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In this paper we present a stability analysis of autonomously controlled
production networks from mathematical and engineering points of view.
Roughly speaking stability of a system means that the defined state of the
system remains bounded over time. The dynamics of a production network are
modelled by differential equations (macroscopic approach) and discrete event
simulation (microscopic approach), respectively. Both approaches are used to
perform a stability analysis. As a result of the stability analysis of the macroscopic
approach we calculate parameters, which guarantee stability of the network for
arbitrary inputs. These results are refined for a certain (varying) input using the
microscopic approach, where we derive the smallest maximal production rates of
the plants for which stability of the overall system can be guaranteed.
Furthermore, the microscopic approach includes two different autonomous
control methods: the queue length estimator (QLE) and the pheromone based
(PHE) method. These methods allow additional autonomous decision making on
the shop floor level. The approach presented in this paper is to calculate stability
conditions by mathematical systems theory to guarantee stability for production
networks, to identify a stability region and to refine this region by simulations.

Keywords: production networks; stability analysis; simulation

1. Introduction

Modern logistic systems are exposed to various dynamical changing parameters in its
internal and external environment. Especially logistic networks, e.g., production networks
or whole supply chains, may be affected by dynamical changes (Stadtler 2005, Sydow
2006). These dynamics may be induced for example by uncertainties of demand, the desire
of customers for individualised products or internal disturbances such as machine failures.
Due to the high degree of structural and dynamic complexity interconnected networks of
logistic systems, i.e., production networks, may exhibit unexpected and unfavourable
system behaviour, in terms of increasing throughput times, increasing tardiness of orders
or underutilisation of resources (Min and Zhou 2002, Rabelo et al. 2008).

The implementation of decentralised approaches such as autonomous control opens
new potentials to cope with increasing external and internal dynamics. The concept of
autonomous control aims at increasing the robustness and the performance of logistic
systems (Windt 2006, Windt and Hülsmann 2007). Autonomous control enables single
intelligent logistic objects (parts, machines, orders) to make and execute decisions, based
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on local information, on their own. However, this kind of autonomous decision making
causes a decentralised system behaviour, which may affect the logistic performance
negatively or even lead to instability of the system (Windt 2006, Philipp et al. 2007).

Thus, this paper focuses on the stability analysis of autonomously controlled
production networks, in order to identify parameters, which guarantee stability of the
network. Roughly speaking, stability means that the state of a plant remains bounded over
time, whereas instability of a network leads to infinite states. The state variables describe
certain processes of a plant. The present state and the chosen input/control function
together determine the future states of the plant. More precisely, given the initial state
x(t0)¼ x0 of the plant at some initial time t0 and an input/control u(�), the evolution of the
plant’s state x(t) is uniquely determined for all t in a suitable time interval and the state
only depends on the input/control values.

In this paper, the state of a plant represents the work in progress (WIP). Instability,
by means of an unbounded growth of a state, may cause high inventory costs or loss of
customers. Hence, it is necessary for logistic systems to derive parameters, which guarantee
stability. By applying a stability analysis to a logistic network we can draw conclusions of
its behaviour and derive parameters to guarantee stability, which avoid such negative
outcomes.

To demonstrate the application of a stability analysis we consider a certain
autonomously controlled production network scenario with six interconnected plants.
All plants comprise a shop floor with parallel processing lines on different production
stages. On this shop-floor level two different local autonomous control methods are
implemented.

Existing works on the stability of autonomously controlled production networks
showed that parameters for varying production rates, which guarantee stability, can be
calculated by the help of a model, which is based on a system of differential equations
(Scholz-Reiter et al. 2005a, Dashkovskiy et al. 2009). This paper also uses this modelling
approach, in order to derive production rates, which guarantee stability of a production
network. Due to the high complexity of the chosen scenario this mathematical approach
is applied to the macroscopic network level. Subsequently, the stability parameters,
calculated by the mathematical stability analysis are implemented into a more detailed
microscopic model, where all plants are represented by a complete shop floor. This
microscopic view models the scenario with the help of a discrete event simulation (DES)
tool. A comparison of the mathematical stability analysis and the simulation results from
the DES model gives information about the stability regions from both perspectives
(macroscopic and microscopic). The advantage is that we first apply the mathematical
theory to find in a very fast way those parameters, where stability is guaranteed.
Subsequently, a refinement is performed by simulations, in order to enlarge the set of
parameters, which guarantee stability. A simulation of the model, based on differential
equations is conducted additionally, in order to verify the comparability of the
macroscopic mathematical model and the microscopic DES model.

