
 
 
 

 

  
Abstract—Today, manufacturing systems face an increasing 

dynamic environment. This results in a need for adaptive control 
strategies. Autonomous Control enables logistic objects to render 
their own local decisions. The logistic performance of autonomous 
systems depends on a careful design of the system. Therefore, it is 
necessary to model and test autonomous processes before 
implementing them. The Autonomous Logistic Engineering 
Methodology is designed to develop autonomous processes. To 
enable testing and validating the models, the methodology is 
extended by a simulation component. This article presents a 
procedure, to transform the process models into executable 
simulation models. This procedure uses concepts and techniques of 
the Model Driven Architecture. 
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I. INTRODUCTION 
OGISTIC systems face growing complexity and the 
influence of an increasingly dynamic environment. One 

strategy to cope with this development is the application of 
autonomous control, as it decentralized decision competencies 
and therefore reduces the complexity of each local decision. 
The Collaborative Research Center 637 (CRC 637) 
investigates the advantages and restrictions of autonomous 
control in logistic systems. 

In the course of applying autonomous control to real world 
systems, it is necessary to model and simulate autonomous 
logistic processes, as well as to evaluate their performance and 
feasibility before implementing them. 

The Autonomous Logistic Engineering Methodology 
(ALEM) [1] assists logistic experts in modeling autonomously 
controlled logistic systems. To support an evaluation of the 
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models, ALEM is currently extended by a simulation 
component. Due to the structure of the ALEM models, they 
cannot be executed directly within a simulation platform. 
Consequently, the models have to be preprocessed to enable 
simulation.  

This article presents a transformation concept to transform 
ALEM models into arbitrary, executable simulation models. 
The concept adapts several elements of the Model Driven 
Architecture (MDA) [2] to achieve this goal. The article 
shortly introduces autonomous control, the ALEM framework, 
and the advantages of simulation in general. Finally, it 
proposes the MDA-based approach to transform ALEM 
models into executable simulation models.  

A. Autonomous Control 
Various scientific disciplines, like physics, biology, 

artificial intelligence, control theory, and the engineering 
sciences, use the term autonomous control [3]. In the context 
of logistic systems, Hülsmann and Windt define autonomous 
control as “processes of decentralized decision-making in 
heterarchical structures. It presumes interacting elements in 
non-deterministic systems, which possess the capability and 
possibility to render decisions independently. The objective of 
Autonomous Control is the achievement of increased robust-
ness and positive emergence of the total system due to distri-
buted and flexible coping with dynamics and complexity” [4]. 

Up to now, different decision-making strategies have been 
developed for manufacturing systems as well as for logistic 
transport scenarios. Although it is impossible to predict the 
overall system’s behavior, simulation studies, applying the 
different decision strategies, demonstrate the positive effects 
of autonomous control on the system’s performance, 
flexibility and robustness (see for example [5], [6], [7], [8]).  

The application of autonomous control in manufacturing 
systems delegates planning capabilities to commodities. 
Instead of one global master plan, the commodities proceed 
through production, based on their own local decisions. For 
example, once they enter a shop floor, they autonomously 
request manufacturing from suitable machines or 
workstations. The commodities use objectives to select the 
most preferable resource. For example, objectives can demand 
that the commodity proceeds through manufacturing quickly 
or that it selects those resources with minimum costs. 

In case of a malfunction, the commodities react 
dynamically. Once they are aware of the situation, they 
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request manufacturing from another machine with similar 
characteristics. With regard to their product structure, they can 
shift the sequence of manufacturing steps. This allows 
postponing problematic production steps and helps resolving 
bottleneck situations [9]. 

To enable autonomous control in manufacturing systems, 
the involved logistic objects have to be equipped with the 
necessary logical and technological infrastructure. On the 
technological side, the logistic objects have to be able to 
perform communication, data storage, data processing, and 
decision execution [10]. On the logical side, a suitable 
decision-making strategy has to be selected and applied to the 
logistic system. As it is impossible to predict the overall 
system’s behavior, the selections have to be validated and 
compared to different alternatives. Therefore, simulation 
provides a tool to experiment with different setups. The next 
section shortly introduces simulations and their advantages. 

