Chapter 9
Logistic Systems with Multiple Autonomous
Control Strategies

Bernd Scholz-Reiter, Michael Girges, and Thomas Jagalski

9.1 Introduction

Production planning and control (PPC) systems have to cope with rising complex-
ity and dynamics that arise from a higher demand for individualized goods, short
delivery times, a strict adherence to due dates and internal unexpected events, e.g.
machine breakdowns or rush orders. Conventional production planning and conirol
methods cannot handle unpredictable events and disturbances in a satisfactory man-
ner because in practice the complexity of centralized architectures tends to grow
rapidly with size, resulting in rapid deterioration of fault tolerance, adaptability and
flexibility [8]. One approach to overcome these difficulties is to develop decentral-
ized systems with autoromous control methods to reduce the complexity that has to
be taken into account for rendering decisions {13].

Recent developments in information and communication technology, such as
radio frequency identification (RFID), wireless communication networks etc.,
enable intelligent and autonomous logistic objects to communicate with each other
and with their resources and to process the acquired information. Combining the
autonomous control approach with the developments in information and communi-
cation technology may lead to a coalescence of material flow and information flow
and enable the logistic objects to manage and control their manufacturing process
autonomously [13].

Modeling and benchmarking autonomous control strategies requires dynamic
models. Furthermore, one has to consider both, the local decision-making processes
as well as the global behavior of the system. The interactions and interdependen-
cies between local and global behavior are called Micro-Macro-Link, which is not
trivial to describe and analyze. In a colony of ants for example a single ant has no
idea ahout the whole colony. Its actions are based on a few simple rules. On the
other hand, the entire colony consisting of thousands of ants is able to build gigantic
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nests, to find shortest paths between food and nest etc. [9]. This self-organization
is a so-called emergent behavior of a complex dynamic system and is not derivable
from single characteristics [20].

Previous studies showed the effectiveness of autonomous control for scheduling
tasks (e.g. [2, 14-17]) but so far there is no systematical analysis of autonomous
machine rules for buffer clearance. This paper addresses the implementation of
autonomous control as a service rule within a generic scenario of a flexible flow
shop with a pheromone-based scheduling. Its main goal is to show that multiple
autcnomous control strategies within one logistic system — although it is possi-
ble to design and implement them ~ may lead to non-desired behavior and bad
overall logistic performance. To achieve this goal the coniribution is structured as
follows: Sect.9.2 offers an overview of autonomous control for scheduling tasks
in production logistics. In Sect. 9.3 a generic exemplary scenario of a flexible flow
shop, its modeling details as well as the chosen autonomous control strategy, i.e.
a pheromone-based scheduling heuristic, are presented. Section 9.4 describes the
design of two autonomous service rules and evalvates the simulation results in com-
parison to FIFQ service rule, showing, that multiple autonomous control strategies
within one logistic system may lead to a dilemma. Section 9.5 shows how to solve
the dilemma with the help of a simple non-autonomous service ruie and evaluates
on the necessity of strictly local information for autonomous control by presenting
a correction term to the pheromone-based scheduling. Section 9.6 summarizes the
results and offers an outlook on future research. .

9.2 Autonomous Control for Flexible Flow Shop Scheduling

The main goal of flexible flow shop scheduling is to sequence and assign a set of
jobs to a set of production resources in an optimal manner [1]. However, for most
instances of this problem class optimal solutions cannot be found within an appro-
priate time, because these problems are usually NP complete [7, 12]. Insicad of
finding optimal solutions, different heuristics, e.g. autonomous control strategies,
have been developed to derive acceptable solutions. Autonomous control is defined
by: ‘Autonomous Control describes processes of decentralized decision-making in
heterarchical structures. It presumes interacting elements in non-deterministic sys-
tems, which possess the capability and possibility to render decisions independently.
The objective of Autonomous Centrol is the achievement of increased robustness
and positive emergence of the total system due to distributed and flexible coping
with dynamics and complexity” [20]. In the context of engineering science, this
global definition is adapted: ‘Autonomous Control in logistic systems is character-
ized by the ability of logistic objects to process information, to render and to execute
decisions on their own’ [20]. Autonomous control aims at increasing robustness and
performance of logistic systems [21]. Thus, autonomous control strategies incorpo-
raie elements that are able to render decisions by themselves using distributed local
information. Consequently, the concept of autonomous control requires on one hand
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logistic objects that are able to receive local information, process this information,
and make a decision about their next action - and all that as local as possible. On the
other hand, the logistic structure has to provide distributed information about local
states and different alternatives to both enable decisions in general and to enable
sophisticated decisions that offer an acceptable solution.

