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Abstract. The increasing complexity of production logistic systems
has lead to an emergence of new decentralized control concepts. The
Collaborative Research Center 637 (CRC 637) investigates the ad-
vantages and limitations of autonomous control as one of these con-
cepts. This research mainly focuses on control strategies consisting
to precise descriptions of decision-making processes. In addition, it
is developing a modeling framework for autonomously controlled lo-
gistic systems called ALEM.

As the derivation of precise behavioral descriptions from real
world scenarios is difficult, artificial neural networks has come into
focus. They provide a suitable method to imitate a system behavior
without a formal definition. The architecture for adaptive relocation
control (ARC) uses neural networks for control purposes on shop
floors. This article proposes a concept of modeling to include ARC’s
decentralised decision strategy into the ALEM modeling framework.

1 INTRODUCTION
Autonomous control aims to increase the flexibility and performance
of logistic and production systems by allocating planning and control
abilities to individual system elements. Therefore, different meth-
ods and technologies for decision making are of central interest.
Most of these methods base on precise mathematical or procedu-
ral descriptions of the decision process. To model and simulate au-
tonomously controlled logistic systems, Autonomous Logistic Engi-
neering Methodology (ALEM) has been developed. This methodol-
ogy provides tools to model and simulate autonomous logistic sys-
tems for logistic experts. ALEM relies on a strict definition of the
system elements’ decision processes, represented by UML-Activity
diagrams and UML-State Machines. In particular, creating models
of already existing systems leads to difficulties with the derivation of
diagrams which formally describe the system‘s decision strategies.

To cope with this difficulty, artificial neural networks provide a
suitable solution to recreate the behavior of an existing logistic sys-
tem, the decision processes of which cannot be formally described
[16]. The networks can be trained to imitate the original system’s
behavior. Further, neural networks have been applied successfully to
several production logistic scenarios, for example to predict deliv-
ery dates or manufacturing costs, for quality control or for sequence
optimization [3, 6, 16, 21].

Although artificial neural networks provide a convenient technique
for decentralized decision making [17], ALEM is incapable to in-
clude neural networks into its models at the moment. Therefore, this
article investigates the requirements for the integration on ALEM.
In addition, the article depicts the advantages of integrating neural
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networks into the ALEM framework both in context of autonomous
control and with regard to the application of neural networks to pro-
duction logistic scenarios.

The analyses of the requirements on ALEM refers to an exam-
ple shop floor scenario. The scenario applies a decentralized control
strategy using artificial neural networks for decision making. ALEM
is used to model the scenario; thereby identifying missing notational
concepts. To close this gap, the article proposes concepts and nota-
tional elements to represent the neural networks within ALEM mod-
els.

The first section introduces autonomous control and neural net-
works in detail. The second section depicts the shop floor example
and explains the neural control strategy applied in the scenario. The
third section depicts the most important aspects of the correspond-
ing ALEM model as well as concepts to represent neural networks
within the model. The article closes with sketching the advantages of
integrating neural networks into ALEM.

1.1 AUTONOMOUS CONTROL

The term autonomous control is used in various scientific disciplines
like physics, biology, artificial intelligence, control theory, and engi-
neering sciences. In the context of logistic systems, Hülsmann and
Windt define autonomous control as the “processes of decentralized
decision-making in heterarchical structures. It presumes interacting
elements in non-deterministic systems, which possess the capability
and possibility to render decisions independently. The objective of
Autonomous Control is the achievement of increased robustness and
positive emergence of the total system due to distributed and flexible
coping with dynamics and complexity” [9].

The application of autonomous control delegates the planning ca-
pabilities to work pieces or workstations, and disconnects commodi-
ties from the customer’s orders. The objects dynamically create their
own production plans. For example, once an intelligent logistic ob-
ject enters production, it autonomously requests manufacturing from
suitable workstations on the shop floor. Several relocation strategies
have been investigated. Examples are the “Queue Length Estima-
tor” an ant colony algorithm or the Dynamic Logistic Routing Proto-
col. In addition, the objects apply individual objectives. In case of a
malfunction or a changing production situation, the work pieces are
capable of reacting flexible. Once they are aware of a disturbance,
they request manufacturing from another workstation of the same
type. With regard to their product structure, they can shift the order
of manufacturing steps. This allows postponing the problematic pro-
duction step and can help resolving bottle neck situations [19]. Due
to the dynamic allocation of work pieces to orders, they may shift
their target end product. Thus, they can flexibly react to changes in



the production situation, if for example new orders arrive or active
ones are canceled.