B. Simulation in Logistics 
According to the VDI Guideline 3633 sheet 1, simulation 

resembles the process of replicating a system in form of a 
model. The simulation model covers the system's dynamic 
behavior. It is used to draw experimental conclusions that can 
be carried over to the real world [11]. Following this 
definition, simulation studies allow examining a system, apart 
from its real world counterpart.  

There are two main areas of application. First, simulations 
assess the impact of modifications to an existing system, for 
example while upgrading an existing system to make use of 
autonomous control. Second, simulations evaluate the 
feasibility of a newly designed logistic system prior to its 
implementation. In both cases, a simulation study provides 
insight into the systems behavior and performance. In 
particular, during the design process, simulation supports the 
identification of errors in the modeled processes and prevents 
these from being implemented in the real world system. Due 
to the comparably low costs of modifying a simulation model, 
simulations allow comparing different autonomous decision-
making strategies and configurations, with the aim of 
identifying the best settings for one particular logistic system.  

A simulation consists of three main components: the 
simulation platform, the simulation model, and of a set of 
experiments [11]:  

• The simulation platform defines a framework for the 
simulation and is able to execute the simulation model.  

• A simulation model describes a scenario, using the 
notation provided by the platform. A simulation model 
usually represents the real world system.  

• An experiment describes one certain situation within the 
system. While the simulation model defines the 
scenario itself, an experiment defines one definite 
situation.  

Some simulation platforms omit the distinction between 
simulation models and experiments. These platforms require 
modeling of the actual systems state in the simulation model 

itself. They treat different states as distinct models [11].  
There exist several simulation technologies, for example 

material-flow simulation, process-based simulation, multi-
agent simulations, or mathematical simulations. Those 
simulation technologies differ in the selection and focus of 
simulated elements. For example, material-flow simulations 
focus on materials, related resources and physical material 
flows [12], while process-based simulations use activities as 
primitive simulation elements and focus on their logical and 
temporal dependencies [13]. 

In the context of autonomous control, multi-agent 
simulations (MAS) provide suitable means to simulate the 
logistic systems. MAS focus on the system's objects and their 
interactions. They are used to represent and analyze systems 
that are made up from interacting and communicating entities 
[14]. The autonomy of intelligent logistic objects and agents 
constitutes another conceptual similarity between MAS and 
autonomously controlled systems. Scholz-Reiter et. al. pointed 
out, that agents are one option to interpret intelligent logistic 
objects [3]. Due to the high degree of freedom, concerning the 
implementation of agents, a MAS was selected to simulate the 
ALEM models. 

II. AUTONOMOUS LOGISTIC ENGINEERING METHODOLOGY 
The Autonomous Logistic Engineering Methodology 

(ALEM) is developed within the CRC 637. It provides tools 
and methods to develop models of autonomously controlled 
systems. It offers a notational concept, a view concept, and a 
procedure to model autonomous systems. The methodology 
relies on decisions about the desired system infrastructure and 
the system's architecture. Additionally, ALEM provides a 
software tool (ALEM-T) which supports the creation, 
simulation, and evaluation of the model. Fig. 1 depicts the 
framework's structure. 
 

 
Fig. 1 The ALEM Framework 

 
ALEM's notation bases on the Unified Modeling Language 

(UML) and extends it by several elements and diagrams 
specific for this domain of autonomous logistic processes. For 
example, knowledge maps, a layout diagram, and product 
structure diagrams have been added [15], [16].  

Process- and system-models are usually associated with a 
high degree of complexity [17]. Hence, ALEM applies a view 
concept (Fig. 2) [18]. Views focus on single aspects of the 
overall system. They enable editing of lesser complex 
segments of the model [19].  

ALEM’s view concept uses five primary views to divide 



 
 
 

 

the model into single, semantic aspects. These views are 
grouped further in static (structure, abilities and knowledge) 
and dynamic aspects (processes and communication 
protocols). While static aspects describe unchanging features 
of the model, dynamic aspects subsume procedures performed 
by the logistic objects. In addition, the contents of the 
semantic views are further differentiated into micro aspects, 
concerning object internal model elements, and macro aspects, 
which describe for example the overall systems structure. 
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Fig. 2 ALEM View Concept 

 
The semantic views differentiate between the system's 

structure, knowledge, abilities, processes, and communication. 
Each view uses multiple diagrams to depict a certain aspect.  

