Chapter 11
Potentials and Limitations of Autonomously
Controlled Production Systems

Bernd Scholz-Reiter, Michael Girges, and Henning Rekershrink

11.1 Introduction

Manufacturing enterprises are increasingly challenged by a dynamic and volatile
business environment. Driving forces in this context are for example an increas-
ing demand of customers for individualized goods, short delivery times and a strict
adherence to due dates. Moreover, internal factors like machine breakdowns or rush
orders lead to additional dynamics. In order to sustain competitive, manufacturing
enterprises have to react promptly to these changes. Conventional centralized pro-
duction planning and control methods are not able to cope with these dynamics
in an appropriate manner [8]. In this context the application of novel decentral-
ized approaches, like autonomous control, seems to be promising. The concept of
autonomous cortrol aims at shifting decision making capabilities form the total sys-
tem to its elements [24]. This approach enables autonomous decision making of
intelligent logistic objects. The term intelligent logistic object is broadly defined
and covers material objects (e.g., parts in a shop floor) as well as immaterial object
(e.g., production orders). On this basis the concept of autonomous control aims at
increasing robustness and performance of logistic systems [25].

Previous studies have shown the effectiveness of autonomous controlled pro-
duction systems in highly dynamic situations compared to conventional methods.
Nevertheless, conventional planning methods tend to outperform autonomous con-
trol in well-defined siwations with less dynamics [15]. This paper addresses the
boundaries and the potentials of autonomous control in different static and dynamic
situations. The main hypothesis in this context reads as follows: Autonomous con-
trol performs best in complex and dynamic situations, while conventional planning
methods outperform autonomous control under less dynamic and static conditions.
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Fig. 11.1 Scheme of Flexible Flow Shop (FFS) problems [10]

Therefore, this contribution evaluates two different autonomous control meth-
ods and twelve conventional scheduling heuristics in a Flexible Flow Shop (FFS)
environment. The FES scheduling problem is a well known and common task in
operations research. Basically, the FFS structure which is depicted in Fig. 11.1 com-
prises several production stages with a certain amount of parallel machines per
stage [1].

Jobs running through the FFS system have to pass each production stage once,
In addition to the basic version of the FFS problem, practice-oriented extensions
with unrelated parallel machines and sequence dependant setup times are consid-
ered. The analysis covers scenarios with different degrees of structural complexity
and dynamics. In this respect the structural complexity refers to the number of pro-
duction stages and the number of parallel machines per stage. Moreover, different
degrees of dynamics are modeled by varying inter-arrival times of the incoming
work load: The dynamic situations are characterized by distributed inter-arrival
times of the jobs. By contrast, in the static situation all jobs are released at once.
The structure of this contribution is as follows: Sect. 11.2 briefly describes the FFS
problem class and its extensions. On this basis Sect. 11.3 presents classical schedul-
ing heuristics for this problem class. Subsequently, Sect. 11.4 provides information
about the concept of autonomous control in manufacturing and presents partic-
ular autonomouws control methods, which are used in this evaluation study. The
results of the evaluation study are presented and discussed in Sect. 11.5. Finally,
Sect. 11.6 summarizes the potentials and the limitations of autonomous cotitrol in
manufacturing and gives an outlook with further research fields.
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11.2 Flexible Flow Shop Problems

Within the operation research domain, the FFS scheduling problem is a common
and well-known task. Generally, this problem class aims at sequencing and assign-
ing a set of jobs to a set of production resources in an optimal manner [1]. However,
for most instances of this problem class optimal solutions cannot be found in an
applicable computational time. The main reason for this is the complexity of the
problem class, which is NP-hard [3]. Hence, heuristic approaches were developed

‘and applied to these problems in the past in order to derive acceptable solutions.

This section gives a detailed description of the structure of this problem class.
Subsequently, different solution heuristics are introduced.

