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1. Introduction

Modern manufacturing systems are exposed to an increasingly
dynamic and volatile environment. Therefore, the ability to cope
with dynamic effects becomes more and more essential to
manufacturing companies. The concept of autonomous control
promotes distributed and flexible handling of dynamic complexity
due to decentralized decision making of local system elements. It
also intends to improve the logistic performance of production
systems [1]. By contrast, centralized production planning methods
are superior in well-defined situations with all information fixed in
advance. But they may not be able to adapt to changes in an
appropriate manner [2]. This paper addresses the area of transition
between static and dynamic conditions in order to derive
application ranges and boundaries of centralized planning and
autonomous control methods concerning the impact of dynamics.
The analysis focuses on the logistic performance of two different
autonomous control methods and of twelve centralized scheduling
algorithms in a flexible flow shop (FFS) environment. The FFS
structure used for the analysis is sketched in Fig. 1 (see [3] also).

A practice-oriented extension is the introduction of unrelated
parallel machines with setup times. The literature provides several
examples of this problem class and its application in real production
systems [4]. Common scheduling heuristics for the FFS with
unrelated parallel machines and sequence dependent setup times
are taken as reference to benchmark two types of autonomous
control methods. The evaluation includes instances with different
configurations concerning the number of stages and the number of
machines per stage as a parameter of structural complexity.
Furthermore, different degrees of dynamics are modeled for each
instance and are represented by the incoming workload. In the static
situation all jobs are released at the same time, whereas dynamic

situations are characterized by distributed inter-arrival times of jobs.
In this context, scenarios of different complexity and dynamics will
be used to evaluate the following hypothesis: ‘While centralized
production planning is best for relatively simple and static situations,
autonomous control is best for complex and dynamic environments.’
The investigation on the dynamic performance of autonomously and
conventionally planned production systems is still an active research
area [1]. However, a comparative study concerning centralized and
autonomous control in FFS problems is missing so far.

2. Autonomous control methods

Autonomous cooperating logistic processes are characterized by
a shift of decision-making capabilities from the system layer to its
elements. This allows single intelligent logistic objects to make and
execute decisions according to their own objectives [5]. These
objects may either be physical objects like machines or immaterial
objects like production orders or jobs. Due to modern information
and communication technologies, these objects are able to interact
with others in order to gather information about current local
system states [1]. On this basis, the objects make decentralized
decisions. This aims at improving the achievement of the logistic
targets by flexible handling of dynamics and complexity. Existing
models of autonomous control have already provided promising
results. Previous work confirmed that autonomous control can help
increase the logistic performance and robustness of production
systems [6,7]. Further studies of a real data based manufacturing
system showed that performance of different autonomous control
methods depends on the application scenario and on the
prioritization of logistic targets [7]. In order to evaluate the logistic
performance of autonomous control in a FFS environment, two
different autonomous control methods are implemented. These
methods can be classified in two categories: local information

methods and information discovery methods. Local information
methods gather and process only local information. Contrary to
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this, information discovery methods collect information from other
objects. This discovery does not cover the whole system, but is
directed to information that is relevant for the actual decision.

2.1. Local information methods

Local information methods enable jobs to decide about further
processing steps. Jobs using one of these methods only gather local
information about states of direct succeeding buffers and
machines. Several local information methods based on different
decision strategies have been designed for manufacturing pur-
poses. These strategies can be classified in rational, bounded
rational and combined strategies [8]. Rational methods predict
future system states and make decisions. Biologically inspired
methods belong to the bounded rational strategies and use
aggregated data from past events.

The Queue Length Estimator (QLE) method is modeled here as a
representative of rational local information methods. Jobs using
the QLE method compare the buffer levels of each production line
at a certain stage and estimate their actual workload. In order to
reduce throughput time, jobs will choose the machine with the
lowest workload [6]. The comparison is triggered whenever a job is
finished on a machine. At this point the QLE method estimates the
workload of each machine and its corresponding buffer for the next
stage. Thereby, the QLE considers the expected processing and
setup times of all waiting jobs.