The ALEM framework is developed to model and simulate au-
tonomously controlled systems. The methodology is designed to en-
able logistic experts to create models. The methodology consists
of three components. First, a procedure model (ALEM-P) which
guides the user through the process of modeling. Second, the ALEM-
Notation (ALEM-N) which provides model elements and diagrams
to represent the system, and third, a software tool (ALEM-T), which
implements the procedure as well as the notation. The notation uses
diagrams and elements of the Unified Modeling Language (UML)
and adds several domain specific diagrams [18].

As process and system models usually imply a high degree of com-
plexity [13], ALEM applies a view concept (Figure 1) proposed by
Scholz-Reiter et al. [18]. The views focus on single aspects of the
overall model and enables editing of lesser complex segments of the
model [14].

Figure 1. ALEM View Concept [18]

The views use default UML diagrams to capture different aspects
of the overall model. For example, the structure view uses a UML-
Class Diagram to depict the elements present in the logistic system.
Those elements‘ abilities or knowledge are mapped using class dia-
grams, situated in the respective views of the model.

Symbolic modeling methods, like for example ALEM, require that
knowledge, procedures or decision making strategies are modelled
explicitly. In contrast, connectionist modeling methods, like artificial
neural networks, capture knowledge within their structure. Usually
knowledge is learned and not encoded directly. The next section in-
troduces neural networks in more detail.

1.2 ARTIFICIAL NEURAL NETWORKS

Artificial neural networks are derived from the biological concept
of neural systems in nature [20]. Their strengths are their ability to
learn from experience gained during operation, their fast data pro-
cessing and their small modelling effort. Further, they have the abil-
ity to approximate complex mathematical functions which are com-
pletely unknown or cannot be described exactly. The knowledge of
human experts is a typical example. The decision making of human
experts is based on individual experience which cannot be mapped
to an exact mathematical description. In this case, neural networks
approximate the mathematical coherences in a “black-box” manner.

An artificial neural network basically consists of neurons which
are structured in layers and connected via weighted links. There are at

Figure 2. Artificial Neuron (own depiction)

least two layers, the input and the output layer. Between these layers,
an unlimited number of hidden layers is possible [5].

Data processing within artificial neural networks is massively par-
allel. If a node receives an input signal, the value is transformed ac-
cording to the node’s activation function and is checked against the
node‘s threshold. If the value exceeds the threshold, the result either
proceeds directly to succeeding nodes or an output-function calcu-
lates the output (Figure 2). By this means, data is processed parallel
through the nodes of the different layers. The final result of the cal-
culation is presented at the output nodes.

Neural networks can learn from experience gained through opera-
tion. Hereto, sets of training data are repeatedly presented to the net-
work until it computes the favored output. The learned knowledge is
stored within the edges’ weights. Correspondingly, a continuous ad-
justing of the internal weights takes place during the training process.
This leads to an approximation of the mathematical function, which
maps the input values to correct output values. In order to verify the
generalization of the represented approximation, further sets of val-
idation data are used. In addition, this avoids a phenomenon called
Overfitting [8] which denotes a simple memorising of the presented
training data.

In general, three types of learning processes can be distinguished.
Supervised Learning denotes a procedure, where the input data as
well as the expected output is presented to the neural network [2]. In
the case of Reinforcement Learning, only the input data is presented.
Instead of the desired output, the neural network obtains feedback
whether the calculated values are correct or not [12]. Finally, Unsu-
pervised or self-organised learning encompasses the presentation of
input data without any feedback. In this case, the neural network tries
to recognize patterns within the input data autonomously [10].

2 Adaptive Relocation Control (ARC)

Scholz-Reiter et al. introduced an intelligent production control con-
cept for a customer oriented shop floor production using artificial
neural networks [15]. Here, neural network based controllers relo-
cate work pieces between machines and workstations on different
production levels.