The FFS problem is characterized by a set of production stages, which are
sequentially arranged. Each of these production stages comprises at least one
machine or different parallel machines. Generally, a FFS scenario has at least one
production stage with more than one machine. Figure 11.1 depicts an example of
a FES scenario. Jobs running through this network have to pass each production
stage once. Each job can be processed by every machine on a production stage.
A practice-oriented extension of this basic scenario is the extension of unrelated
parallel machines and setup times [5]. The term unrelated paraliel machines indi-
cates, that the processing times and the setup times on a production stage may vary
between the machines for a particular job type. With regard to scheduling prob-
lems in practice, this formulation is considered to be realistic. Jungwattanakit et al.
(2008) present a problem formulation of the FES problem, which is adapted for this
contribution as follows [6]:

Parameters and Variables:

J number of jobs
S number of job types (indices s and u)
T number of stages
M! number of parallel machines at stage ¢ (index m)
rj release time of job j
mus Setup time from job type # to s at machine m at stage ¢

pst standard processing time of job type s at stage ¢

Vi, relative speed of machine m at stage 1

Pm,  Processing time of s onm at 7, where p?, . = psi/vi,
Logistic target measures

C;  completion time of job j

Cmax  makespan, where Cre = max(C;)

T;  throughput time of job j; where T; = C; —r;

TPT mean throughput time; where TPT = mean(T;)

UTL  systems average utilization

According to this formulation, there are T stages with M’ unrelated machines at
each stage 1. Moreover, there are § different types of jobs, which have all different
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processing times p,,, . and setup times s, , ¢

defined release time, denoted by r;.

on the machines. Ever job has a pre-

11.3 Scheduling Heuristics

The FES problem in its basic form is NP-hard [9]. Accordingly, optimal solutions
can only be determined for very small and less complex scenarios in an applicable
computational time. Many different heuristic approaches were developed in the past,
to generate suitable solutions for the FFS problem. As far as the FFS with the exten-
sion of unrelated parallel machines and setup times is concerned, more sophisticated
heuristics are necessary. Jungwattanakit et al. (2005) introduces a heuristic approach
containing a set of constructive algorithms and a greedy algorithm [5]. All construc-
tive algorithms are based on heuristic for the flow shop scheduling. They construct
an mnitial sequence for the first production stage. Jungwattanakit et al. (2005) pro-
pose the following sequencing algorithms for the first stage: PAL (a slope index
heuristic by Palmer), CDS (a best choice heuristic by Campbell, Dudek and Smith),
GUP (a slope index heuristic by Gupta), DAN (a heuristic by Dannenbring), NEH
(a constructive heuristic by Nawaz, Enscore and Ham) [5].

Subsequently, a greedy algorithm allocates the jobs to the machines at the stages.
It assigns jobs to machines considering the setup state of a machine, the processing
time of a job on the machine and the idle time of the machines. This algorithm
repeats for every stage of the scenario, until a complete schedule is generated for all
stages. For a detailed description of the constructive and the greedy algorithm can
be found in Jungwattanakit et al. (2005) and Jungwattanakit et al. (2008) [3. 6].

In order to improve the results of this basic procedure with construction of an
initial sequence, which is followed by an incremental assignment to machines,
Jungwattanakit et al. (2009) propose a coupling of this basic procedure with a
genetic algorithm (GAL) [7]. This algorithm takes the sequence for the first stage
as genomes, It creates an initial population out of the results of all basic heuristics.

The optimization results of the genetic algorithm outperform the solutions of the _

basic procedure. Thus, the GAL is taken as reference benchmark of all scheduling
heuristics in this evaluation study.

Due to the expected shortcomings of these scheduling heuristics in dynamic
situations, Scholz-Reiter et al. (2010) developed adapted versions of these heuris-
tics for rolling horizons (fPAL, rCDS, rGUP, rDAN, rNEH and rGAL) [18]. The
rolling horizon scheduling heuristics (rSCD) divide the entire planning horizon
chronologically into sub-planning-horizons, which comprise 25 jobs each. These
sub-instances are solved sequentially. The final schedule is generated by merging
the snb-schedules.