According to a classification, introduced by Windt and Becker (2009), these
local information methods can be grouped as follows: rational strategies, bounded
rational strategies and combined strategies [22]. This classification is based on
the underlying decision mechanisms used by the different autonomous control
methods. Rational strategies utilize rational measures for decision making. Bio-
analogous control strategies belong to the group of bounded raticnal strategies.
They aim at transferring fundamental mechanisms of biologic self-organizing sys-
tems to autonomoeus decision making methods. Thus, autonomous control strategies
may rely on information about the current situation and a prediction of a future
situation of the system {expected values) or on information about how good alier-
natives had been in the past (experience of the predecessors) or on both. One group
of autonomous control strategies that rely on experience of predecessors are bio-
analogous control strategies. In literature one can find several attempts to explain
the emergent behavior of large scale structures in biological systems. Camazine
et al. (2001) offer an overview and some case studies of self-organization in biolog-
ical systems. The case studies comprise social insects, slime moulds, bacteria, bark
beetles, fireflies and fish [5]. According to the authors biological self-organization
can be found in group-level behavior that arises in most cases from local individ-
ual actions that are influenced by the actions of neighbors or predecessors and in
structures that are build conjointly by individuals. Colonies of social insects, e.g.
ants or honey bees, show an impressive behavior, which has been classified as
Swarm-Intelligence [5]. The individuals follow simple rules that aliow solving com-
plex problems beyond the capabilities of single group members. These colonies are
characterized by adaptiveness, robustness and self-organization [5). Several of these
rational and biologically inspired autonomous control strategies have been applied
to flexible flow shop problems, e.g. the queue length estimator, the pheromone-based
conirol sirategy, the heney bee method and mixed strafegies.

The queue length estimator (QLE) is an autonomous control sirategy that enacts
a part to compare actual buffer levels of different alternatives (all parallel machines)
that are able to perform its next production step [14]. Buffer levels are calculated
as the sum of the estimated processing times of the wailing parts in the respective

“buffer on the respective machine plus its own expected processing time. When a

part has to render the decision about its next processing step it compares the current
buffer levels, i.e. the estimated waiting time until processing, and chooses the buffer
with the shortest waiting time. Thus, the QLE uses the available information to
predict the systems future state. The QLE can be used for scenarios with different
processing times as well as scenarios with set-up times.

The pheromone-based autonomous control strategy [2] utilizes data from past
events. Every time a parl leaves a machine, i.e. after each processing step, the
part leaves information about the duration of its processing and waiting time at the
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respective machine in form of an artificial pheromone. The following parts use these
data to render their decisions. Thus, the parts’ decisions are based on backward
propagated information about the throughput times of finished parts for different
routes. Routes with shorter throughput times attract parts to use these routes again.
This process can be compared to ants leaving pheromones on their way to com-
municate with following ants. As in other pheromone concepts (e.g. [3, 10]), the
communication takes place indirectly by changing the environment. The parts have
to be able 1o access updated information about throughput time only. Thus, this
pheromone-based antonomous control strategy differs from approaches from ant
colony optimization (e.g. ACO [13]) since there is no self-reinforcing guided search
process for optimal solutions. The pheromone concentration depends on the evapo-
ration of the pheromone and on the time previous parts had to spend waiting in the
buffer in addition to the processing time on the respective machine as well as the
throughput time. Clearly, the fine-tuning of the evaporation constant for the artifi-
cial pheromone is crucial. The pheromone-based autonomous control strategy can
be used for scenarios with different processing times. However, in a pheromone-
based concept, set-up times are somewhat hard to handle because predecessors’
decisions have influence on successors, which is ordinary not communicated by
the pheremone. This can be solved by the introduction of a correction term for the
pheromone concentration [15].

