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Abstract—The Dynamic Vehicle Routing Problem
(DVRP) is an optimization problem in which agents
deliver orders that are not known in advance to
the routing. Partial solutions need to be adapted to
continuously accommodate new orders within dynam-
ically changing conditions. This research focuses on
using a combination of multiagent-based autonomous
control with non-Darwinian evolutionary optimiza-
tion. In order to compile transport plans and ren-
der optimized decisions agents managing transport
vehicles employ a guided evolutionary computation
method, called the learnable evolution model (LEM).
Implementation and experimental evaluation of the
method is performed within the PlaSMA multiagent
simulation platform.
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I. Introduction

Unprecedented growth of transportation and logistics
networks in recent years calls for a shift in planning and
control methods. Centralized planning approaches are
gradually becoming less suited to handle the complexity
of entire logistics networks. When centralized approaches
are used, often entire global plans need to be re-computed,
which may be very time consuming and in practice
infeasible, particularly when frequent disruptions to plans
occur. Research in the context of the Collaborative
Research Centre (CRC) 637 ”Autonomous Cooperating
Logistic Processes – A Paradigm Shift and its Limitations”
seeks to identify methods to cope with the highlighted
challenges. It does so, by promoting the paradigm shift
towards decentralized control of logistic processes [1].
In this paper, we focus on multiagent systems as one
particular path to implement this control paradigm. The
multiagent systems assume autonomy in decision-making
of agents that are acting on behalf of logistic entities.
As a consequence of the renunciation of a centralized
planning strategy, the approach has been shown to be
more robust in handling unexpected disturbances at the
level of individual agents.

Our research is based on a hypothetical freight forward-
ing agency, which needs to handle a continuous dynamic
flow of transport orders for freight containers. The
underlying problem is the well-known Vehicle Routing
Problem (VRP). A large number of studies have been
conducted, which consider the various specializations of
the problem. A good overview of VRP is provided, for
instance, by Parragh et al. in [4]. However, a majority of
the conducted studies consider static problems where all
information is known in advance, i. e. orders are cached
first and then planning is completed for a given time
period. The Dynamic Vehicle Routing Problems (DVRP)
constitute a new problem class, which has recently gained
broader attention [2, pp. 207]. As time progresses, new
orders are received and they need to be dynamically
incorporated into the evolving schedule.

In the model considered here, the orders arrive on a
regular basis at certain storage facilities geographically
distributed over the territory of Germany. The model
assumes that two subsequent transport orders need
to be handled for each container introduced in the
scenario – the transport of a full container without further
distinction of containers with respect to enclosed contents,
and return transport of the empty container after its
unloading at its delivery facility (reverse transportation).
In order to handle the transport orders, the freight
forwarding agency is to employ exclusively its own fleet
of transport vehicles. For simplicity, we assumed that
the freight forwarder operates a homogeneous transport
fleet of semi-trailer trucks, equipped to carry exactly one
freight container. Each operated truck can only be in
of two states: empty or fully-loaded. The trucks can be
operated on a continuous 24/7 basis.

II. Autonomous Containers

In the presented multiagent-based autonomous con-
trol system, intelligent agents autonomously plan and
determine the best course of action. In the investigated
scenario of freight forwarding agency, the method works
on two levels: 1) local valuation (prioritization) of pending



transport orders, and 2) local selection of orders for
handling deliveries by trucks in the transport fleet.

These two components fall into separate areas of
responsibility. While the order valuation is part of order
management, the operative order handling (which for the
purposes of this research subsumes order selection) is part
of transport management. This distinction is introduced
in the agent-based implementation of the autonomous
control system. Specifically, the system design comprises
two primary classes of logistic agents which each handle
one of the aforementioned management tasks. Each
transport agent acts on behalf of a single truck and
manages its intra-company order selection, acquisition,
and subsequent operative order handling. These agents
rely on an adequate valuations of pending transport
orders, which constitutes the basis for the order selection.
We considered a simple greedy approach as baseline and
an evolutionary-based planning approach. The following
sections introduce the mechanics of order valuation by
the order management agents and the order selection and
planning by the transport management agents.

