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Abstract   In transport logistics, routing is usually done by a central instance that 
is solving the optimization problem of finding the best solution to cover the cur-
rent set of orders with the current set of vehicles under constraints such as punctu-
ality, vehicle utilization etc. Approaches have been suggested recently which 
change this paradigm towards a distributed approach with autonomous entities de-
ciding on their own. Autonomous entities denote, in this case, the vehicles as well 
as the goods. When each of the entities makes its own route decisions, it has to 
consider multiple parameters, which are partially static (e.g. distances) and par-
tially dynamic. An example for a dynamic parameter is the knowledge about vehi-
cle availability that goods need for their decisions. The work presented here is 
based on the information exchange concept DLRP (Distributed Logistic Routing 
Protocol), which has been proposed before. Within that framework, the concept of 
weighted multiplicative combination of context values into a decision function is 
now introduced for the route decisions made by autonomous entities. 

1 Introduction 

Routing in transport logistics is nowadays usually handled as a constrained opti-
mization problem. This optimization problem is solved with the help of heuristic 
methods such as genetic algorithms, tabu search and others. If the optimization 
problem is dynamic in nature, e.g. because not all transport orders are known in 
advance, solutions to it are repeatedly calculated as time progresses, either in fixed 
time intervals (rolling horizon planning) or on demand. If the level of dynamics is 
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high, these approaches are limited in their reactivity: Due to the time that is re-
quired to determine a new global solution, there is a limitation to the frequency of 
replanning. Here, a distributed approach that does local modifications to the origi-
nal plan can have advantages. 

This is where the paradigm of “Autonomous Cooperating Logistic Processes” 
[1] is targeted at. Within this paradigm, intelligence and decision-making capabil-
ity is moved from the central dispatcher towards the individual actors in the logis-
tic process, i.e. the vehicles and even the goods. That means they become autono-
mous in their decisions, and they have to cooperate in order to achieve their goals. 

As a framework for the interaction of autonomous logistic entities, the “Dis-
tributed Logistic Routing Protocol” (DLRP) has been proposed. 

The paper is structured as follows: Section 2 introduces the interaction of the 
entities using the DLRP. The multiplicative parameter aggregation function is pre-
sented in section 3, and results of simulations using this function with DLRP are 
shown and discussed in section 4. The paper ends with conclusions and an outlook 
to future work in section 5. 

2 The DLRP 

The Distributed Logistic Routing Protocol (DLRP) ([2], [3]) is based on the as-
sumption that the vehicles and the goods in a logistic network are equipped with 
devices capable of computing and communicating. Thereby, they are able to inter-
act and decide autonomously. 

In contrast to classical routing problems such as the Vehicle Routing Problem 
(VRP) or the Travelling Salesman Problem (TSP), the scenarios where the DLRP 
is applied are restricted in the connections that are existing between locations (ver-
tices) in the logistic network, i.e. scenarios are not only defined by a set of verti-
ces, but by a graph connecting those. In reality, the vertices may be logistic distri-
bution centers, and the edges the main motorway connections between them. 

Vehicles and goods determine their routes by using a route discovery messag-
ing that is similar to source routing methods in ad-hoc communication networks: 
When a vehicle or a goods item needs a route, it sends out a route request to the 
nearest vertex, which forwards this request to the neighbor vertices, which in turn 
do the same. Before forwarding an incoming route request, the vertex adds current 
context information to the request, including knowledge about other vehicles and 
goods that have announced to travel on the same route. So by the time the route 
request reaches the destination vertex, it has collected information about the com-
plete route that it has travelled. Based on the information collected in the route re-
quest, the destination vertex sends a reply to the vehicle or good, which then can 
make a decision. After having made a decision, the chosen route is announced to 
all vertices that are involved in this route. 
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Consequently, the vertices play an important role in the DLRP: They act as in-
formation brokers. Vehicles and goods announce their intended routes to the verti-
ces, where other vehicles and goods can access them to retrieve information which 
is relevant for their future planning. This facilitates the mutual interdependence of 
vehicle and goods routes. For more details about the DLRP, refer to [2] and [3]. 

The DLRP has shown to be able to achieve competitive results compared to 
Tabu Search in adapted vehicle routing problems [4]. 