2.2. Information discovery method

The Distributed Logistics Routing Protocol (DLRP) was developed
and presented earlier as an information discovery method.
Originally, the DLRP was developed for the field of transport logistics
(see [9]) and it is now being transferred to production logistics.

The DLRP for production defines two logistic object types:
machine objects and job objects. Both decide and execute on their
own. The basic concepts for the DLRP as an information discovery
method areadapted fromroutingalgorithms thatare used inwireless
ad hoc communication networks, where routes have to be found in
dynamically changing topologies. With the DLRP, job objects are able
to make a routing through the production environment.

Due to its complexity, it is not possible to give a detailed
description of the developed protocol here. But the fundamentals of
the protocol can shortly be described as follows (see [9,10] for
details). When a job enters the system, it needs a route through the
production system. It sends a route request to the next machine,
which fills it with necessary information and sends it ahead to all
possible successive machines. This is repeated until the last
production step has been reached. The last machine sends back
the collected information as a route reply. The job receives several
route alternatives by this discovery scheme. After its route decision,
the job disannounces old routes and announces the new routes. For
the system to have a higher degree of freedom, each job decides on
multiple desired routes. Together with the route announcement, a
lot of information can be passed to the relevant machines, like
production times, setup times, probabilities, urgencies, etc. The jobs
do a rerouting after every production step to update their decision
base. Because of the ongoing processes, this scheme leads to a

continuous cooperative structure – at any time there is enough
information for a decision. Jobs decide their preferred routes and
machines decide on their setup plan, the dispatching and the next
machine for every job that leaves.

In the simulations described below, the decisions of the objects
are made as follows: The route decision of the jobs is based on the
expected completion time as stated in the received route
alternatives with some preference on already announced routes.
Two routes are announced with different preference values. The
decision for the next machine is based on the preference for the
different route announcements. In order to minimize the sum of
setup times for a machine, the dispatching is based on the shortest
setup time for the next job.

3. Scheduling heuristics

The FFS scheduling problem itself is NP-hard (see e.g. [11]).
Optimal solutions can only be calculated in feasible time for small
problem instances with few jobs. Calculating optimal solutions for
larger dynamic flow shop scheduling problems takes far too long,
not to mention unrelated parallel machines.

In order to find approximate solutions, many heuristic methods
have been developed for the classical FFS problem and for the
dynamic FFS problem with parallel machines. Usually, the total
problem is divided into a sequencing problem and an assignment
problem [4]. Both problems are successively solved. At the
beginning, a sequence for the first stage is determined by an
adapted sequencing algorithm. After that, a scheme, consisting of
sorting algorithms and algorithms that select the best solution out
of different alternatives, assigns jobs to machines and creates the
complete schedule for all stages.

Jungwattanakit et al. [12] made large computational studies to
evaluate this algorithmic scheme with different sequencing heur-
istics. They used the following sequencing algorithms for the first
stage: PAL (a slope index heuristic by Palmer), CDS (a best choice
heuristic by Campbell, Dudek and Smith), GUP (a slope index
heuristic by Gupta), DAN (a heuristic by Dannenbring), NEH (a
constructive heuristic by Nawaz, Enscore and Ham). In addition to
these heuristics, Jungwattanakit et al. created a genetic algorithm

(GAL). This algorithm takes the sequence for the first stage as the
genome and puts the results of all heuristics into the initial
population.

All of these scheduling heuristics (SCD) try to minimize the
makespan (Cmax) of a given problem instance. However, they
naturally have some shortcomings in dynamic environments
where arrival of jobs is distributed in time. Therefore, we modified
these scheduling heuristics to include a rolling planning horizon,
where the original job sequence is split chronologically into parts
with 25 jobs and then these subinstances are solved. In the
remainder of this paper, these scheduling heuristics with rolling
planning horizon (rSCD) are referred to rPAL, rCDS, rGUP, rDAN,
rNEH and rGAL.