Additionally, a further benchmark is considered. Tt is the lower bound of the
evaluation. This boundary contains the theoretical minimum values, which can be
archived in a scenario. For Crax minimum is determined by:
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max{r;) + T - (mean(p}, ;) + mean(s, , })
min Cpay = max ; m

mean{(siy y.5) )

J - (mean(pf,,,s) + —
Similar to Ciyy the minimum of the TP T is estimated:
minTPT = T - mean(pl, ;} + T - mean(s,, , ;)

In contrast to the Cay and the TP T, the best possible utilization of a scenario is
100%. The lower bound is used for estimating the quality of the simulation results.
Note, that these general lower bounds are theoretical values. It is assumed, that there
is no feasible solution for realizing these lower bounds in the particular scenarios.

11.4 Autonomous Control in Manufacturing

The Collaborative Research Centre 637 “Autonomous Cooperating Logistic Pro-
cesses ~ a Paradigm Shift and its Limitations™ gives the following comprehensive
definition of autonomous control: “Autonomous control describes processes of
decentralized decision-making in heterarchical structures. It presumes interacting
elements in non-deterministic systems, which possess the capability and possibil-
ity to render decisions independently. The objective of autonomous control is the
achievement of increased robustness and positive emergence of the total system due
to distributed and flexible coping with dynamics and complexity.” [24]. According
to this definition, the concept of autonomous control is characterized by a shift of
decision making capabilities to the logistic objects. Generally, this concept can be
applied to various logistic areas, like the intelligent container [4], transport planning
[11,12,19], manufacturing systems [13] or entire production networks [16].

In the context of manufacturing systems the implementation of autonomous
control aims at enabling jobs to find routes through a production system refer-
ring 1o their own logistic targets. This kind of autonomous decision making and
the corresponding interactions between the logistic objects aims at a generating a
self-organizing behavior which increases the robustness and the performance of the
system. This self-organisation is a called emergent behaviour of a complex dynamic
system and not derivable from single characteristic [21-23].

Different autonomous control methods were developed in the past. These meth-
ods have shown promising results concerning the system’s ability to cope with
dynamics and unforeseen disturbances e.g. [13]. Scholz-Reiter et al. (2009) com-
pared different autonomous control methods with a conventional production plan-
ning and control (PPC) approach in a real data based model of a production system
[15]. It was shown that different autonomous control methods outperform the PPC
approach in a highly dynamic situation. Moreover, this study confirmed that differ-
ent autonomous methods lead to variations in the systems performance, depending
on logistic target prioritization.
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Scholz-Reiter et al. (2010) propose a classification of different autonomous con-
trol methods according to their information horizon [18]. Tt refers to the approach of
collecting and processing necessary information for decision making of autonomous
control methods. This differentiation identifies local information methods and infor-
mation discovery methods. Ail methods of both groups enable local, autonomous
decisions of jobs, but they use different information horizons for the decision
making process. Local information methods collect information exclusively from
the direct neighborhood (buffers or machines). By contrast, information discovery
methods collect selected information from the entire production system. Usually,
these methods do not discover all available data. It is rather directed to all relevant
information,

11.4.1 Local Information Methods

Local information methods avoid elaborate discovery procedures. Generally, they
aim at rendering suitable local decision with less computational effort. All local
information methods have in common that they focus only on information, which
are available from the direct local environment (e.g., data form succeeding buffers
and machines). The underlying decision procedures are rather simple, compared to
information discovery methods. According to a classification, introduced by Windt
and Becker (2009), these local information methods can be grouped as follows:
rational strategies, bounded rational strategies, combined strategies [26]. This clas-
sification is based on the underlying decision mechanisms used by the different
autonomous control methods. Rational strategies utilize rational measures for deci-
sion making. This means for example estimated buffer and waiting times or due
dates of orders.

The queue length estimator method (QLE) is a rational strategy. Jobs using the
QLE method are able to collect information about the states of all direct succeeding
alternative production resources. These jobs estimate the respective processing and
waiting times. For further processing, the respective Jjob will choose the alternative
with the lowest estimated waiting and processing time [13]. By contrast, biologically.
inspired methods belong to the bounded rational strategies. They aim at transferring
fundamental mechanisms of biologic self-organizing systems to autonomous deci-
sion making methods. There are methods, which use the foraging behavior of ants
and honey bees or the chemotaxis movement principles of bacteria [2, 14, 17]. In
order to keep the evaluation study comprehensibie, the QLE method is implemented
to the scenarios of the FFS as a representative of the local information methods.