A. Transport Orders

Greedy behavior of transport agents means that they
select the most profitable orders. This may lead to orders
with low contractual order value never be selected for
transport. For the freight forwarding agency, such a
system behavior evidently violates contract agreements
with customers. Therefore, the forwarding agency requires
an effective mechanism which is designed to ensure a
timely handling of all pending orders. Although this
research does not assume contractually fixed delivery
times, the model is designed to allow all orders to be
handled in a sensible global time window, e. g., 48 hours.
The approach used here is based on an autonomous re-
valuation of transport orders, which emanates from the
original real valuation of the orders in terms of mone-
tary value. The values whose calculation is introduced
hereafter should be understood as a means of intra-
organizational prioritization of orders. The transport
management agents internally consider the order value
for order selection which is calculated as follows:

value(order, t) = price(order) + prior+(order, t) (1)

value(order, t) is computed as sum of a first component
price(order) which constitutes the initial order price
agreed between customer and forwarder (cf. equation (2))
and a second component prior+(order, t) for the order
revaluation based on the period of time the cargo has
already been waiting to establish a transport contract
(cf. equation (3)). The initial order price is computed as:

price(order) = d · (c0 + r · distance(order)) (2)

The constant c0 denotes fixed costs for the operation
of a semi-trailer truck, while the constant r denotes
variable operating costs per kilometer. In the experiments
described in Section IV, these parameters have been
chosen as c0=110,00e and r=1,42e. The length of a
transport tour is measured in kilometers. Finally, in order
to accommodate the two considered types of containers
which are associated with transport orders (delivery
and return of empty containers) the dampening factor
d has been introduced and set to 1 for full and 0.25
for empty containers. All of the used values have been
experimentally selected to match real world scenarios.

To increase the value of a container depending on the
time it has been waiting, the function prior+(order, t) is
used. This function is monotonically increasing with t,
thus for containers which are kept waiting for a longer
period of time the term prior+(order, t) at some point
begins to dominate the initial order price. Thus, assuming
a sufficiently large number of transport agents, each
order will eventually be selected for transport as its value
increases with time. While in general, the prior+(order, t)
can be sophisticated and account for, amongst others,
prediction of travel times, pickup and delivery time
windows, and penalties, the basic version shown below
has been used for the initial set of experiments.

prior+(order, t) = wc(order) · tα (3)

The constant weight wc has been selected as follows:
wc(orderfull)=0.3 for full and wc(orderempty) = 0.05 for
empty containers. The power α is selected as 2.0. For
example, the value of an order for the transport of a
full container which was left waiting 10 hours exceeds
the real order price by about 30,00e. However, if the
container is left waiting for 2 days (48 hours), its value
already exceeds its original price by 691,20e.

B. Selection of Transport Orders
The transport management agents, which have been

briefly introduced in the preceding sections, are routinely
faced with the challenge to autonomously render decisions
that determine their respective operative transport plan-
ning. Although this report concentrates on a particular
transport planning approach based on an evolutionary
optimization method, a simple non-planning type of
transport agent which effectively employs a greedy order
selection strategy has been implemented as a baseline for
the measurement of transport management performance.
Sections II-B1 and II-B2 outline both order selection
strategies. A common assumption, which is reasonable
within the bounds of a single freight forwarding agency,
is that the transport management has access to the entire
momentary order situation which comprises the pending
orders which are waiting for processing at the distinct
storage facilities.