• The structure view contains the structural features of 
the system. It defines all logistic objects present in 
the system and the relationships between them. In ad-
dition to the definition, this view includes the spatial 
layout of the modeled scenario. This semantic view is 
a static view, primarily containing macro aspects. 

• The knowledge view covers all aspects concerning 
knowledge, and the objectives. UML-Class diagrams 
are used to represent the logistic object's knowledge 
in form of attributes. In addition, it uses more 
specialized diagrams, like product structure diagrams 
and knowledge maps. This semantic view is a part of 
the static view and mainly contains micro aspects. 

• The ability view uses a UML-Class diagram to 
represent abilities, which can be performed by the 
logistic objects. It applies knowledge maps to assign 
abilities to specific logistic objects. This semantic 
view belongs to the static view and covers micro as 
well as macro aspects. 

• The process view uses UML-State Machines and 
UML-Activity diagrams to describe the behavior of 
logistic objects. It is a part of the dynamic view and 
incorporates micro and macro aspects. 

• The communication view contains UML-Class and 
UML-Sequence diagrams. The class diagram defines 
messages exchanged by logistic objects, while 
sequence diagrams represent communication 
protocols. This view is dynamic and mainly contains 
macro aspects. 

A tool for modeling autonomous logistic systems was 
proposed as a part of the ALEM framework [20]. Fig. 3 
presents a screenshot of the tool and highlights the most 
important areas. On the left, it displays the model explorer and 
the model overview. The explorer provides access to different 
models, while the overview shows the different diagrams of 
one particular model. These are ordered in accordance to the 
view concept. The overview allows to create and open the 
different views’ diagrams. In the center, there is the graphical 
diagram editor, having the drawing palette on its right side 
and the property sheet at the bottom. The property sheet 
provides editing capabilities for a selected element's properties 
like a class' name or an attribute's type. To the right, there is a 
dynamic view, which gives access to inter diagram relation-
ships. According to the currently edited diagram, it provides 
different functionalities. For example, while editing the 
structure view’s class diagram, it enables the assignment and 
creation of life cycles (process view) for logistic objects [15].  

 

 
Fig. 3 Screenshot of the ALEM-Tool 

 
The ALEM-Tool is implemented as a set of plug-ins within 

the Eclipse Rich Client Platform (RCP). The ALEM-Tool 
relies on several open source frameworks, like the Eclipse 
Modeling Framework (EMF) to realize the ALEM models 
[21], [22]. Additionally, EMF-based implementations of the 
Unified Modeling Language are used to cover default 
diagrams. Graphical editors were generated for all diagrams 
using the Eclipse Graphical Modeling Framework [23]. 

By linking the tool to an existing simulation platform, it 
will be possible to validate and to iteratively enhance the 
models. The goal is to enable a user of ALEM-T to directly 
execute the models within or from the application. 

III. SIMULATION OF ALEM MODELS 
ALEM models use a variety of standard diagrams. 

According to the ALEM view concept, several types of 
diagrams apply in different contexts. For example, UML-
Class diagrams depict the systems structure, the logistic 
objects' knowledge, as well as their abilities. Therefore, the 



 
 
 

 

semantic meaning of syntactically equal elements differs. To 
reflect the meaning of an element, the model's structure 
closely conforms to the ALEM view concept. Structural 
elements are stored in one part of the diagram, while 
knowledge related elements are stored in another segment. In 
contrast, simulation models focus on the objects or the 
processes. They store all information regarding one entity 
(e.g. agent, object, activity) at the entity itself. Consequently, 
the syntactic and semantic structure of ALEM models differs 
from simulation models. For this reason, ALEM models have 
to be preprocessed and transformed to be executable within a 
simulation environment. 

A. Model Driven Architecture 
This section proposes a general transformation procedure, 

based on concepts from the Model Driven Architecture 
(MDA) [2], to transform ALEM models into models of an 
arbitrary simulation platform. The procedure takes an ALEM 
model as input and creates an executable simulation model for 
the selected target platform. For each target simulation 
platform, a RCP plug-in will be implemented which creates 
the necessary models and files. 