11.4.2  Information Discovery Methods

In contrast to local information methods, information discovery methods focus on
globally distributed information, which is available in the production system, They
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Fig. 11.2 Schematic interactions between jobs and machines [12]

conduct higher computational efforts to collect data from different network stages.
The Distributed Logistic Routing Protocol (DLRP) belongs to the class of infor-
mation discovery methods. In its origins, the DLRP, was designed for transport
logistics [12]. The index t indicates its design for transport logistic purposes. This
protocol is inspired by communication algorithms in wireless ad hoc networks.
In the transport logistic context, the DLRP, enables autonomous routing of goods
and the corresponding vehicles. However, the application of these principles is not
limited to autonomous control of transport logistic processes. Rekersbrink et al.
(2010) transferred the approach of the DLRP to autonomous control of shop floors
environments [12].

The DLRP,, for production systems has two different object types: machines and
Jjobs. Figure 11.2 illustrates the interactions between both object types within the
DLRP,.

In order to find a route through a production system, a job sends a route request
to all succeeding machines. The machines fill all necessary information, like waiting
times, setup states or urgencies, into the route request. Subsequently, they pass the
request to all further successors. This process repeats until the last production stage
is reached. The last machine sends back the information as route reply to the job. On
this basis, the job is able to receive the route replies and to select a route according to
its individual target preferences. After deciding for one or more routes the Jjob sends
route announcements to the machines involved. In contrast to classical scheduling
methods, the DLRP,, supports a real-time autonomous decision making process,
which goes beyond pure pre-planning procedures. Hence, jobs are able to revise
previous decisions in terms of generating route disannouncements and new route
announcements. Furthermore, the second object class (machines) is abie to select
jobs form the buffer according to their target preferences.
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Due to the complexity of the DERP,, this contribution gives only a brief descrip-
tion of the protocol. For a detailed description of the DLRP;, for production systems
see [12].

In this contribution the DLRP,, is modeled as a representative of the information
discovery methods. Jobs using the DLRP, will base their routing decision on the
expected completion time. Each job sends two route announcements with different
preference values. Additionally, the machines select jobs from the corresponding
buffer according to the shortest setup time rule,

11.5 FEvaluation and Results

Different instances of the FFS scheduling problem are used to compare the perfor-
mance of the classical scheduling heuristics, the local information method and the
information discovery method concerning the structural complexity and different
degrees of dynamics. The following presents the concrete parameterization of the
instances used. Subsequently, the simulation results are presented and discussed.

11.5.1 Problem Instances

The problem instances used are based on the “large size instances” introduced by
[5]. There are § = 10 different job types. Every instance contains J =250 jobs,
in total. A uniform distribution is used for assigning jobs to job types. A uniform
distribution is used as well, to obtain the standard processing times, the relative
speed of the machines and the setup times. Table 11.1 summarizes the system related
time parameters and the corresponding interval.

The structural configuration of the scenarios are varied. There are instances with
T = 3,5 and 10 production stages. Moreover, the number of parallel machines per
stage is varied. Accordingly, there are instances with M° = 3,5 and 10 machines
per stage.

In order to model different degrees of dynamics Sung and Kim (2002) used a
uniform distribution with varying interval ranges [20]. Similar to this approach, the

Table 11.1 Parameterization of instances

Parameter Description Distribution Interval/values

K/ Fixed Uniform distribution [150]

ps. Fixed Uniform distribution [110]

y, Fixed Uniform distribution [0.71.3)

T Variable for scenarios Const. £3, 5,10}

M Variable for scenarios Const. {3,5.10}

A Variable for scenarios Exponential distribution {st, 0.5, 0.1, 0.075, 0.05}
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inter-arrival times of jobs r;; — r; are set to an exponeatial distribution with a
mean value A. Conscquently, the arrival process is a poisson process. In order to
model different degrees of dynamics, A is varied form A = s¢,0.5, 0.1, 0.075 t0 0.05.
Lambda denotes dynamic aspects of the incoming work load. In the static sitnation
(A = st, this means A = oco) all jobs have the release time r; = 0, which means
that all jobs enter the system simultaneously. By contrast, a decrease of A leads to
more extended arrival interval. Thus, the workload of the system depends on A.