1) A Baseline Approach to Order Selection: Baseline
transport management agents which have been imple-
mented as part of the freight forwarding agency employ
a greedy order selection strategy. Upon initialization, they
scan the full set of pending transport orders to identify
the most profitable order calculated by

bestOrder(t) = arg max
Orders(t)

[ (value(order, t) (4)

− (cost(start(order), dest(order))
+ cost(pos(truck), start(order)))) ]

where Orders(t) is the set of all pending transport orders
at time t. Once the best order has been identified, the
resulting actions which need to be executed by the
managed truck can be immediately derived. Two cases
can be distinguished: (1) The most profitable order is
associated with a transport relation whose starting point
corresponds to the momentary position of the truck.
In this case, no separate pickup tour is required and
it holds that costPick(pos(truck), order) = 0.00e; and
(2) a pickup tour is required in order to subsequently
handle the selected transport order. The choice of the
next transport order is repeated each time a truck
reaches a storage facility, upon completion of its most
recent delivery or a pickup tour. The latter case has
significant potential negative implications with regard to
the efficiency of the greedy-based operation, since agents
are allowed to reconsider their previous delivery choice.

2) A Planning Approach to Order Selection: Planning
transport management agents are routinely faced with
the challenge to autonomously render decisions that
determine their respective transport plans. These de-
cisions thereby pertain to a choice of adequate action
alternatives, the options being for each decision: (1)
choosing a transport order whose pickup point is the
currently considered storage facility, or (2) postponing
that choice and relocate to another storage facility.

In essence, the transport agents need to choose which
transport order to pick at a specific time and location.
That choice is guided by the gains and costs of transport-
ing the container associated with the order. Therefore,
by choosing orders in an optimized way, an agent can
maximize its financial balance. The behavior of the
transport management agents is thus the result of series
of constitutive decisions. This initial situation calls for
provident planning in which a transport agent considers
several steps ahead. The transport management agents
seek an optimized pickup and delivery plan with a plan
horizon of size n. Formally, such a plan is defined as:

plann = (action1, action2, . . . , actionn) (5)
where actioni ∈ Deliveries ∪ EmptyRides

Deliveries refers to the set of possible delivery actions as

determined by the pending transport orders which have
previously been acquired by the transport forwarding
agency. EmptyRides in contrast refers to the set of
possible empty journeys between storage facilities. Thus,
a transport plan as defined above can blend deliveries and
empty drives where the latter can often be interpreted
as pickup tours. The space of valid transport plans is
specified by means of constraints:

Let start : Deliveries ∪ EmptyRides → SF define a
function which returns the source location of a particular
plan step (i. e., in the case of proper orders, the pickup
site). Let further dest : Deliveries∪EmptyRides→ SF
define the complementary function which returns the
target location of a plan step (for proper orders, the
delivery site). In both cases, SF thereby constitutes the
set of storage facilities in the given scenario.

(1) The first constraint that must hold in admissible
transport plans is defined by:

∀i = 1 . . . n : start(actioni) 6= dest(actioni).

The rationale here is that both types of actions that
can be carried out as plan steps, i. e., empty relocation
from one storage facility to another and execution of a
delivery, comprise a non-circular movement of the truck in
question. Thus, a single plan step may neither consist of
a round-trip nor of a rest or waiting period at a particular
storage facility.

(2) Another constraint ensures that the tour specified by
a valid plan is contiguous which means that short cycles
are precluded by this constraint which thus acts as a
sub-tour elimination constraint:

∀i = 1 . . . (n− 1) : dest(actioni) = start(actioni+1)

where actioni denotes the tuple elements of a plan as
defined in equation (5).

It is, however, possible for transport tours to revisit cer-
tain locations since loops are allowed by the formulation.
For instance, let Loca, Locb ∈ SF , then

plan3 = (Del(Loca, Locb), Empty(Locb, Loca),
Del(Loca, Locb) )

is an admissible plan with a first delivery from A to B,
followed by an empty return trip and another delivery
from A to B.

The value of a particular transport plan as defined
above is thereby determined as follows, based on equa-
tion (1):

val(plann) =
n−1∑
i=0

val(acti+1) · (n− i)α (6)



where val(act) = val(order, t)− cost(start(act),
dest(act)) iff act ∈ Deliveries. For act ∈ EmptyRides,
it holds that val(order, t) = −cost(start(act), dest(act)).