An MDA-based approach was selected, as MDA proposes 
the paradigm to implement programs apart from platform 
specific requirements as models. In this process, MDA applies 
transformations to specialize generic models to comply with a 
specific target structure, like source code or equal highly 
specific models. Mellor et al. [24] provide an overview over 
the MDA's basic concepts and the relationships between them. 
MDA's primitive types are models and meta-models. A model 
is an instance of a meta-model. If a meta-model describes 
elements specific to a certain platform, its implementations are 
called platform specific models (PSM). If the meta-model is 
more abstract, the models are called platform independent 
models (PIM). The structure of each formal modeling 
language can be expressed using a meta-model, describing 
which elements are allowed in which context. 

B. Transformation Process 
To enable simulation, ALEM models have to be 

preprocessed and transformed on both the semantic and the 
syntactical level. Therefore, the transformation procedure 
covers three major steps: first, it restructures information and 
thereby identifies ambiguous or missing information. Second, 
it obtains all information necessary to simulate the model and 
resolves ambiguities by instantiation. Finally it refines the 
extended, restructured model into an executable simulation 
model (Fig. 4). 

On the semantic level, the first transformation step collects 
and restructures information that is present in an ALEM 
model. The restructuring process can identify missing or 
ambiguous information and point these out to the user. 
Moreover, it converts semantic elements of ALEM into 
respective representations of the target platform. For example, 
the transformation matches an intelligent logistic object, 

represented as a class in ALEM, to the simulation model’s 
representation of a transportation device. The second trans-
formation step, the instantiation, acquires missing information 
from the user. By instantiating the simulation elements, the 
user creates the simulation model, including one particular 
simulation experiment. He assigns initial values and setups to 
the simulation elements. On the syntactical level, the third 
transformation step translates between different model 
formats, like EMF, XML-Schemes, modeling languages or 
program code. 
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Fig. 4 Model Transformation Concept 
 

The first two steps require the assistance of an intermediate 
model. This model conforms to the executable simulation 
model with respect to semantic aspects, but omits syntactic 
aspects. It operates on conceptual levels without regarding 
characteristics of the target simulation platform. It is called a 
conceptual simulation model (CSM). The first transformation 
step collects and restructures present information. Thereby, it 
creates a meta-model for the later insanitation (CSM-Meta-
Model). By instantiating this meta-model, a human expert 
adds and embeds missing information into the CSM. Finally, 
the CSM’s instance is refined to be executable on one 
particular simulation platform. This last step executes the 
syntactical conversion into platform specific languages. 

Following the concepts of the MDA, the CSM, as well as 
the ALEM-Model itself, are considered to be platform 
independent. Although the CSM conforms to one particular 
simulation technology (e.g. MAS), it omits platform specific 
characteristics. 

To assure compatibility with the ALEM-Tool, the CSM 
models have to be implemented using EMF. Therefore, it is 
necessary to evaluate the semantic structure of the target 
simulation platform and to formalize a description of the 
CSM-Meta-Model’s structure. Exemplary, Fig. 5 depicts an 
EMF description of the structure of a CSM-Meta-Model for a 
multi agent simulation platform. All CSM-Meta-Models 
derived by the first transformation step, comply with this 
structure. Therefore, this description is the CSM-Meta-
Models’ meta-model. 



 
 
 

 

 
Fig. 5 Sample CSM 2nd level meta-model for a multi agent simulation (EMF/eCore Notation) 
 

This CSM’s main simulation elements are agents. Those 
consist of a set of attributes, different kinds of operations 
(actions and abilities), and a state machine, describing the 
agents’ behaviors. Actions and abilities differ in their scope. 
Actions affect the simulation’s world model. For example, 
actions describe movement or the loading or unloading of 
cargo. In contrast, abilities only affect the agent internal states, 
like the calculation of its objectives or the planning of a route. 
The state machines consist of states and conditional transition. 
Each state can either be a state machine on its own, or it refers 
to an ability or action. This structure enables reusability of the 
state machines. Tasks are default data types, which describe 
an agent’s primary goals, like being manufactured or 
transported. Using this description of the CSM-Meta-Model’s 
structure, the first transformation step can derive a valid CSM-
Meta-Model from an ALEM-Model. 