The honey bee concept has been adapted to flexible flow shop scheduling prob-
lems as well [16]. 1t mimics the food foraging behavior of honey bees, which is
slightly different compared to the pheromone concepl. Bees that are aware of a
food source can advertise the source in order to recruit nest mates by performing a
‘waggle dance’. With the help of the dance, the bee conveys information about the
known food source to the ‘onlooking’ bees, i.e. its general direction, distance, and
quality [4]. The length of such a dance is proportional to source quality [18]. In a
flexible flow shop scheduling scenario a part advertises a good way for following
parts after each processing step and the better the alternative is, e.g. the shorter the
throughput time was, the longer the advertisement should be. A homecoming col-
lecting bee evaluates the food source by means of the ratio of energy consumption
to the energy conveyed to the hive in form of sngar concentration. The better the
individual evaluation of the food source quality is the more dance runs the bee will
perform [18, 19]. Thus, the more runs the dance has, the longer the advertisement
takes and the more unemployed bees can watch it and are attracted to the best food
sources. This is different from the pheromone concept because a single ant does
no evaluation at all. When transforming the honey bee concept to a flexible flow
shop scheduling scenario one would implement this individual evaluation process
as well. Thus, the advertising of a good alternative is not decreased by an exponen-
tial decay as it is in a pheromone concept but according to the individual evaluation
and decision on the number of waggle dances.

The different autonomous control strategies can be combined to a mixed strategy
that incorporates a weighted combination of the prediction of the future state of
the systern and the experience of predecessors (e.g. QLE and the pheromone-based
autonomous control sirategy, [15]).
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So far there is no systematical analysis of autonomous machine rules for buffer
clearance. In order to analyze the behavior of a logistic system with multiple
autonomous controt strategies for scheduling and buffer clearance, a generic sce-
nario of a flexible flow shop with set-up times was established and the pheromone-
based autonomous scheduling method was chosen.

9.3 Exemplary Scenario — Modeling Details

The considered exemplary scenario is a matrix-like flow-line manufacturing system
producing & different product types at the same time. Each of the products has to
undergo m production stages. For each of these production stages there are » parallel
production lines available. Therefore, the shop floor consists of m x r machines. The
raw materials for each product enter the system via sources and the final products
leave the system via drains. The production lines are coupled at every stage and
every line is able to process every type of product within a certain stage. Switching
product types requires a set-up. At each production stage a part has to make an
autonomous decision to which of the lines to go to in the nexi stage. Each machine
has an input buffer in front, containing items of the & product types as Fig. 9.1 shows
[14]. This scenario was chosen because of its generic and universal character, it can
be applied to the majority of real world flexible flow shop configurations.

Source

Drain
Possible next
processing step
B Buffer
M Machine

Fig. 9.1 Generic m x n shop floor scenario [14]
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Table 9.1 Set-up times of the 3 x 3 machines model

Set-up times Machine

[lTl]l']] Mml Mml Mm3
A—B 30 10 60

A—=C 60 30 10

B—A 10 60 30

B—C 60 30 10

C—A 10 60 30

C—B 30 10 60

To handle the complexity, the simulation model is reduced to 3 x 3 machines pro-
ducing 3 different product types 4, B and €. The model is build with Vensim DSS
computer simulation software. The arrival functions for the three product types are
defined as sine functions as a representation of the seasonal varying market demand.
They are identical except for a phase shift of 1/3 period for the three product types.
To model a usual workload of about 80% in real production systems, a mean arrival
rate of 0.4 1/ 4 and an amplitude of the sine functions of 0.15 1/ A are chosen. It is
assumed that the processing times for each product are the same: 120 min. Table 9.1
shows the set-up times for the three parallel machine types 1, 2 and 3 at all pro-
duction stages m and the three product types respectively. To analyze the logistics
performance of the global system, the aggregate buffer level for the three different
product types of the first production step was chosen as the logistic performance
indicator.

As there are different product types with different set-up times, the machines’
service Tule for the different product types is important. For the first simulation
scenario it is first in — first out (FIFQ).

To analyze the behavior of a flexible flow shop with more than one autonomous
control strategy, the pheromone-based autonomous control strategy was chosen for
scheduling. It uses data from past events in a way that every time a part leaves a
machine after being processed, it leaves information about the duration of its pro-
cessing and wailing time at the respective machine as an artificial pheromone. The
following parts can use this information to render their decisions. Thus, the parts’
decisions are based on backward propagated information about the throughput times
of finished parts for different routes. Routes with shorter throughput times attract
parts t0 use these routes again. To mimic the behavior of ants to search for shortest
ways with the help of a random walk, the parts deviate from the decision to sim-
ply follow the strongest pheromone concentration with a certain probability (here
5%). The pheromone concentration update algorithm works as follows: Let P, ()
denote the pheromone concentration for machine mn at time ¢, E, . the evapora-
tion constant (0 < E,u < 1) for product type k at machine mn, By a (constant)
gain for the pheromone concentration update for product type k at machine mn and
TPT i (t) the actual throughput time for product type k at machine mn. Then the
pheromone updating process is given by:
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Pmnk(t) = Pmnk(r) - Pmnk(t - 1)Enmk
" Bk TPT i (t).  if ‘machine has completed its job' = true
0, else