4. Problem description and instances

In order to obtain comparability for this evaluation, an existing
problem formulation from Jungwattanakit et al. [12] was chosen. It
defines a FFS problem with unrelated parallel machines and
sequence dependent setup times. In addition to this problem
formulation, job types were also defined.

Consider a FFS system as sketched in Fig. 1. There are T stages
and Mt unrelated machines at every stage t. All job types have
different processing times pt

m;s on the different machines and they
have different sequence dependent setup times st

m;u;s. The
completion time Cj and the throughput time Tj are defined for
the entire network at the end of the last stage t = T.

Parameters and variables:

J number of jobs
S number of job types (indices s and u)

Fig. 1. FFS scenarios used for the evaluation.
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T number of stages
Mt number of parallel machines at stage t

rj release time of job j

st
m;u;s setup time from job type u to s at machine m at stage t

pst
s standard processing time of job type sat stage t

yt
m relative speed of machine m at stage t

pt
m;s processing time of s on m at t, where pt

m;s ¼ pst
s=y

t
m

Cj completion time of job j

Cmax makespan, where Cmax = max(Cj)
Tj throughput time of job j; where Tj = Cj � rj

TPT mean throughput time; where TPT = mean(Tj)

The problem instances for this evaluation were chosen very
close to the so called ‘large size problems’ defined in [12]: the
number of jobs J is 250. The number of job types S is set to 10, they
are uniformly distributed. The number of stages T and the number
of parallel machines Mt can be 3, 5 or 10. The standard processing
times pst

s are integers uniformly distributed in the interval [1 50].
The relative speeds yt

m are uniformly distributed in [0.7 1.3]. The
setup times st

m;u;s are integers uniformly distributed in [1 10]. The
release times rj are all 0 (static, referred as ‘st’) or a Poisson process
with l jobs per time unit. The value of l can be st, 0.5, 0.1, 0.075,
0.05, 0.025. Lambda denotes dynamic aspects of the workload and
covers the whole range from overloaded to underloaded situations.

With 3 variants of T, 3 variants of Mt and 6 variants of r, there are
54 different scenarios. Each scenario has 5 instances with different
random numbers. The results below are given as a mean over these
5 instances.

5. Results

Due to the size of this evaluation, the key findings of the study
are presented here using examples. Aside from the makespan, the

throughput time (TPT) is one of the most important logistic
measures for the performance of a system. For planning situations,
the makespan is the more important value, while throughput time
is more important for control situations with a continuous
workload. The results are, therefore, presented for both indicators.

For the static and nearly static situation (l = st and l = 0.5), the
results are clear. Fig. 2 shows the type of the algorithm which
performed best for a particular combination of l, number of
machines and number of stages. The SCD methods perform best in
all static scenarios for both performance measures TPT and Cmax. In
the nearly static situation, the autonomous control (AC) methods
perform better in some cases, although SCD and AC are very close
in these cases. Fig. 3 shows examples of this behavior: with
decreasing l the AC methods become more advantageous.

Fig. 3 shows the results of the GAL, the rGAL and both
autonomous control methods (QLE and DLRP) for the 5 stages, 5
machines scenarios. The results for Cmax and TPT are normalized to
a theoretical lower bound calculated for every single instance. This
normalization takes the lowest possible production time, the
lowest possible setup time and the last release time into account.

Fig. 3 confirms that the GAL is the best choice for the static
problem. It leads to the lowest Cmax and TPT. However, rGAL
performs better in a more dynamic environment. These rolling
horizon heuristics are especially made for dynamic environments
with continuous workloads and naturally perform better in terms
of throughput time. In the interval between l = 0.5 and l = 0.1 the
rGAL curve crosses the curve of the GAL for both performance
measures. But the decision for SCD or rSCD is not clear in all other
scenarios. Sometimes, the intersections of Cmax and TPT are at
different lambdas. Additionally, the workload of a real company is
not fixed but fluctuates around a working level. So the control
method for realistic situations must be suitable for a wide range of
dynamic degrees.