To achieve the aim of this paper, i.e., the identification of stability regions for
autonomously controlled production networks, this work is structured as follows.
Section 2 presents the concept of autonomous control in the context of production
logistics. An overview about production networks and stability of logistic systems is given
in Section 3. Section 4 presents the mathematical approach of a stability analysis of general
networks and a procedure to perform a stability analysis. According to this procedure we
model a concrete scenario in Section 5. A general description of the scenario is presented
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in Section 5.1. This is followed by a detailed description of all relevant modelling
parameters, concerning the mathematical model (Section 5.2) and the DES model
(Section 5.3). In Section 6 the mathematical stability analysis of the particular scenario
depicted in Section 5.2 is presented. There, the procedure in Section 4 is applied to the
scenario to derive stability conditions. Subsequently, Section 7 shows the simulation
results and the refinement of the macroscopic approach by the microscopic approach.
Finally, Section 8 gives a summary and an outlook concerning further research directions.

2. Autonomous control

The approach of autonomous control, coming from the theory of self-organisation, aims
at enabling intelligent logistic objects to gather relevant local information, to render and to
execute decisions on their own (Windt et al. 2008). In this context intelligent logistic
objects may be physical or material objects, e.g., parts or machines, as well as immaterial
objects (e.g., production orders, information). The use of modern information and
communication technologies enables these objects to interact with others. Based on these
interactions, logistic objects collect information about the current local system states and
use this information for the decentralised decision making. These autonomous
and decentralised decisions affect the dynamic behaviour of a logistic system (Windt
et al. 2005).

The general idea of autonomous controlled logistic processes is to influence the
dynamical systems behaviour positively. Due to the complex interactions between
autonomously acting objects, the evaluation of such systems should not be limited to a
pure analysis of classical performance measures. Moreover, an investigation of the
dynamical behaviour of the total system is required (Scholz-Reiter and Freitag 2007). In
the context of production logistics, investigations on the performance and the dynamical
behaviour of autonomously controlled systems showed an increased performance and
robustness compared to conventional planned systems (Scholz-Reiter et al. 2005b, 2007).
The analysis of a real data based manufacturing case confirmed furthermore, that an
increase of the degree of autonomy improves the handling of the dynamic complexity,
compared to a centralised production planning and control approach (Scholz-Reiter et al.
2009a).

However, these studies showed that the performance of different autonomous control
methods depends on the particular scenario and the corresponding internal and external
systems parameters (Hülsmann et al. 2008). Unfavourable parameter constellations may
cause sudden changes of the systems behaviour and lead to a worse logistic performance.
This can result in increasing throughput times or growing inventory. Therefore, the
application of mathematical methods, e.g., the stability analysis, can be used to obtain
reliable information about the autonomous systems behaviour.

Larger logistic systems, i.e., supply chains or production networks, are characterised by
a high degree of structural and dynamical complexity. Conventional incremental planning
and control methods have shortcomings to cope with such challenges (Ivanov 2010).
Hence, the application of autonomous control is suitable for these kinds of logistic
networks. As far as production networks are concerned, first autonomous control
approaches were formulated (Scholz-Reiter et al. 2009b). Autonomous control in
production networks can improve the networks performance and robustness, as well.
On the other hand, beyond limiting parameters constellations, unpredictable and unstable
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system behaviour can be observed (Scholz-Reiter et al. 2009b). Thus, this paper focuses on
the application of mathematical stability analysis methods on autonomously controlled
production networks and the identification and refinement of stability regions.

3. Stability of production networks

The term production network is used to describe company or cross-company owned
networks with geographically dispersed plants. The primary objective of production
networks is to archive economies of scale through joint planning of production processes,
a mutual use of common resources and an integrated planning of value added processes
(Wiendahl and Lutz 2002). These types of networks may react quickly on perturbations
due to redundancies of common resources. The redundancies allow the reorganisation of
the material flow through the entire network in order to react to external or internal
disturbances. According to this definition, new tasks and challenges appear in production
networks: enterprises are forced to generate concepts for tasks like the choice of new
partners, design of the network, product development and production planning and
control (Sydow 2006). The high flexibility of these networks causes interdependencies
between production processes in different plants, e.g., allocation problems for products,
which can be processed in different plants or planning of transport and transport capacity
(Sauer 2006, Alvarez 2007). Therefore, production planning and control (PPC) of
production networks has to cover these new tasks additionally to the conventional
functionalities. It should provide methods for an integrated planning and the synchro-
nisation within the network, including planning of sales and inventory (Wiendahl and Lutz
2002). Under highly dynamic and complex conditions current PPC methods cannot cope
with disturbances or unforeseen events in an appropriate manner (Kim and Duffie 2004).
This may cause uncertainties of lead times, nervousness of schedules or may also lead to
instability or even chaos.