Equation (6) shows that the value of the complete
transport plan is a weighted sum of the values of the
respective plan steps actioni. The parameter is thereby
used to determine a specific weighting scheme. For
instance, if α = 0, all plan steps are given equal weight
in the calculation of the value for the complete plan. For
the scope of the experiments, the value has been chosen
as α = 2.0 to give initial plan steps much higher weight.

3) Guided Evolutionary Approach to Planning: The
learnable evolution model (LEM) is an evolutionary
optimization method that employs machine learning to
direct the evolutionary process [3]. Specifically, LEM
creates general hypotheses indicating regions in the search
space that likely contain optimal solutions and then
instantiates these hypotheses to generate new candidate
solutions. In order to apply machine learning, LEM
creates two groups of individuals that are respectively
high- and low-performing according to the fitness function
being optimized. These individuals can be selected from
the current population or a combination of current
and past populations of individuals. The group of high-
performing individuals is called H-Group and the group
of low-performing individuals is called L-Group. Once
the groups are selected, LEM applies concept learning
to create a general hypothesis describing the H-Group
in contrast to the L-Group. The hypotheses are then
instantiated to create new candidate solutions. In the final
step, a new population is assembled from old and new
individuals, and the process is repeated until stopping
criteria are met.

This research uses the third generation of LEM soft-
ware, called LEM3. LEM3 dynamically selects one or
more innovation methods to create new individuals. These
methods are: Learn & Instantiate, the aforementioned
main mechanism for creating new individuals in LEM3;
Adjust representation, to change the discretization of
numeric attributes; Probe, to apply traditional operators
such as mutation and crossover; Search locally, to apply a
user-defined local search method; and finally Randomize,
to add to the current population a number of randomly
created individuals, or restart the evolutionary process.
LEM3 also has the ability to automatically adjust the
representation space through constructive induction [7].
Theoretical and experimental work indicates that LEM
is particularly suitable for optimization problems in
which the fitness evaluation is costly. This is because
of the trade-off between significantly shorter evolution
length [3], [8], and more complex learning and instan-
tiation when compared to simple operators used in
evolutionary computation. Moreover, the use of machine

learning to guide evolutionary computation extends the
applicability of LEM. For example, due to the use
of AQ21 as a learning engine in LEM3, it is able to
handle optimization problems naturally described using
different types of attributes (nominal, structured, ordinal,
cyclic, interval, ratio, and compound) and background
knowledge provided to the learning program [9].

4) Employing LEM3 for Transport Planning: LEM3
is a multipurpose system for evolutionary optimization
that has been adapted to agent-based planing. The
problem definition for the application of LEM3 planning
incorporates:

1) the storage facility where the truck is located at the
time of planning,

2) a complete list of storage facilities where transport
orders may be pending, and

3) the size of the plan horizon.
Based on the problem definition, as given by a list of

possible locations to visit, LEM3 searches for the best
plan. It starts with an initial population of candidate
plans, which is randomly generated. Due to the reduced
problem definition these candidates constitute what has
been referred to as plan skeleton rather than a fully-
fledged transport plan. The concept can be formalized
and related to the definition of proper transport plans in
Equation (5), assuming a plan horizon of size n:

planSkel(plann) = ( dest(action1), dest(action2), (7)
. . . , dest(actionn) )

≡ ( storage1, storage2, . . . , storagen )

A plan skeleton is thus a n-tuple of storage facilities.
However, with regard to the planning problem, only a sub-
set of the set of all plan skeletons of size n is admissible
in terms of compliance with the following constraints:

1) ∀i = 1 . . . (n − 1) : storagei 6= storagei+1 since all
actions in proper plans involve a relocation of the
truck between two distinct storage facilities, either
via an empty ride or a proper delivery of a container.

2) pos(truck) 6= storage1 where
pos(truck), storage1 ∈ SF . In particular, the
storage facility where the truck is located at
planning time must not be identical with the first
storage facility in the plan skeleton.