In production environments as well as in general, neural networks
running over long time periods face the risk of Catastrophic Forget-
ting [4]. Here, useful knowledge is overwritten with new informa-
tion during the learning process. Due to this behaviour, neural net-
works are mostly trained for only one specific task or situation. If
the situation changes, the networks are either retrained or replaced.
To face this problem, Scholz-Reiter et al. propose an additional soft-
ware architecture (ARC) to structure the learning processes [17]. The
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components supervise the performance of the neural networks and
simultaneously train alternative networks. In case of decreasing per-
formance, the active network is exchanged with an alternative one.
This section first introduces the shop floor environment. Afterwards,
the setup of the additional software architecture and its top level func-
tions are described.

2.1 ARC SETUP

The neural control concept focuses on a shop floor environment [15].
The production facility is divided into several specialized depart-
ments, like a sawmill or a turnery. Work pieces can pass workstations
and machines in any order. Shop floor production is characterised by
a high degree of customization, caused by the production of only sin-
gle pieces, prototypes and small series. Furthermore, customization
leads to high variances concerning the order of production steps for
every work piece.

The control concept following Scholz-Reiter establishes an inven-
tory based control by means of artificial neural networks to this envi-
ronment. It consists of closed control loops located between the dif-
ferent production stages of the shop floor. The embedded neural net-
works are responsible for the relocation of work pieces. Each time,
a work piece is finished on a machine or workstation, a neural con-
troller determines the subsequent facility the work piece is relocated
to (see Figure 3). For each type of work pieces an appropriate neural
controller is established between the stages of the shop floor.
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Figure 3. Strucure of the control concept (own depiction)

A neural controler consists of two neural networks, one for the
relocation decisions and one for prediction proposes. The controller
is completed by an optimizer. The decisional networks determine the
optimal machine or workstation on the subsequent production stage.
Therefore, setup and processing time of the regarded work piece, as
well as the current inventory levels of possible successors are taken
into account.

The networks for decision-making are feed-forward networks with
two hidden layers. The number of output and input nodes depends
on the count of alternative workstations on the next production stage.
The networks are trained using the resilient-propagation algorithm

[1] in a supervised procedure. The initial training was conducted of-
fline with training sets modelling simple priority rules. The following
online training bases on manually chosen examples gained through
operation.

The predictive neural networks deliver forecasting values of future
inventory levels influenced by the current relocation decision. Due to
the comparatively high training effort of recurrent neural networks,
the predictive networks are also conducted as feed-forward networks
with two hidden layers [7]. To achieve a comparable performance,
the prediction horizon was set to 7 days. For their supervised training
process, the backpropagation algorithm [12] was used both for offline
and online training. The training data for the initial offline training
was derived from the inventory data logged during simulation runs
with a rule based control.

Finally, an optimizer computes the optimal inventory level using
an adaption of the simulated annealing algorithm. In this way, the
inventory levels of all machines and workstations are optimized in
respect of a maximal adherence to due dates for the shop floor.

2.2 ARC RELOCATION CONTROLLER
To cope with the problem of Catastrophic Forgetting, the control con-
cept described in the previous section is extended by a software ar-
chitecture [17]. The architecture for ARC encloses the networks (see
Figure 4), and evaluates the performance of the employed neural net-
work.
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Figure 4. Strucure of the Adaptive Relocation Control (ARC) [17]

If the quality of decisions made by a neural network decreases,
alternative networks are generated and trained. Employing internal
simulations, the performance of the active neural network and the
possible alternatives is compared. If one of the alternative networks
achieves a better performance, an exchange takes place. The archi-
tecture further collects training data for the simulated alternative net-
works and supervises the current production situation.

The relocation controller can be interpreted as a three layered sys-
tem containing the execution layer with the currently active network,
the data storage as a mid-layer and a top layer containing control,
evaluation and simulation. The functions covered by the controller
are now described.
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Evaluation The controller continuously measures the performance
of every active and simulated neural network. In addition, it mea-
sures the global adherence to due dates. The continuous evaluation
ensures that the most efficient neural networks are applied.

Creation each controller creates alternative networks, depending on
the current production situation or on trends becoming apparent.
Therefore, statistical a-priori knowledge is used to determine net-
work architectures.