 
1) Restructuring 

The first transformation step instantiates the 
aforementioned description of the CSM-Meta-Model’s 
structure (e.g. Fig. 5), to create so called agent templates. 
These templates form the CSM-Meta-Model. Therefore, the 
step gathers information from the different ALEM diagrams 
and combines the information. All elements of the ALEM 
structure view’s class diagram are converted either to agents 
or to data types, depending on the existence of an associated 
life cycle. In both cases, the transformation copies all 
attributes and operations, defined in the respective views, into 
the templates. The process view’s UML-State-Machines and 
UML-Activity-Diagrams are transformed into the CSM’s state 
machines and are associated to the respective agents. 
Therefore, the transformation introduces empty pseudo-states 
into the activity diagrams, to convert them into state machine. 
 
2) Instantiation 

The second transformation step is the instantiation of the 

CSM-Meta-Model. The user creates the simulation experiment 
by instantiating the agent templates. This includes the 
definition of the scenario’s spatial layout as well as of the 
agents’ initial attribute values.  

To enable this task, ALEM’s structure view includes a 
layout diagram. The corresponding editor is generated using 
the CSM-Meta-Model’s structural description to handle 
arbitrary CSMs. It provides modified a palette and property 
sheets to access the agent templates instead of the generic 
agent type described in Fig. 5. As a result, the user can edit 
and spatially position the agents’ instances.  
 
3) Refinement 

The refinement transformation step converts the scenario’s 
formal EMF model (the CSM instance) into an executable 
simulation model. Depending on the target simulation 
platform, different technologies must be applied to perform 
this step. Target platforms can require models in a textual 
form (e.g. XML or source code) or in form of formal models 
like EMF or different internal model formats. 

In case of textual models, the Eclipse Model-To-Text 
(M2T) project provides several script-based languages to 
convert EMF models into specified texts. For example, EMF 
itself uses the Java Emitter Templates (JET) to generate 
executable Java code out of its models [22]. 

The Eclipse Model-To-Model (M2M) project provides 
different standardized model transformation languages. All of 
these focus on EMF, which enables an efficient 
transformation within the ALEM context. Nevertheless, 
although the source models (instances of the CSM) are created 
using EMF, there is no guarantee that the target models 
conform to EMF. In this case, a direct transformation may be 
impossible or has to make use of import functions provided by 
the simulation platform (e.g. XML Import). This directly 
influences the selection of the target simulation platform, as 
appropriate formats or import functions must be available. 



 
 
 

 

The proposed transformation procedure can be imple-
mented for several target simulation platforms. Nevertheless, 
each platform requires the implementation of a suitable CSM, 
as well as an implementation of the required transformations.  

Once the process is implemented, a majority of the 
transformation executes automatically. Commonly, the logistic 
expert, using ALEM, has to define the scenario/experiment 
(instantiation) as well as the simulation elements’ basic 
functionalities (e.g. operations or abilities). The use of 
templates for common basic functions (e.g. default decision 
strategies, or operations like loading or unloading cargo) eases 
the instantiation for the logistic expert.  

IV. CONCLUSION AND FUTURE WORK 
Simulation provides a suitable technique to validate and test 

autonomous business processes. In particular, during the 
development of such processes, simulation supports an 
iterative enhancement of the modeled processes. As ALEM 
models cannot execute directly in an arbitrary simulation 
platform, ALEM will apply an MDA-based transformation 
process to convert its models into simulation models.  

The possibility to simulate ALEM models will support the 
application of autonomous control in different ways. First, it 
will provide logistic experts with a tool to check the 
correctness and feasibility of the modeled autonomous 
processes. Second, simulation results can be compared with a 
real world logistic system to assess the benefits and drawbacks 
of an application of autonomous control to that system. 
Furthermore, the logistic expert can experiment with different 
autonomous setups to determine the most suitable alternative 
for his system. 

As a next step, the transformation will be implemented 
exemplarily for a specific simulation platform. Thereby, a 
library of default abilities will be created, to ease the use of 
the transformation. Afterwards, the prototypical 
transformation will be tested to assess the limitations of 
ALEM-Models regarding their qualification to provide 
executable simulation models. 
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