11.5.2 Evaluation

Figure 11.3 presents the results concerning Cpax of both autonomous control meth-
ods and for the genetic algorithm (GAL). Each graph of Fig. 11.3 shows the resuits
of Chax in a particular scenario configuration against the different degrees of

3 parallel machines 5 parallel machines 10 parallel machines

3 stages
Cinax [time units]

5 stages
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10 stages
Cmax [time units)
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Fig. 11.3 Simulation results for makespan




140 B. Scholz-Reiter et al.

dynamics. In addition, each graph contains the theoretical minimal values for the
respective scenario.

According to Fig. 11.3, the performance of the scheduling method (GAL) and
both autonomous control methods depends on the degree of dynamics. In all cases,
the GAL outperforms the QLE method and the DLRP in the static {1 = sf) and
the nearly static sitvation (A = 0.5). Here, the GAL performs best. However, with
increasing A the performance of both autonomous control methods gets closer to the
performance of the GAL. Between A = 0.5 and A = 0.1 there is an intersection of
the autonomous conirol result curves and the GAL curve, When comparing the sim-
ulation results with the theoretical minimal values another effect can be observed.
The gap between the minimum and the obtained results becomes smaller with an
increasing degree of dynamics. For example, in the scenario with five stages and
three parallel machines the gap is 21.46% for the GAL (36.82% for the QLE and
48.79% for the DLRP) for A = st. By contrast, the gap is for A = 0.075 for the
GAL 0.55% (0.08% for the QLE and 0.2% for the DLRP). This can be explained
by the incoming workload, which differs according to A. For lower values of A the
mean of inter-arrival times get bigger.

Hence, the system is under-utilized in this area. Figure 11.3 shows that this effect
occurs in every scenario. This effect is more dominant in scenarios, which offer
more parallel machines (last column of graph in Fig. 11.3). Due to this utiliza-
tion effect, the performance of the autonomous control methods and the scheduling
methods gets similar. Nevertheless, the explained connection between the methods
performance and the dynamics persists, but with smaller differences. These effects
are not limited to the results of Cyye,. The systems utilization shows similar results.
Figure 11.4 depicts exemplarily the utilization of the scenario with ten stages and
three parallel machines per stage by showing the composition of the correspond-
ing Crax values, It differentiates between realized processing times, retooling times
and idle times of the machines in the respective simulation runs. The sum of these
values is the makespan, which is consequently the height of the bars in Fig. 1.4,
Accordingly, Fig. 11.4 give information about the systems utilization, which is the
relationship between realized processing times and makespan. Figure 11.4 confirms
the observed under-utilized system behavior for small values of A. There is a step
in the idle times form A = 0.075 and A = 0.05. This indicates that the system’s
capacity is not fully utilized.

Furthermore, Fig. 11.4 provides information about the methods ability to mini-
mize processing times, retooling times and idle times. The realized processing times
of all methods are very similar for all degrees of A, but their performance differs in
respect of idle times and retooling times. Especially in the static situation the GAL
outperforms both autonomous control methods. It is able to construct schedules
with less retooling and idle times compared to the QLE and the DLRP. However,
the DLRP leads to the lowest retooling times in the static situation at an expense of
longer idle times. The highest degree of retooling times can be found for the QLE
method. The same effects can be observed in the nearly static situation A = 0.5.
Form this point on an increase of A leads to rising idle times of the scheduling
heuristic. The GAL is not able to assign the incoming workload to the machines in
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Fig. 11.4 Composition of makespan results of alt methods for varying A in the scenario with ten
stages and three parallel machines

an appropriate manner. It focuses on minimizing the setup times. Thus, the GAL
assigns jobs to bulfers and machines with jobs of the same type.

Consequently, this leads to longer queues, waiting times of jobs and idle times
of machines. By contrast, both autonomous control methods perform better in the
dynamic situation. Despite longer retooling phases, they are able to harmonize the
flow of jobs.