Simulation The training and simulation of alternative networks is
carried out using an internal material flow simulation. The input
data is collected during operation, which allows comparing the
simulated and the running neural network’s performances. The
continuous simulation offers alternatives to the actual operating
control.

Database The database associates replaced neural networks and
production situations in which specific networks or network ar-
chitectures performed well. In addition, it stores equally classified
sets of training data. In cases where changes in the production
situation become apparent, situation specific information can be
retrieved.

Control The control component manages the interaction of single
functions. The results of the evaluation are processed and, if nec-
essary, the creation and simulation of alternative networks is trig-
gered. In addition, the active network is exchanged if an alter-
native network performs better. Further, the component collects
training data for the simulation as well as the required data to eval-
uate the controllers performance.

3 SHOP FLOOR SCENARIO IN ALEM
This section depicts the most important aspects of an ALEM model,
corresponding to the ARC job shop example explained. Thus, the
scenario’s features are characterized first. Afterwards, those ALEM
diagrams, related to the ARC controller are presented and a concept
of integrating the neural networks into the model is proposed.

3.1 SCENARIO’S CHARACTERISTICS
ARC delegates the decision, to which workstation a work piece is
relocated, to decentralized neural controllers. These controllers are
set in between the production stages. This section investigates the
scenario in terms of an autonomous control architecture.

Mainly, the system is characterized by three components: The
work pieces, the workstations and the relocation controllers.

The workstations offer their ability to perform various manufactur-
ing steps to work pieces. Each machine or workstation is associ-
ated to an input and to an output buffer storing work pieces. The
workstation is aware of its current buffer status and can commu-
nicate the status on request.

The work pieces are manufactured in accordance to their type.
Each product type is defined by a predefined sequence of pro-
duction steps. In contrast to classic autonomous scenarios, work
pieces do not select the next workstation/machine on their own,
but request a decision from the corresponding relocation con-
troller. Finally, the work piece executes the relocation controller’s
decision and proceeds to the selected workstation.

The relocation controllers The controller assumes the relocation
of one certain work piece between two fixed production stages.
If a work piece finishes manufacturing at a workstation, the relo-
cation controller decides where on the next production stage the
work piece shall processed.

Furthermore, the relocation controllers perform additional activi-
ties, like data acquisition, network evaluation and replacement as
well as they collect training data. These activities implement an-
other dimension of a decision strategy: The controller monitors
itself, and adjusts its own decisions in accordance to global objec-
tives.

The ARC control processes can be interpreted as autonomous con-
trol processes. Thus, the scenario is representable using ALEM. As
ALEM focuses on procedural descriptions, model elements are in-
troduced to capture the neural control strategy into ALEM.

Despite of the relocation controllers’ decisional strategy, the sce-
nario conforms to classical shop floor scenarios. Thus, following the
reference models proposed by Scholz-Reiter [19] and Kolditz [11],
an ALEM model can be built. The relocation controller consists of
several top level functions, as well as of a set of neural networks.
The next sections first examines which aspects of the controllers can
be expressed using the actual ALEM notation, and which aspects re-
quire future work. Requirements for the integration of external neural
control are stated and a possible interface is proposed.

3.2 MODEL OF THE CONTROLLER
The relocation controller is integrated into the structure view’s class
diagram [19] as specialization of the logistic resource (on the right
of Figure 5). This allows the assignment of abilities, knowledge and
behaviors to the controllers. The structure view’s class diagram dia-
gram models all elements present in the logistic scenario as well as
the relations among them. As the relocation controllers are not part
of the work pieces or workstations, they act as intelligent logistic
objects and have to be included into this diagram.

Figure 5. Adopted structure view’s class diagram

The relocation controllers possess a set of basic abilities, which
are incorporated into the ability view’s class diagram. These abilities
are essential to perform the top level functions provided. The corre-
sponding interfaces are depicted in Figure 6.

On top of these basic abilities, more complex actions, as well as
the controllers life cycle are established. The controller only adapts
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Figure 6. Abilities of the relocation controller

to two states: “Idle” and “Relocating”. While relocating the Make
Decision activity is applied. While the controller is idle, it constantly
executes the Maintain Performance activity. The corresponding di-
agrams are depicted in Figure 7. These activities make use of the
abilities defined for the controller.