This flexible flow shop scenario with autonomous scheduling was implemented with
the help of the continuous System Dynamics Vensim DSS computer simulation soft-
ware. The term continuous denotes the continuous material flow and evaporation
process, which differs from the flow of discrete parts in e.g. a discrete event simu-
lation model; the simulation time is discrete. In literature, continuous flow models
of production systems are often called hybrid models {e.g. [6, 11]). That means the
material flow is modeled as continuous flow which is controlled by discrete actions.
This discrete control is typical for production systems. The implementation of the
different autonomous service rules together with the simulation results are described
in the following section.

9.4 Design of Autonomous Service Rules
and Simulation Results

The simulation model is designed in a way that it allows the analysis of different
service rules. First, and for comparison, the flexible flow shop with pheromone-
based autonomous control is combined with FIFO service rule in Sect.9.4.1. In
Sect. 9.4.2 a pheromone-based service rule is presented, followed by a QLE service
rule in Sect. 9.4.3. An evaluation of the results is given in Sect. 9.4.4.

9.4.1 Simulation Results with FIFO

Figure 9.2 shows the aggregate buffer levels of the first production step of the flexi-
ble flow shop with pheromone-based autonomous conirol for scheduling and FIFO
as the service rule. The maximum inventory is 13.26 pieces and the mean inventory
is 8.65 pieces with a standard deviation of 6.11 pieces,

.9.4.2 Simulation Results with a Pheromone-Based

Autonoemous Service Rule

To improve the logistic performance the service rule should be altered. The approach
to implement an autonomous service rule, i.e. let the machines select the parts
and organize the set-ups, is promising, because set-ups are random in a FIFQ
scenario. The pheromone-based autonomous service rule works as follows: Set-
up to the product type with the highest pheromone concentration and with some
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Pheromone-based scheduling with FIFO service rule

20

0

0 . 30
Simulation Time [days]

Parts in Buffer

Average

Fig. 9.2 Aggregate buffer levels of the first production step with FIFO

Pheromone-based scheduling and pheromone service rule

20

Stmulation Time [days]

Parts in Buffer
Average

Fig. 9.3 Aggregate buffer levels of the first preduction step with pheromone-based service rule

probability (here 5%) set-up to a random product type. The pheromone update
process is siraightforward: Whenever a part has been processed it leaves an arti-
ficial pheromone according to its product type at the machine, which is constantly
evaporating.

Figure 9.3 depicts the aggregate buffer levels of the first production step of the
flexible fiow shop with pheromone-based autonomous control for scheduling and
the pheromone-based service rule,
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The maximum inventory is 14,74 pieces and the mean inventory is 10.37 pieces
with a standard deviation of 8.41 pieces. This performance is not satisfying; even
the FIFO service rule shows a better performance within this scenario.

9.4.3 Simulation Results with QLE as Autonomous Service Rule

To further analyze the behavior of the flexible flow shop with multiple autonomous
control strategies, the QLE is implemented as service rule. The QLE service rule
is designed in a way that the machine calculates the total processing times, waiting
times plus set-up times of each product type in its buffer. Then, it compares the
values and chooses to set-up to the product type with the longest overall processing,
waiting and set-up time to maximize periods without set-ups.

The aggregaie buffer levels of the first production step of the flexible flow shop
with pheromone-based autonomous control for scheduling and QLE service rule are
shown in Fig. 9.4.

The maximum inventory is for pheromone-based scheduling and QLE service
rule is 13.48 pieces and the mean inventory is 9.02 pieces with a standard devia-
tion of 8.33 pieces. This performance is not good as well. Although better than the
pheromone service rule, the QLE performance is slightly worse than FIFO.

9.4.4 Evaluation of the Results

At a first glance, it seems to be surprising that the performance of the autonomous
service rules is bad and even below FIFQ, When analyzing the drawbacks of the two
new autonomous service rules, their lack of performance can easily be explained.

