [Online]. Available: http://www.sfb637.uni-
bremen.de Last access: 18.10.2010.

[11] VDI-Richtlinie 3633 Blatt 1: Simulation von Logistik-, Materialfluß- und
Produktionssystemen, Verein Deutscher Ingenieure, Berlin: Beuth, 1993.

[12] A. Kuhn and M. Rabe, Eds., Simulation in Produktion und Logistik.
Berlin: Springer, 1993.

[13] K. Tumay, “Business process simulation” in WSC ’96: Proceedings of
the 28th conference on Winter simulation. Washington, DC, USA: IEEE
Computer Society, 1996, pp. 93–98.

[14] A. Karageorgos, N. Mehandjiev, G. Weichhart, and A. Hämmerle,
“Agent-based optimisation of logistics and production planning”
Engineering Applications of Artificial Intelligence, vol. 16, no. 4, pp.
335 – 348, 2003, intelligent Manufacturing. [Online]. Available: http://-
www.sciencedirect.com/science/article/B6V2M-49C5CX9-1/2/-
8cb990294afa2b288f30422616fd175e Last access: 18.10.2010.

[15] B. Scholz-Reiter, S. Sowade, D. Rippel, M. Teucke, M. Özsahin, and
T. Hildebrandt, “A Contribution to the Application of Autonomous
Control in Manufacturing” International Journal of Computers, vol. 3,
no. 3, pp. 279–291, 2009.

[16] B. Scholz-Reiter, J. Kolditz, and T. Hildebrandt, “UML as a Basis to
Model Autonomous Production Systems” in Digital Enterprise
Technology: Perspectives and Future Challenges, P. F. Cunha and
P. Maropoulos, Eds. Berlin: Springer Verlag, 2007, pp. 553–560.

[17] A.-W. Scheer, Business Process Engineering - Reference Models for
Industrial Enterprises. Telos: Springer, 1994.

[18] B. Scholz-Reiter, H. Höhns, J. Kolditz, and T. Hildebrandt,
“Autonomous Supply Net Coordination” in Proceedings of 38th CIRP
Manufacturing Systems Seminar, Florianopolis, Brazil, 2005, CD-ROM,
7 pages.

[19] A.-W. Scheer, ARIS - Modellierungsmethoden, Metamodelle,
Anwendungen, 4th, Ed. Berlin: Springer Verlag, 2001.

[20] B. Scholz-Reiter, T. Hildebrandt, and J. Kolditz, “Modellierung
selbststeuernder produktionslogistischer Prozesse - die
Modellierungsmethode ALEM” in Informations- und
Kommunikationssysteme in SCM, Logistik und Transport. Teilkonferenz
der Multikonferenz Wirtschaftsinformatik 2008, D. Mattfeld, H.-O.
Günther, L. Suhl, and S. Voß, Eds. Paderborn: Universität Paderborn,
2008, pp. 173–185.

[21] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. Grose, Eclipse
Modeling Framework: a developer’s guide. Boston: Addison Wesley,
2003.

[22] Eclipse Foundation. Eclipse Modeling Framework (EMF). [Online].
Available: www.eclipse.org/emf/ Last access: 18.10.2010.

[23] Eclipse Foundation. Eclipse Graphical Modeling Framework (GMF).
[Online]. Available: www.eclipse.org/gmf/ Last access: 18.10.2010.

[24] S. J. Mellor, K. Scott, A. Uhl, and D. Weise, “Model-Driven
Architecture” in Advances in Object-Oriented Information Systems, ser.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer
Verlag, 2002, vol. 2426/2002, pp. 233–239.

.

	I. INTRODUCTION
	A. Autonomous Control
	B. Simulation in Logistics

	II. Autonomous Logistic Engineering Methodology
	III. Simulation of ALEM Models
	A. Model Driven Architecture
	B. Transformation Process
	1) Restructuring
	2) Instantiation
	3) Refinement

	IV. Conclusion and Future Work