For the application in plan optimization, the aforemen-
tioned constraints have been implemented as part of the
problem-specific LEM3 integration. As a consequence,
after the creation of new candidate solutions, LEM3 is
enabled to detect the number of constraint violations and
filter inadmissible solutions immediately.

Since these plan skeletons without additional process-
ing do not describe directly any particular plan which can
be evaluated, an unequivocal conversion into a proper
transport plan needs to be established. This conversion is



possible due to two assumptions. First, transport plans al-
ways have as origin the current location of the associated
truck which corresponds to a storage facility (pos(truck)).
In addition, as the transport agent seeks to maximize
its financial balance for each plan step, it is rational
to choose the most profitable action alternative using a
function bestAct : SF×SF → Deliveries∪EmptyRides
which accepts transport end points as input and returns
either most profitable real transport order, or, as a fall-
back if no orders with the specified transport endpoints
currently exists in the system, the empty drive order.
Based on a plan skeleton, the corresponding plan is:

plann = ( bestAct(pos(truck), storage1), (8)
. . . , bestAct(storagen−1, storagen) )

The transformation from plan skeletons which consti-
tute the plan suggestions created iteratively by LEM3
into proper candidate plans from the point of view of
the planning agent is a mandatory prerequisite in order
to apply the domain-specific weighting function which
is used to evaluate candidates and thus drives LEM’s
search in the space of possible plans. The approach
which is currently applied with the integration of LEM3
is basically to out-source the weighting function from
the library to the planning agent as user of the library
which is also equipped with the required domain-specific
knowledge to execute the candidate valuation.

In order to directly calculate the value of a suggested
plan skeleton, the following equation (9) can be applied:

value(planSkeletonn) (9)

= balance(bestAct(pos(truck), storage1)) · nα

+
n−1∑
i=1

[balance(bestAct(storagei, storagei+1)) · (n− 1)α]

The function balance : SF × SF → Euro takes the
current order value (which for all orders that have been
waiting for some time is higher than the initial order price,
cf. Section II-A) and subtracts operation costs for the
execution of these orders. Once plans have been evaluated,
LEM3 checks stopping criteria (reached desired value of
plan or the maximum length of evolution is reached).

III. Multiagent-based Implementation

The freight forwarding agency described in the intro-
duction has been implemented as a multiagent system
(MAS) for an evaluation of emergent system behaviour
in the multiagent-based simulation system PlaSMA1 [5].
The realized MAS involves three distinct agent types,
namely order management agents which implement the
order valuation strategy proposed in Section II-A, trans-
port management agents which need to compile transport

1PlaSMA web site: http://plasma.informatik.uni-bremen.de

plans autonomously, following one of the strategies
from Section II-B. Finally, there is an order information
service agent (OIS) which maintains a company wide-
database of pending transport orders. The short-lived
order agents which oversee the regular and subsequent
reverse transport of one particular order interact with
the OIS to publish orders and update their prioritization
over time. The transport agents query the OIS to acquire
the knowledge about the momentary oder situation of the
forwarding company which is the based for an informed
compilation of the local transport schedule. Details
on the specification of the aforementioned agent types
and technical integration of LEM3 with the transport
management agents are discussed in [6]. For this article,
we proceed to the discussion of experiments and findings.

IV. Simulation Experiments and Evaluation

To thoroughly evaluate the performance of transport
management agents employing LEM3 for route planning
relative to the baseline, both strategies were tested with
the freight forwarder MAS within PlaSMA simulations.
A realistic, low-detail traffic network represented as a
directed graph has been used as a common basis for the
simulation experiments. The network covers the area of
Germany. It contains 359 nodes and 1.044 edges. The
nodes comprise besides pure traffic junctions and path
subdivisions (309 nodes) the major cities of Germany
(50 nodes). The edges constitute transport routes. These
represent a significant part of the German motorway
network (750 edges) and, to a lesser degree in order to
connect motorway sections or cities in the motorway
network, federal roads (152 edges) and inner-city roads
(28 edges). In the presented work, each city hosts exactly
one facility whose relevant modeling parameters comprise
its overall storage capacity, uniformly specified as 100
container units, and simulation-specific parameters to
control the external intake of new orders (for details, cf. [6,
p. 23]). Ten out of 42 storage facilities were configured
with an external intake of transport orders. These have
been chosen due to their geographic location such that
a reasonable distribution of orders could be established.
The experiments consisted of two experiment series which
differ in the amount of orders created at high-intake
storage facilities, i. e., creation of orders every six hours
(experiment series 1) or every five hours (experiment
series 2)2. Due to space constraints, this article reports
only findings from the latter series. The experiments
feature a homogeneous fleet of 16 trucks which can trans-
port a single container at a time. Three configurations
of the transport management agents were employed:
first, a configuration where all trucks are managed