Pheromone-based scheduling with QLE service rule

20

Simulation Time [days]

Parts in Buffer
Average

Fig. 9.4 Aggregate buffer levels of the first production step with QLE service rule
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The pheromone-based service ruie handles set-ups according to the predecessors
experience and does not set-up to actual needs. For example, a set-up would be from
product type A to product type B if there are no parts of product type A in the buffer
and set-ups to product type B have been a good decision in the past. This decision
is a very bad one if there are no parts of product type B in the buffer. A second
drawback of the pheromone-based service rule is the deviation from the strongest
pheromone concentration (analogous to the random walk of ants), which leads to
completely senseless set-ups. These two drawbacks end up in the bad performance
shown in Sect. 9.4.2. The pheromone-based autonomous control for scheduling does
not take the pheromone-based service rule’s drawbacks into account as there is no
synchronization between the different autonomous control stralegies.

The QLE service rule has two drawbacks as well: First, newly artiving parts lets
the QLE re-calculate the overall time to clear the buffer from the respective product
type. This leads to many set-ups according to the re-evaluated simulation. Another
drawback of the QLE service ruie is that the third-best alternatives, i.e. the ones with
the longest set-up time, are processed in a subordinate way compared to the other
service rules, because differing sel-up times are not regarded at all in the scenario
with pheromone-based service rule or FIFQ. The pheromone-based autonomous
control for scheduling does not take the QLE service rule’s drawbacks into account
either as there is again no synchronization between the different autonomous control
straiegies here.

Both logistic systems with a pheromone-based autonomous scheduling strat-
egy and avtonomous service rules show a very bad performance. A designer of
autonomous control strategies is in a dilemma: Multiple autonomous control strate-
gies within one logistic system do not perform well per se, neither do they syn-
chronize themselves and without paying attention, the overall performance can
be bad.

9.5 Solution to the Dilernma

Exemplarily, two different solutions to the dilemma described in Sect.9.4.4 are
presented in the following. First, an easy and non-autonomous service rule is imple-
mented, which shows a very good performance. Another improvement .can be
achieved by introducing a correction term to the scheduling pheromone in order to
synchronize the autonomous control strategies for scheduling and the autonomous
control strategy for buffer clearance.

9.5.1 A Simple But Good Service Rule

A simple non-autonomous service rule is implemented. It minimizes set-ups in the
following way: As long as there are parts of the type the machine is set-up to; do not
make a set-up, go on processing. If a set-up is needed, switch to the type which is
quantitatively best represented in the buffer. Figure 9.5 shows the aggregate buffer
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Pheromone-based scheduling and simple service rule
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Fig. 9.5 Aggregate buffer levels of the first production step — pheromone-based scheduling with
correction term and simple service rule

levels of the first production step of the flexible flow ;hop with pheromone-based
autonomous control for scheduling and the simple service rule. _

The maximum buffer level is reduced to 8.83 pieces. The mean !:)uﬂ’er leve.l is
5.77 pieces with a standard deviation of 3.88 pieces. Th_e implementatlpn of the sim-
ple service rule to let the machines select parts according to the mentioned scheme
leads to an improved performance.

9.5.2 Introducing a Pheromone Correction Term

Because of two reasons this performance seems to be improvable: Th_e pheromqne
concentration does not include information about the §et—up status of the machine
and, a part’s decision can be both, good or bad, depending on how many set—u?s the
machine has to perform before the part can be processed. The sec.ond’reaso'n is not
included in the pheromone concentration either. Thus, the machines service rule
has to be improved and a correction term for the pheromone concentration has to be
i nted [15].

lmﬂccl:rcl;recti(gn tlrm is introduced to the update process of the pheromone concen-
tration. This correction term includes information about the product typc? a machine
is set-up to after a part has been processed. This can no.t 'be do‘ne by su.nply leazl;/c-l
ing a higher amount of the pheromone because this additional mfo_rmauon shou
effect a direct successor’s decision only. A higher pheromonp quantity »}'ou]d evap-
orate over time according to the evaporation constant leading [(‘) bad mfo.rmatmn
for the next but ones’ decisions. Thus, the correction term consists of an increas-
ing of the pheromone concentraticn but with a higher evaporation constant. Thfi::
pheromone update algorithm works as follows: Let CT,4(¢) denote the value o
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the correction term for product type k at machine mn at time ¢, 8,,; a constant
adjusted to the execution time for product type & at machine mn, ECuy the evap-
oration constant for the correction term (1 > EC > E) for product type k at
machine mn and set-up_status,,(t) the status the machine mn is actually set-up to.
Then, the pheromone concentration with correction ferm P_cor,(t) consists of the
pheromone part P_part,{t) and the correction term part C Ty (2):