Figure 11.5 confirms this. It presents the WIP over time of different simulation
runs for the QLE method, the DLRP and the GAL in an exemplary scenario with
five stages and ten paralie! machines for varying values of A(A = 0.5,1 = 0.1
and A = 0.075). In the nearly static situation (1 = 0.5) all methods collect a high
level of WIP up to a certain maximum. At this point, all jobs are assigned to the
machines and no new jobs arrive. Accordingly, the WIP level is processed constantly
and the WIP decrease with time, In the nearly static situation the incoming work
load is bigger than the system’s capacity. This explains results with growing WIP
levels. Nevertheless, the GAL performs best in this situation. The GAL decreases
the WIP faster than both autonomous control methods. This leads to the lowest Crax
compared to the autonomous control methods.

In more dynamic situations (A = 0.1 and A = 0.075) the results are different;
The GAL still builds up a higher degree of WIP, but the QLE method and the DLRP
do not. Both autonomous control methods are able to distribute the incoming work
load more evenly to the available machines. Nevertheless, the GAL leads to the
shortest Cyyay for A = 0.1. With regard to the realized WIP levels, both autonomous
conirol methods perform better in this situation. This effect can be observed more
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Fig. 11.5 WIP over time for the QLE method, the DLRP and the GAL

clearly for A = 0.075. Here, the WIP levels and Cpyx are lower than those of the
GAL. In this particular scenario, the QLE leads to the shortest Cyx for A = 0.075.
But in general both autonomous control meihods perform quite similar. The differ-

ence of Cpax between the DLRP and the QLE method is 6.01% for A = 0.075."

These results show that the classical scheduling heuristics are appropriate in static
situation, which tend to be over-utilized. While autonomous control methods are
applicable in more dynamic situations.

Figure 11.6 strengthens these findings. It presents the average job related
throughput times (TPT) for all scenarios and all methods. For reasons of com-
parability Fig, 11.6 contains additionally information about the lowest possible
TPT. Concerning the TPT, the GAL has naturally some shortcomings. Due to the
underlying heuristics, the GAL does not focus on optimizing the TPT. By contrast,
the introduction of rolling planning horizons helps to overcome these shortcom-
ings. Thus, Fig. 11.6 presents additionally the results of the rolling horizon genetic
algorithm (rGALY}, in order to give a comprehensible comparison.
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Fig. 11.6 TPT results of all scenarios

Figure 11.6 confirms the finding stated before: in the static and nearly static situ-
ation the GAL performs best concerning the achieved TPT. Similar to the results of
Chax, the gap between both autonomous control methods and the GAL is narrower
for scenarios with less production stages (T = 3) compared to scenarios with more
production stages (T '= 10).

There is a huge deviation between the results of the GAL, QLE method, the
DLRP and the theoretical minimum values in the static situation. Again, this con-
firms that the system is over-utilized in this area. This changes with increasing
dynamics. In the most scenarios the TPT of the GAL remains at the same level
or even increases slightly with A. This can be explained by the optimization objec-
tives of the GAL described above. Its primary target is to optimize the makespan.
The TPT is a subordinate objective for the GAL. The rGAL performs better than
the GAL concerning the TPT in this dynamic situation. Due to the segmentation
of the planning horizon into sub horizons, the rGAL optimizes the makespan of
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the sub-horizons, which leads to a lower TPT in the total schedule. By contrast the
tGAL performs even worse in the static situation. Especially in scenarios with 10
stages this effect can be clearly seen. The lowest deviation between obtained results
and theoretical minimum in the static situation achieves the GAL.