Thus, the identification of stability regions is crucial in general for planning and
operating logistic networks. In this context mathematical models are often used to
determine stability regions. Queuing models can be used to analyse systems with multiple
parallel servers. Whitt (1986) presents a two parallel server model without capacity
restrictions at the queues and with service distributions, which are independent from the
arrival process. It is shown that for certain distributions of service times the decision policy
‘join the shortest queue’ leads to suboptimal systems behaviour. Sharifnia (1997) presents
a single station multi server model with multiple job classes. He compares the ‘join the
shortest queue’ and the ‘fist come first served policy’ with regard to the systems stability.
Sharifnia (1997) proposes guided policies, in order to stabilise the systems behaviour.

For manufacturing systems parameters, which guarantee stability, can also be found
by using fluid models (Dai 1995). The stability can be analysed even for more complex
systems using fluid models, e.g., manufacturing systems with re-entrant lines (Dai and
Weiss 1996) or manufacturing systems with different job types and re-entrant lines
(Dai and Vande Vate 2000). An approach with flows of multiple fluids was used to analyse
the stability region of an autonomously controlled shop floor scenario by Scholz-Reiter
et al. (2005a).

Scholz-Reiter et al. (2009c) present a fluid model of a production network and
obtained a stability region from the stability analysis for a scenario with two locations and
three types of products. First approaches have already been done to determine the stability
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region of autonomously controlled production networks by Dashkovskiy et al. (2009).
Here a model, based on differential equations, is used to identify parameter constellations
of variable production rates, which guarantee stability of an autonomously controlled
production network, where Lyapunov functions for the stability analysis are used.

This paper focuses on the investigation of the refinement of the mathematically
identified stability region of a production network, using the approach in Dashkovskiy
et al. (2009), by simulations with the help of a DES model.

4. Mathematical background of the stability analysis

In this section we describe a general mathematical stability analysis method, related to
ordinary differential equations, which are used in this paper to model production
networks.

From a mathematical point of view production networks are non-linear interconnected
dynamical systems. In mathematical systems theory the notion of input-to-state stability
(ISS), introduced by Sontag (1989), has proved to be an efficient tool for the qualitative
description of stability of non-linear dynamical control systems.

Definition: A dynamical system of the form _xðtÞ ¼ f ðxðtÞ, uðtÞÞ, where t is the (contin-
uous) time, xðtÞ 2R

N is the state, uðtÞ 2R
m is the input and f : R

Nþm
! R

N is a function,
which is locally Lipschitz continuous in x uniformly in u, is called input-to-state stable
(ISS), if there exist a function �2KL and a function � 2K, such that for all initial values
x0 and all t � 0 it holds:

kxðtÞk � maxf�ðkx0k, tÞ, �ðkuk1Þg,

where k � k denotes the Euclidean norm, kuk1 is the supremum norm, roughly speaking
the maximal value of u(t). A function of class K is continuous, zero at zero and monotone
increasing and a function of class KL is continuous, of class K in the first argument and
monotone decreasing and tends to zero in the second argument. The function � 2K is
called gain.

In simple words ISS means that the norm of the trajectory of a system is bounded over
the time t. If t grows to infinity, the term �ðkx0k, tÞ in the definition of ISS tends to zero.
Since �ðkuk1Þ is a positive real value (because kuk1 is a positive real value and � 2K) the
bound for trajectories given in the definition of ISS tends to �ðkuk1Þ, if t!1. This
means that the ISS estimation for large time t depends essentially on � and kuk1: the larger
kuk1 is, the larger is the bound for the time dependent state x(t).

The interpretation of the gain � and therefore the value �ðkuk1Þ in view of production
networks is the following: it quantifies the amount of the WIP of a plant depending on
kuk1 for all times. �ðkuk1Þ is the bound for the trajectories for large times, i.e., a bound
for the WIP.

A helpful tool to verify whether a system has the ISS property is a Lyapunov function.