P_cOrmmlt) = P_part,; (t) + CTompu (1)

with
P_part,,.(t) = P_part,.(t} — P_part,.(t — DEpm
+ Bk TPTomi(t),  if ‘machine has completed its job' = true
0, else
and

CT () = CToni(1} — CTopie(t — D)ECome

B, if set-up_status,,.(t) = k

+
0, else

The (higher) evaporation constant for the correction term EC,, is adjusted to

the execution time (processing time plus set-up time) of the next part on a par-

ticular machine in order to improve the overall performance of the logistic sys-

tem. Figure 9.6 shows the aggregate buffer Ievels of the first production step with

Pheromone with correction term and simple service rule

20

Simulation Time [days]

Paris in Buffer
Average

Fig. 9.6 Aggregate buffer levels of the first production step with pheromone-based scheduling
with correction term and simple service rule
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Table 9.2 Performance measures of the different service rules and the altered pheromone-based
scheduling strategy

FIFO Pheromone based QLE service Simple non-autonomous Pheromoene with

(4.1} service rule (4.2) rule (4.3) service rule (5.1) correction term {(5.2)
Mean 8.65 10.37 9.02 577 8.55
Max 13.26 14.74 1348 8.83 5.51
STD 6.11 B.41 833 3.88 3.67

pheromone-based scheduling with correction term and the simple new service rule
for buffer clearance 5.1).

With the help of the pheromone correction term the maximum buffer level is
reduced to 8.55 pieces. The mean buffer level goes down to 5.51 pieces with a stan-
dard deviation of 3.67 pieces. The implementation of the pheromone correction term
pays as the comparison of FIFO (cf. 4.1), pheromone-based service rule (cf. 4.2),
QLE service rule (cf. 4.3) and simple service rule (cf. 5.1) in Table 9.2 summarizes.

One has to keep in mind that introducing a correction term to the scheduling
pheromone means abandoning the use of strictly local data because of the interaction
between the machines (their set-up status is local information) and the pheromone-
based autonomous control strategy for scheduling.

9.6 Summary and Qutlook

A generic matrix model of a flexible flow shop with set-ups and a pheromone-
based autonomous control strategy was presented to analyze the performance and
behavior of multiple autonomous contrel methods within one logistic system. Two
autonomous service rules for buffer clearance, a pheromone-based service rule and
the QLE service rule were introduced and implemented into a System Dynamics
computer simulation model. The simulation results were compared to the FIFO ser-
vice rule and it was shown that the overall performance of the autonomous service
rules was bad, even worse than FIFQ, in this scenario.

One big result of this contribution is that the application of antonomous control
has its limitations: Multiple autonomous control strategies within one logistic sys-
tem do not perform well per se, neither do they synchronize themselves. Designers

-of autonomous control strategies should beware: Aatonomous control should not be

implemenied for the sake of autonomous control itself. Designing autonomous con-
trol methods according to current requirements as well as synchronization is highly
needed (and possible).

Two solutions to the dilemma were introduced: First, a simple service rule for
buffer clearance showed a better performance. Second, the interaction between
buffer clearance and scheduling was improved by introducing a phercmone correc-
tion term to the autonomous control strategy for scheduling. This course of action
showed on the one hand an improved performance, on the other hand leads this



110 B. Scholz-Reiter et al.

manual synchronization of the different autonomous control strategies to a loss of
the paradigm to strictly use local data. In order to use the pheromone correction
term, the local information about the machines’ set-up status must be propagated to
the pheromone-based autonomous control strategy for scheduling.

Of course, not all autonomous service rules would have a bad performance in
a logistic system with multiple autonomous control strategies. Even a pheromone-
based service rule without random walk could probably perform in a better way.
This shows that future research is needed: Better autonomous service rules should be
designed and systematically analyzed. Additionally, a further achievement in perfor-
mance could be made by mixed autonomous control strategies for scheduling or as
service rules. Furthermore, machine breakdowns or rush orders should be analyzed
in order to analyze the robustness against internal dynamics of logistic systems with
multiple autonomous control strategies.
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