3 The decision function 

In [4], the route decisions were based on the shortest path in case of the goods’ 
decisions, and on vehicle utilization in case of the vehicles’ decisions. No time 
constraints or other decision criteria are used there. This is a largely simplified de-
cision strategy. In reality, there are usually multiple criteria that have to be consid-
ered to achieve decisions which lead to a good logistic performance. 

If multiple criteria are of interest, these criteria have to be combined in a deci-
sion system that leads to a unique decision. Several ways of combining are possi-
ble, for example sequential use of criteria, fuzzy logic, additive or multiplicative 
combination. A sequential use of criteria has the disadvantage that the sequence 
leads to a fixed prioritization of those parameters that are first used in the se-
quence. Fuzzy logic usually results in a set of fuzzy levels, and to avoid indifferent 
cases (multiple alternatives on the same fuzzy level) as much as possible, a high 
granularity of fuzzy levels and a large set of corresponding fuzzy rules are re-
quired. An additive or multiplicative combination of criteria does not prioritize 
criteria, nor does it have a limited granularity of output values. This makes it fa-
vorable to use such a way of combining the criteria. 

Assuming that each of the criteria should be able to make a route impossible if 
its value is inacceptable, a multiplicative aggregation is the more practical option. 
In an aggregation of different criteria, the value ranges of those criteria are usually 
different. Therefore, they have to be mapped to a common range to avoid that one 
criterion dominates the decision. 

Based on the constraints and assuming k criteria, the function 
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is defined as the Multi-Criteria Context Decision (MCCD) function for the de-
cision alternative j. In this function,  represents the value of criterion i for al-
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and  is a weight to adjust the importance of the criterion for the decision. A 
scaling function instead of a simple scaling factor is used because the criteria may 
have significantly different characteristics. Especially if the value range of a crite-
rion is unbounded at the lower end, the upper end or both, a scaling factor is not 
sufficient to map the criterion into a bounded range. The scaling function as well 
as the weight is specific for the respective criterion. The target value range that the 
criteria are mapped to by the scaling functions is the interval [0, 1], with 1 being 
the best and 0 being the worst value. 

iw

3.1 Decision criteria 

This generalized decision function is now applied to the specifics of the distrib-
uted routing in logistics. For vehicle routing, three criteria are taken into account: 

• The revenue the vehicle is expecting, which is based on the goods’ offers and 
the transport costs per km. Revenue per km is used here because they are a bet-
ter representation of economical efficiency than absolute revenue values. The 
revenue values can be positive or negative (the latter is the case if the transport 
costs are higher than the price the goods offer). Negative revenues, however, 
mean that it is not useful for the vehicle to travel on this route. Therefore, the 
scaling function has to map negative values to 0. For positive revenues, the 
scaled value has to approach 1 for increasing revenue. A scaling based on the 
Error Function (erf) was applied for the positive revenue here. 

• The ecological impact. Efficient utilization of a vehicle’s cargo space reduces 
the pollution per tkm. As the ecological impact can consist of various effects, 
and not all of them are well measurable or even well understood, only the car-
bon dioxide output is considered here, as this can be easily calculated if the ve-
hicles’ fuel consumption is known. Low carbon dioxide output is preferred, 
while high output should be avoided. Here, a scaling function based on the Er-
ror Function Complement (erfc) is used. This function has the center of its 
slope at the targeted carbon dioxide maximum. 

• The reliability. Based on historic data collected during previous transports on a 
route, it can be estimated whether the expected revenue can really be achieved. 
This reliability is a probability, and as such, its values are already in the target 
interval, so no further scaling is required. 

For goods routing, there are three criteria as well: 

• The route costs. These costs depend on the offers the goods make towards the 
vehicles, storage costs, transshipment costs and delay fines. The goods’ offers 
are supposed to depend on the available budget and on the urgency. As the 
costs have a lower limit (0) and an upper limit (the budget), and this range can 
be scaled to the [0, 1] interval by using a linear scaling. 
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• The risk of damage. Each transshipment operation implies a risk that the goods 
may be damaged. Additionally, there is a damage risk related to the transport 
itself. It is assumed that there is a maximum acceptable risk that should under 
no circumstances be exceeded. Therefore, the scaling function is set to 0 for all 
risk values above the maximum acceptable risk. Between “no risk” and the 
maximum, a linear scaling is used that maps “no risk” to 1 and the maximum 
acceptable risk to 0. 