2In both cases, orders are created every 12 hours for low-intake
facilities. Details are provided again in [6, p. 23]



by baseline transport agents; second, a configuration
featuring LEM-enabled transport agents; and a third
’competitive’ scenario, where eight trucks respectively
are managed by agents of either type. The last scenario
was chosen specifically to analyze the emergent effects
of intermixing transport planning strategies of different
complexity. The LEM3 system employed by the planning
transport agent has been executed with default parameter
settings (cf. [6, p. 23]).

A. Experimental Results

The presented evaluation is based on performance
indicators (PIs), collected by the transport management
agents (20 PIs), the order management agents (7 PIs)
and the OIS agent (3 PIs).

Fleet-Level Financial Analysis When considering
the fleet balance (Fleet Bal. (µs ± σs) in Table I) first,
the direct comparison of the performance of the het-
erogeneous transport fleets shows a significantly higher
mean overall revenue when using the planning approach,
i. e., 866.038,94e vs. only 708,409,97e for the baseline
approach. The standard deviation – even though still
residing at ∼ 3% is notably higher for the baseline
approach (i. e., 10.051,49e for the planning fleet and
more than double that value, namely 21.565,53e for
the baseline fleet). The data for costs and gains which
is also provided in Table I shows that this increase in
the standard deviation is caused by more variation in
the revenue generated by handling transport orders.
Therefore, the data seems to suggest that the planning
approach exhibits better stability in a more demanding
market situation. It should be noted further, that in
the considered scenario the planning approach generates
slightly higher costs than the baseline approach which
are, however, compensated by the higher revenues.

In the competitive scenario where both the baseline
and the planning approach were employed to equal
proportion, the mean overall revenue of 846.523,42e
comes very close to the 866.038,94e for the homogeneous
planning fleet. Compared to the results measured for
a scenario with a lesser order generated throughout
the simulation as shown in [6, Section 4.4.1, pp. 24], the
insertion of planning transport management agents
into an otherwise non-planning baseline fleet yields
even more notable positive results in a scenario with
a comparatively strong inflow of transport orders.
However, the effect of an increased standard deviation
compared to a fleet operated by planning transport
agents alone which has been observed before is evident
once more in the data presented in Table I. The transport
management agents which employ LEM-based planning
on average significantly outperform their less provident
counterparts with a mean revenue of 61.201,87e ±
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reverse transports) for 10 simulations: Baseline (top),
planning, and mixed fleet.

3.856,59e compared to 44.613,56e ± 5.062,45e. More
interesting than those raw numbers is a comparison of
the per agent performance between the homogeneous
and the mixed setting. Here, the data shows that the
baseline agents retain their performance values with
respect to mean revenue while the standard deviation
rises, from 4.347,73e up to 5.062,45e. The planning
agents, however, manage to thrive in a situation with
less peer competition and the insertion of baseline agents
to compete against. This is documented by the fact that
the per agent revenues rise significantly from a mean of
54.127,43e ± 4.415,25e up to 61.201,87e ± 3.856,59e.

Pickup Times The data in Table II shows that the
LEM-based planning approach leads to a significant re-
duction of waiting times both for the pickup of containers
for regular and reverse transports of empty containers.