Definition: A smooth function V : R
N
! Rþ is called an ISS Lyapunov function, if it

satisfies the following two conditions:

(1) There exist functions  1, 2 2K1 such that:

 1ðkxkÞ � VðxÞ �  2ðkxkÞ, 8x2R
N:

International Journal of Production Research 5
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(2) There exist �2K1, and �2P such that:

VðxÞ � �ðkukÞ ) _VðxÞ ¼ rVðxÞ � f ðx, uÞ � ��ðVðxÞÞ,

for all t2Rþ, x2R
N, u2R

m where r denotes the gradient of V, a function of class

K1 is a class K function and additionally unbounded and a function of class P

is continuous, zero at zero and positive else. The function � is called ISS

Lyapunov gain.

Note that the Lyapunov gain and the gain in the definition of ISS are different in

general. The condition (1) states, that V is positive, zero at zero and radially unbounded.

By condition (2) the function V decreases (the full derivate of V along the trajectory

is negative), whenever V is greater or equal than �ðkukÞ and the term �ðkukÞ can be

interpreted as a bound for V(x) for large times t.
It was shown by Sontag and Wang (1995) that the existence of a Lyapunov

function is necessary and sufficient to guarantee ISS. The construction of an ISS

Lyapunov function of a whole system consisting of interconnected non-linear control

systems in terms of the ISS Lyapunov functions of the subsystems was shown by Jiang

et al. (1996) (two subsystems) and by Dashkovskiy et al. (2007a, 2010) (general

networks) under a small-gain condition. In the following we define the ISS property

and the ISS Lyapunov functions for the subsystems of n2N interconnected systems of

the form:

_xiðtÞ ¼ fi x1ðtÞ, . . . , xnðtÞ, uiðtÞð Þ, i ¼ 1, . . . , n: ð1Þ

Definition:

(1) The ith subsystem of (1) is called ISS, if there exist �ij, �i 2K1, j ¼ 1, . . . , n, j 6¼ i

and �i 2KL, such that for all initial values x0i and all inputs ui the inequality:

xi t;x
0
i , xj : j 6¼ i, ui

� ��� �� � max �i x0i
�� ��, t� �

, max
j6¼i

�ij xj
�� ��

1

� �
, �i uik k1ð Þ

� �
, ð2Þ

is satisfied 8t2Rþ. �ij and �i are called (non-linear) gains.
(2) A smooth function Vi : R

Ni ! Rþ is called an ISS Lyapunov function of the ith

subsystem of system (1), if it satisfies the following two conditions:

(a) There exist functions  1i, 2i 2K1 such that:

 1i xik kð Þ � ViðxiÞ �  2i xik kð Þ, 8xi 2R
Ni :

(b) There exist �ij, �i 2K1, and �i 2P such that:

ViðxiÞ � max �ij xj
�� ��� �

,�i uik kð Þ
� �

) _ViðxiÞ ¼ rViðxiÞ � fiðx1, . . . , xn, uiÞ � ��i ViðxiÞð Þ,

for all t2Rþ, xi 2R
ni , ui 2R

Mi , i, j ¼ 1, . . . , n. The functions �ij, �i are called

ISS Lyapunov gains. Furthermore we define the gain matrix � :¼ ð�ijÞ,
i, j ¼ 1, . . . , n, �ii ¼ 0 by:

�ðsÞ :¼ max �1jðsj Þ
� �

, . . . , max �njðsj Þ
� �� �

, s2R
n
þ, j ¼ 1, . . . , n: ð3Þ

6 B. Scholz-Reiter et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
F
r
i
e
d
r
i
c
h
 
A
l
t
h
o
f
f
 
K
o
n
s
o
r
t
i
u
m
]
 
A
t
:
 
1
1
:
4
9
 
3
 
M
a
r
c
h
 
2
0
1
1



The small-gain condition used in Dashkovskiy et al. (2007a, 2010) is of the
form:

�ðsÞ � s, 8s2R
N
þnf0g:

Notation �ðsÞ 6� s means that there is at least one component i2 f1, . . . , ng such that
�ðsÞi 5 si. Further information about the small-gain condition can be found in
Dashkovskiy et al. (2007a, 2010). Now we can formulate the following theorem, which
was proved by Dashkovskiy et al. (2010).

Theorem 1: Suppose all the subsystems of (1) are ISS, i.e., (2) holds for each i2 f1, . . . , ng
or equivalently all subsystems have an ISS Lyapunov function. Suppose that the gain-matrix
as defined in (3) satisfies the small-gain condition. Then the whole system of the form
_xðtÞ ¼ f ðxðtÞ, uðtÞÞ is ISS, where N :¼

Pn
i¼1 Ni, m :¼

Pn
i¼1 Mi, x ¼ ðxT1 , . . . , xTn Þ

T,
u :¼ ðuT1 , . . . , uTn Þ

T and f :¼ ð fT1 , . . . , fTn Þ
T.