Figure 7. Relocation controller’s UML-activity diagrams (simplified)

3.3 REQUIREMENTS TOWARDS THE
INTEGRATION

The ALEM-Tool is designed to model and simulate ALEM mod-
els. Thus, the networks have to be integrated in a way, that they can
be used within the model’s simulation. Therefore, the networks are
represented as a part of the model. Consequently, the corresponding

model elements have to include all information which is necessary to
address the networks within the simulation.

The representation and execution of the neural networks are the
only aspects of the relocation controller, which cannot be captured
by ALEM in a straight forward way. This section investigates these
aspects.

The execution of these neural networks depends on the software
used to implement them. The networks used in this example are im-
plemented using the SNNS environment 2. This environment pro-
vides TCP/IP interfaces to interact with the networks.

Representation: The external information source is interpreted as
knowledge. Thus, a visual representative is integrated into the ALEM
knowledge view. In this case, it includes the network’s TCP/IP ad-
dress and port, as well as the parameters which are required to ex-
ecute the network. The graphical elements, representing the neural
networks are depicted in Figure 8.a.

Execution: Two additional abilities must be created to execute the
networks. First, an ability to create the connection and to execute the
network and second, an ability to interpret the results. In this case,
the networks return a number corresponding to one of the machines
on the next level. This value must be mapped to the concrete machine
used in the ALEM model. The abilities are modelled within ALEM’s
ability view (Figure 8.b)

Based on the knowledge element which represents the external
information source, the executional ability can be derived. Further-
more, the knowledge object references both, the network’s return
type, as well the ALEM type it corresponds to. This allows the
derivation of the interpretation ability’s signature.

To enable an execution of these abilities in an arbitrary simulation
platform, both functions must be integrated into ALEM’s reference
libraries. Thus, templates can be created to transform the abilities’
notational elements into an executable form.

Figure 8. (a) Required knowledge elements; (b) Additional abilities

Another important requirement towards the simulation of models
involving external information sources is the selection of the sim-
ulation environment. In accordance to the type of external source,
the environment must be able to establish a connection, for exam-
ple via TCP/IP or via call operation for external files. It must provide
means to send commands and receive responses from the data source.
Therefore, the inclusion of such black -box elements requires the se-
lection of specific simulation platforms.

2 Stuttgart Neural Network Simulator, http://www.ra.cs.uni-
tuebingen.de/SNNS/
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4 CONCLUSION AND OUTLOOK
This article provides a concept of integrating neural networks into
the ALEM modeling framework. At this, a shop floor example em-
ploying the ARC control approach is introduced. The scenario’s neu-
ral controllers are interpreted as resources, to enable modelling in
ALEM. Further, notational elements to depict external, neural deci-
sion units are proposed.

As a major drawback, the decision units transfer the interface with
the neural networks away from the modelling level, to the level of
the simulation. Therefore, the simulation environment has to provide
the capability to interface to external neural networks. Furthermore,
a user has to implement the execution and evaluation of the networks
within the environment. This requires the user to possess at least a
basic experience in simulation programming.

Integrating neural controllers into the ALEM framework provides
the opportunity to recreate an existing systems’ behavior, without
formally describing the decision processes. Therefore, an original
system’s decisions can be used as training data for the networks. This
eases the derivation of a model of the original system. The proposed
way of representing neural networks in ALEM enables an exchange
of those networks by other decision strategies. This supports experi-
menting with autonomous control strategies. Furthermore, the simu-
lation of the original system’s model provides data, suitable to com-
pare the performance of different control strategies within the same
scenario.

In addition, exchangeable decision strategies simplify the devel-
opment of scenarios applying neural networks. Data gained through
simulation runs using default control strategies can be used as a base
for the initial training of neural networks. Further adaptions to a de-
sired decision strategy can be obtained by online training. The no-
tational elements proposed for ALEM are kept general. Thus, it is
possible to create templates to include other non-procedural infor-
mation sources. It is necessary to investigate extensions of these el-
ements and to define clear structures and processes to generate and
maintain connections to other external information sources. With fo-
cus on a possible simulation, the ALEM reference libraries must be
adopted to provide simulation specific implementations of the related
operations and data structures. Therefore, suitable simulation envi-
ronments must be investigated.
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