• The risk of being delayed. This risk may be deduced from knowledge about 
how long it takes in average to travel on a specific route. This knowledge is 
based on feedback from previous transports. Based on the historic travel time 
statistics and the time that is still left for an in-time delivery, a probability of 
being delayed is calculated. The scaling function that is applied here has to map 
a low delay risk to 1 and a definite delay to a low, but nonzero value. It has to 
be nonzero because otherwise, goods that are already certain to be delayed on 
any route would not get a route any more. 

4 Simulations 

For simulative evaluation, a scenario was used that is based on a topology that has 
been first introduced in [5]. This topology represents 18 cities in Germany and 
major highway connections between them (see figure 1). 

 

Fig. 1. Logistic scenario topology [5] 

25000 goods are to be transported in this scenario. They are not all known from 
the beginning, but are generated during runtime at a rate of 23 goods per time unit. 
Each possible source-destination pair is present among the goods. 12 vehicles with 
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a capacity of 12 goods each and a maximum speed of 100 km per time unit are 
present in the scenario. The delivery time window is 25 time units for each piece 
of good (the goods may be delivered anytime between 0 and 25 time units after 
entering the scenario). 

The following results were obtained in simulations where all criteria are 
equally weighted with a weight of 1. Here, the average vehicle utilization is 
0.7827. Figure 2 shows that after a transient phase in the beginning of the simula-
tion, the utilization varies around this average value. 

 

Fig. 2. Vehicle utilization 

The performance with respect to the goods’ deliveries is best represented by the 
delivery delays. The cumulative distribution of the goods’ delivery delays can be 
seen in figure 3. In this figure, the delays are displayed with respect to the goods’ 
due times, i.e. the delivery is late if the delay is greater than 0, otherwise it is on 
time. 

The figure shows that around 70% of the deliveries are on time in this configu-
ration. Note that no optimizations of criteria weights are done here yet. To im-
prove the timeliness, weight variations were done for the criteria influencing the 
goods’ route decisions. There are two criteria that are related to the timeliness: 
The delay risk and the costs. 
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Fig. 3. CDF of the delivery delay 

Figure 4 shows the CDFs for different weights on the delay risk criterion, while 
all other criteria are weighted with 1. 

 

Fig. 4. CDFs of the delivery delay with different weights for the delay risk 
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As it can be seen from the figure, varying the weight for the delay risk does not 
show much influence on the logistic performance. While this discovery seems 
surprising, it can be explained because the risk only covers the question if, and not 
how much the delivery will be delayed. The cost, on the other hand, increases with 
longer delays due to higher storage costs and delay fines. Therefore, changing the 
weight of the costs in the decision can be more suitable to improve the timeliness. 
Figure 5 proves this. 

 

Fig. 5. CDFs of the delivery delay with different weights for the cost criterion 

By tuning the cost weight, the percentage of timely deliveries can improved, as 
shown in the figure. With a very high weight, the percentage approaches 80 %. 
However, the average vehicle capacity utilization is reduced to 0.6988. This 
means that the vehicles take the goods on more direct paths, and the load consoli-
dation potential is lower. A side-effect is that to ensure the timely delivery of more 
goods in total, some other goods are not transported at all. These goods would re-
quire costly individual transports. 

To position the proposed route decision function in comparison to other routing 
approaches, the results achieved here were placed into the comparison chart which 
was introduced in [6]. Figure 6 shows this. 
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Fig. 6. Positioning of the MCCD decision approach (red star and black star) 
in the comparison chart introduced in [6] 

It can be seen from the figure that the proposed decision function leads to good 
results compared with the other methods investigated in [6]. The red star repre-
sents the decision function with equally weighted criteria; the black star represents 
it with a weight of 1000 on the cost criterion. 

5 Conclusions and Outlook 

A multi-criteria decision function for autonomous routing with DLRP has been in-
troduced in this paper. Simulation results have shown that the decision function 
performs well in comparison to other approaches and can be further improved by a 
fine-tuning of weights. Further research will include adaptive tuning of weights 
during runtime, and investigations on topologies of different scales. 
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