Fig. 2. Best performers for static and nearly static scenarios.

Fig. 3. Results for 5 stages and 5 machines. Fig. 4. Examples for WIP over time for 5 stages and 10 machines.
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Fig. 3 shows that there is a TPT transition from l = 0.5 to l = 0.1.
One can say that reasonable workloads for the scenarios used are
around l = 0.1, and the system is overloaded to the left of 0.1, with
more jobs entering the system than the system can process.

From this point of view, Fig. 3 indicates that both of the AC
methods lead to systems with a higher capacity than the SCD or
rSCD methods. Furthermore, all methods except GAL are near
optimal values with a very low workload.

Fig. 4 gives a more detailed view on the differences between
SCD an AC. It shows the WIP over time for 5 stages and 10 machines
– exemplarily for GAL and QLE. For the overloaded situation
(l = 0.5), both methods naturally build up high WIP levels. For
more dynamic situations (l = 0.1 and l = 0.075), both methods
have a similar makespan performance, but the GAL leads to
significantly higher WIP than the QLE method. Because of the
increasing WIP, one can say that the system with GAL is still
somewhat overloaded. SCD methods in general focus on mini-
mizing setup times, but this leads to unsuitable sequences for
continuous workloads, high WIP and high TPT values. The rolling
horizon methods reduce the TPT values for dynamic scenarios, but
the basic problem remains.

As noted above, reasonable workloads for the scenarios used are
around l = 0.1. Therefore, Fig. 5 shows the aggregated results for
l = 0.1 and l = 0.075. Fig. 5 confirms that the situation for realistic
workloads is not as clear as for static ones. In terms of TPT, the AC
methods show the best performance for all scenarios. But the rGAL
values are close to the AC ones in the ‘upper right corner’ of the table
(see also Fig. 3). Concerning Cmax one can say that more parallel
machines and fewer stages favor scheduling methods in general.
Within these methods, more parallel machines seem to favor classic
SCD, while fewer stages seem to favor rSCD methods. AC methods
seem to be best when there are fewer parallel machines than stages.

5.1. Local information vs. information discovery methods

Fig. 3 shows a good example of the performance differences
between the QLE and the DLRP autonomous control methods. In
nearly all scenarios, both methods have similar values, but QLE
performs better than the DLRP. The DLRP is designed for situations
in which decisions have long range consequences. In terms of
decision consequences, the FFS problem is simple because one
routing decision does not affect later decisions. For this environ-
ment, the DLRP seems to be too complex and the simpler decisions
made by the QLE method seem to be more effective. DLRP may be
preferable in complex scenarios such as production networks with
geographically dispersed plants.

6. Conclusion

The hypothesis stated at the outset may be refined by the
results of the study. Within the range of the used scenarios,
centralized production planning using scheduling heuristics
appears to be best for static situations regardless of system
complexity. The complexity can be split into the two dimensions:

parallel machines and stages. While autonomous control is best for
many stages and dynamic environments, many parallel machines
promote centralized production planning. This lies in the different
problem solving strategies of the two approaches. The central
strategy takes all data and tries to satisfy all constraints at once,
which has disadvantages with changing situations and with too
many constraints. The autonomous strategy in contrast divides the
problem into subproblems and solves them successively, which
has disadvantages for well-defined problems.

Next research steps for the evaluation of autonomous control in
general are to study extensions like machine breakdowns and rush
orders, as well as general problem formulations like job shop or
open shop problems. Another step will be the combination of
transport and production logistics e.g. in production networks with
geographically dispersed plants, where decisions have long range
consequences.
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