This theorem states a stability condition for arbitrary interconnections of systems of
the form (1). A local version of ISS considering interconnected systems can be found in
Dashkovskiy et al. (2007b, 2010), called local input-to-state stability (LISS), where ‘local’
means that the estimation in the definition of ISS holds only for initial values x0i and inputs
ui of the subsystems which satisfy kx0i k5 �i, kuik15 �ui for positive constants �i and �

u
i ,

i ¼ 1, . . . , n. The previous mentioned results for ISS were extended to LISS (see
Dashkovskiy et al. 2007b, 2010).

Summarising, to perform a stability analysis of a system, using the mathematical
stability theory described in this section, we have to process the following steps. At first the
system has to be modelled. Then the Lyapunov functions and the Lyapunov-gains for the
subsystems have to be chosen. The Lyapunov- and the small-gain conditions have to be
satisfied, checking this is the next step. If the conditions are satisfied under specific stability
conditions, then the ISS or LISS property of the whole system is guaranteed by Theorem 1.
Otherwise one has to choose other Lyapunov functions and gains and start the procedure
again. If one cannot find sufficient functions, then no statement about stability is possible.
The flowchart in Figure 1 depicts this procedure.

In the following sections we show the application of the mathematical stability theory
for a certain scenario and process the procedure step by step according to Figure 1.

5. Modelling of a certain production network scenario

In this section a certain production network scenario is presented, which will be analysed
in view of stability in the next section. Therefore, Section 5.1 presents the general structure
of the network. The mathematical modelling approach for the macroscopic view is
presented in Section 5.2. Subsequently, Section 5.3 introduces the microscopic modelling
approach, using a DES model.

5.1 Production network scenario

The production network consists of six geographically dispersed plants. The state of each
plant is denoted by xi(t), which are real values for i¼ 1, . . . , 6, where t is also a real value

International Journal of Production Research 7
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and can be interpreted as (continuous) time. In this scenario the state xi(t) represents the
WIP of subsystem i at time t.

Each plant of the network is represented by a complete shop floor scenario. It consists
of three parallel production lines. Every line has three workstations and an input buffer in
front of each workstation. The structure allows the parts to switch lines at every stage. The
decision about changing the line is made by the part itself by internal control rules. These
rules on the shop floor level are two different autonomous control methods: the queue
length estimator (QLE) and the pheromone based (PHE) method.

The QLE enables parts to choose a workstation according to local information about
their current workload. The parts are able to interact with others and to gather
information about the current workload. Similar to the join-the-shortest-queue policy
(Sharifnia 1997, Foley and McDonald 2001) a part collects information about the amount
of waiting parts in the relevant buffers. Additionally, the parts calculate the waiting time
for each alternative. Parts, using this method, will choose the workstation with the lowest
workload to reduce their own throughput time (for a detailed description see Scholz-Reiter
et al. 2005b).

The PHE method is the second autonomous control method. It is inspired by the
behaviour of ants marking possible routes to food sources with pheromone trails.
Succeeding ants are able to detect those trails. They will follow the trail with the highest
concentration of pheromones (Parunak 1997). This process is transferred to the shop floor
level of this scenario as follows. Parts save information about their waiting and processing
time at a machine. Succeeding parts, entering a stage of the shop floor, compare these
artificial pheromones by computing the average throughput time (TPT) data of the last

Figure 1. Flowchart of the procedure of a mathematical stability analysis.
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five parts and choose a line. A moving average of the TPT is used to model the
evaporation process of natural pheromones. Similar approaches for modelling pheromone
based autonomous control methods can be found in Peeters et al. (2001), and Armbruster
et al. (2006).

We suppose that the production rate of all machines on the shop floor level and
therefore all plants are autonomously controlled. This means that each machine and
plant, respectively, has the ability to adjust its production rate up to some maximal
capacity �ij or �i, respectively, i ¼ 1, . . . , 6, j ¼ 1, . . . , 9, depending on the current
situation (on the current state of this machine or plant). For example, this can be
achieved by varying work times of the workers or the number of used machines for the
production.