The rGAL performs better with an increase of A: A step can be observed in the
TPT achieved by the rGAL between A = 0.5 and A = 0.075. A similar effect is
obtained for both autonomous control methods. This indicates, that the utilization
state of the system changes in this area from over-utilized to under-utilized situa-
tion. Accordingly, there are shorter queues at the machine buffers, which leads to a
lower TPT and a more harmonic material flow. Comparing both autonomous con-
trol methods and the rGAL in the static situation one can notice that in all cases at
least one of the autonomous control methods outperforms the rGAL. Especially, in
the scenarios with a higher degree of structural complexity (for example 7 = 10
and M* = 10) the rGAL performs worse. Due to the segmentation and the par-
tial construction of the schedules, the rGAL performs worse for a lower degree
of utilization. In this dynamic situation both autonomous control methods perform
best. Furthermore, structural scenario configuration has a curial impact on the per-
formance of the rGAL. With an increasing number of production stages the gap
between the theoretical minimum values and the TPT of the rGAL grows. This
structural impact is less in the case of autonomous control. In the dynamic situation
the TPT of both autonomous control methods remains on a constant level with a
smaller gap to the theoretical minimnum value.

v

11.5.3 Conclusions

The results concerning Cray, processing times, retooling times, WIP and TPT show
that for the investigated scenarios different scheduling and control methods are
suitable. In very static situations with an incoming workload, which is above the
system’s capacity, conventional scheduling methods perform best. The GAL pro-
vides superior results concerning Crax and TPT in these situations, independent
of the scenarios configuration (number of stages or number of parallel machines).
However, with an increase of dynamics both autonomous control methods perform
better regarding Cyx and the TPT. Especially, the results of the TPT reveal short-
comings of the GAL to schedule an appropriate flow of jobs through the system.
Furthermore, its TPT performance decreases with increasing dynamics in some
cases. The extension with rolling horizons (tGAL) attenuates these shortcomings
in the TPT performance. Despite, both autonomous control methods outperform the
rGAL in dynamic situations. In a more general context, these resulis confirm the
hypothesis stated in the outline: The scheduling algorithms perform best in a static
situation, where all information are available. In this static context autonomous
control reveals short comings. Due to the idea of autonomous control, which is
characterized by interactions and autonomous decision making of intelligent logis-
tic objects in dynamic production environments, this concept is not suitable to
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static situations. According to the results of this contribustion the main application
potential of autonomous control is in complex and dynamic systems.

A comparison of the autonomous control methods shows a similar performance
of both methods. The QLE method performs slightly better than the DLRP concern-
ing the makespan and the TPT, while the DLRP leads to shorter retooling sequences.
Due to its ability to discover very complex interconnected production systems it can
be expected, that the DLRP performs betier in more complex scenarios. This refers
to scenarios like sparse production networks. In such networks routing decisions
cannot be revised at any stage. Due to the information discovery and the corre-
sponding forecast of succeeding states, the DLRP seems to be favorable in these
cases.

11.6 Summary and Outlook

This contribution investigated the potentials and the limitations of autonomous
cooperating logistic processes in production environments. Therefore, the FFS prob-
lem formulation was chosen and different centralized scheduling algorithms for this
problem class were introduced. Besides these scheduling algorithms, the evalua-
tion includes two different autonomous control methods. Both methods differ in
their information acquirement and information processing procedures. The QLE
methods focus solely on local information, while the DLRP is able to discover infor-
mation distributed in the shop-floor environment. In order to evaluate the scheduling
heuristics and the autonomous control methods in respect of their performance in
different dynamic situations a set of simulation experimenis was defined. Varying
degrees of dynamics were modeled by the arrival process of the incoming work
load. With regard to variations in the dynamics, the hypothesis stated in the outset

" was confirmed: the application of autonomous control is limited to dynamic sce-

narios. In static scenarios classical scheduling heuristics perform best. In situations
with an incoming work load, which is higher than the system capacity, classical
algorithms are superior to autonomous control methods. By contrast, autonomous
control deploys its potential in dynamic situations, Compared to the scheduling
algorithms both autonomous control methods allow a continuously flow of jobs
through the system, while the scheduling algorithms build up high WIP levels over
time.

These results encourage for further research in this area. In the next steps of
the evaluation of autonomous control extensions like machine breakdowns or rush
orders will be addressed. In particular, the effects of this extension on the perfor-
mance of autonomous control and scheduling methods will be investigated in order
to identify further limitations and potentials of autonomous control in production
environments. Another research area is the evaluation of autonomous conirol in
combined production and transport scenarios.
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