For the case of reverse transportation, the effect of
combining both approaches to equal fractions in the
mixed transport fleet can be succinctly described as
follows: While retaining the single peak at about 120
hours also found in the baseline case, the majority of
the slope from that case is cleared away, the respective



Table I: Financial results for different transport management
approaches, measured in e/60 days (µs ± σs).
e/60d Mixed Fleet LEM Fleet Baseline Fleet

LEM3 Route Planning

Σ Costs 606.931, 42± 415, 90 1.213.175, 1± 930, 35 –

Σ Gains 1.096.546, 4± 15.878, 41 2.079.214, 0± 10.981, 84 –

Σ Balance 489.614, 98± 15.462, 51 866.038, 94± 10.051, 49 –

p.A. Balance 61.201, 87± 3.856, 59 54.127, 43± 4.415, 25 –

Baseline Order Selection

Σ Costs 609.229, 46± 920, 48 – 1.212.536, 1± 885, 16

Σ Gains 966.137, 90± 10.248, 10 – 1.920.946, 1± 22.450, 69

Σ Balance 356.908, 44± 9.327, 62 – 708.409, 97± 21.565, 53

p.A. Balance 44.613, 56± 5.062, 45 – 44.275, 62± 4.347, 73

Fleet Bal. 846.523, 42± 24.790, 13 866.038, 94± 10.051, 49 708.409, 97± 21.565, 53

Table II: Waiting times until a
container is picked up.

Unit: hours Mixed Fleet

Full (µs ± σs) 12, 597± 11, 899

Empty (µs ± σs) 90, 029± 33, 761

LEM Fleet

Full (µs ± σs) 7, 926± 8, 706

Empty (µs ± σs) 53, 832± 30, 718

Baseline Fleet

Full (µs ± σs) 40, 820± 24, 855

Empty (µs ± σs) 141, 564± 46, 675

weight of the distribution being transferred to the left
slope (cf. Figure 1). As already noted in the analysis of
the first set of experiments, the mixture of approaches
also helps to suppress the undesirable outlier cases which
were once again observed when employing only planning
transport management agents.

For the inventories of the storage facilities in the plan-
ning case, the experiment data shows that low inventory
levels can be maintained throughout the simulation runs.
Specifically, stock levels max out at 6–8 containers at
a time. Taking also into account the findings from the
preceding section, it can be concluded that the applied
load on the forwarding agency was too much to be
handled effectively when employing the baseline approach
to transport planning. With these results in mind, it is
interesting to note that the mixed transport fleet in which
baseline and planning transport management agents work
side by side leads to a stable system where both the stock
levels at the individual storage facilities and the total
amount of pending transport orders tune in on a certain
level. However, a plot of the stock levels [6, p. 35] suggests
significantly increased peak amplitudes compared to the
planning case. In addition, although the total amount
of pending transport orders levels off after the initial
phase of the simulation it does so at higher levels, i. e.,
at ∼ 20 regular transport orders (compared to ∼ 15 in
the planning case) and ∼ 140 reverse transport orders
(compared to ∼ 90).

Concluding the analysis with regard to pending orders
and inventory levels, the superiority of the planning
approach to operative transport planning could be
affirmed. While this result for itself bears little surprise,
with the presented experiments it could be shown where
the baseline approach used in the experiments has
its limits and, in particular, how these limits may be
extruded by mixing in planning transport management
agents into a baseline transport fleet.

Transport Operations The data in Table III shows
that the planning approach leads to a significant increase
in the overall amount of successfully operated container
transports (4.301, 30 ± 5, 88) compared to the baseline
approach (3.824, 70 ± 80, 48). Even though a higher
number of both regular and reverse transports are
handled by the planning fleet, the data also suggests
a tendency of this approach towards a reduced fraction
of regular transports (51, 0 % compared to 54, 2 %).

In addition to the superiority with regard to the raw
amount of handled transports and an slightly increased
total length of delivery tours, the fraction of container
transports on all truck operations is in the average
notably higher for the planning transport fleet (65, 5 %)
than for the baseline (57, 4 %). When comparing these
results with their counterparts measured in experiments
with a lower order inflow (cf. [6, Section 4.4.1, pp. 24]),
the data suggests that given a higher amount of orders in
the system, the planning fleet can substantially improve
its truck utilization. To be more precise, the fraction
of 47, 2 % of transports on all truck operations, when
running the same experiment presented here with high
intake storage facilities receiving new orders only every
6 and not every 5 hours, is brought up to 65, 7 %. The
data raises the assumption, to be affirmed or disproved
by further experiments, that the planning fleet performs
particularly well in scenarios with a high order inflow.
However, the data acquired from the experiments so far
also shows that the goals of high capacity utilization,
increasing the freight forwarders profitability, and low
pickup times, improving the quality of offered services,
are related such that one is faced with a multi-criterial
optimization problem.

Shifting the focus from the analysis of the homogeneous
settings towards the mixed case with an equal amount
of both agent types, the first thing to notice in the data
presented in Table III is the significant difference in overall
operated container transports for both fleets. Both with



Table III: Overview of transport operations for trucks
managed by different transport agents.

Mixed Fleet, pt. a LEM Fleet
(8 Trucks) (16 Trucks)

LEM3 Transport Operations

Σ Deliv (µs ± σs) 2.478, 90± 17, 06 4.301, 30± 5, 88

Σ Deliv full (µs ± σs) 1.231, 20± 12, 93 2.194, 50± 1, 92

Σ Deliv empty (µs ± σs) 1.247, 70± 17, 60 2.106, 80± 5, 29

Σ Fraction Full (µs) 0, 497 0, 510

Σ Fraction: All (µs) 0, 808 0, 655

Σ Length Del. (µs ± σs) 1.074.057± 8.437 1.974.968± 12.396

Mixed Fleet, pt. b Baseline Fleet
(8 Trucks) (16 Trucks)

Baseline Transport Operations

Σ Deliv (µs ± σs) 1.740, 70± 12, 80 3.824, 70± 80, 48

Σ Deliv full (µs ± σs) 954, 80± 12, 54 2.074, 20± 22, 40

Σ Deliv empty (µs ± σs) 785, 90± 15, 18 1.750, 50± 58, 53

Σ Fraction: Full (µs) 0, 549 0, 542

Σ Fraction: All (µs) 0, 562 0, 574

Σ Length Del. (µs ± σs) 868.476± 6.993 1.759.706± 30.745

regard to regular and reverse container transports, the
planning fleet clearly outperformed the baseline fleet,
resulting in 2.478 ± 17, 06 deliveries for the former vs.
only 1.740, 70 ± 12, 80 deliveries for the baseline fleet.
More interesting than the plain amounts of deliveries
are the results for the respective fractions of regular
transports on all transport operations and of transports
on all truck operations. If only considering data from
the mixed scenario, it shows that the mean fraction of
deliveries on all truck operations is higher for the planning
sub fleet (80, 8%) than for the baseline sub fleet (56, 2%).
This suggests that the former sub fleet actually profits
from the competitive setting at the expense of the baseline
sub fleet. A related result is that the planning fleet
steals a significant amount of individually less profitable
reverse transports from the baseline fleet. However, as
documented in Table I, this does not have a negative
effect on the revenue generated by the planning fleet. This
documents the positive effect of planning in a competitive
setting with regard to truck utilization and profitability.

V. Conclusion

The paper presented a methodology for decentralized
order pickup and delivery planning by autonomous
agents, which use the learnable evolution model to
create optimized sequences of container deliveries. In
the presented model each order, be it a regular or reverse
transport, is assigned a intra-organizational prioritization
which is updated by dedicated order management agent
as a function of pickup waiting time. Experimental results
indicate that the method performs better when compared
to a baseline approach, in which each agent selects the
best container at its given location. This result was

obtained when greedy and LEM agents were simulated
separately, and in a mixed scenario that combined both
types of agents. All experiments were performed using
the PlaSMA multiagent system [5].
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