Plant 1 obtains raw material from an external source, which is denoted by u(t) and
some material from plant 6. The raw material will be processed in plant 1 and 50% of the
production output will be transported to plant 2 and 50% to plant 3, which can be
interpreted as input of raw material to plants 2 and 3, respectively. Again the raw material
will be processed and 60% of the output of plants 2 and 3 will be transported to plant 4
and 40% of the output of plants 2 and 3 to plant 5. The processed material of plants 4 and
5 will be transported to plant 6. Fifty percent of the output of plant 6 will be transported
to some customers and will leave the system, whereas 50% of the production will be
transported back to plant 1. This can be interpreted as recycling of the waste produced in
plant 6. The material flow between different plants can be described by a weighted
adjacency matrix. This matrix can be found in Table 1.

5.2 Macroscopic modelling by using a model, based on differential equations

The macroscopic approach is the description and analysis from a mathematical point of
view. The production network scenario is modelled by differential equations, which are
presented in this section.

In this section we write subsystem i for the ith plant. All six subsystems form the
production network, which we call simply (whole) system. The internal structure on the
shop floor level of all subsystems is ignored and each subsystem is modelled as one
production plant by means of differential equations. All subsystems are controlled

Table 1. Weighted adjacency matrix of the production network in factions (as [percentages]).

To

Source Sink P1 P2 P3 P4 P5 P6

From Source 100
Sink
P1 50 50
P2 60 40
P3 60 40
P4 100
P5 100
P6 50 50
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autonomously by means of an autonomous adjustment of the production rates. For
subsystem i the actual production rate is given by:

~fi xiðtÞð Þ :¼ �i 1� exp �xiðtÞð Þð Þ, i ¼ 1, . . . , 6,

where the positive real value �i is the (constant) maximal production rate of subsystem i.
An example with �i ¼ 5 is displayed in Figure 2. ~fi converges to �i, if the state of subsystem i
is large and ~fi tends to zero, if the state of the ith subsystem tends to zero. Accordingly, a
huge influx of raw material causes an increase of the production rate close to the maximum,
whereas less influx of raw material leads to a production rate, which is almost zero.

When modelling the system by differential equations we assume that the processed
material will be instantly transported and arrives at the succeeding subsystem at the same
time t. This makes the model simple and descriptive to illustrate the stability analysis.
Thus, modelling a logistic network by differential equations is only an approximation of
the real world; an exact description is given by the DES model. A differential equation
describes the time rate of change and sums up the inflow and the outflow of a system at
continuous time t, where the outflow is subtracted. In simple words this is the derivative of
the state. It is denoted by _xiðtÞ.

With these considerations we model the given network by differential equations as
follows:

_x1ðtÞ :¼ uðtÞ þ
1

2
~f6 x6ðtÞð Þ � ~f1 x1ðtÞð Þ

_x2ðtÞ :¼
1

2
~f1 x1ðtÞð Þ � ~f2 x2ðtÞð Þ

_x3ðtÞ :¼
1

2
~f1 x1ðtÞð Þ � ~f3 x3ðtÞð Þ

_x4ðtÞ :¼
3

5
~f2 x2ðtÞð Þ þ

3

5
~f3 x3ðtÞð Þ � ~f4 x4ðtÞð Þ

_x5ðtÞ :¼
2

5
~f2 x2ðtÞð Þ þ

2

5
~f3 x3ðtÞð Þ � ~f5 x5ðtÞð Þ

_x6ðtÞ :¼ ~f4 x4ðtÞð Þ þ ~f5 x5ðtÞð Þ � ~f6 x6ðtÞð Þ,

ð4Þ

Figure 2. Production rate for �i ¼ 5 depending on the state xi.
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where t2Rþ is the continuous time, xiðtÞ 2Rþ is the WIP of a subsystem, uðtÞ 2Rþ is the
input of the first subsystem and ~fiðxiðtÞÞ are the production rates of the subsystems (see
Figure 2).

For this model we perform a stability analysis in the next section, using the tools
introduced in Section 4. In the context of mathematical modelling by differential equations
some remarks can be stated. The state of a subsystem may also represent other relevant
parameters of the system, e.g., the number of unsatisfied orders. Furthermore, one can
extend or change the given production network to describe any other scenario that can
be more large and complex. It is possible to perform a stability analysis for the
extended system, similar to the flowchart presented in Figure 1. Even more complex
models can be analysed with this scheme and parameters can be determined, which
guarantee stability.

To keep the stability analysis relatively simple, in order to introduce and explain the
methods used in a comprehensible manner, we consider the production network described
above.

5.3 Microscopic modelling using a discrete event simulation model

The microscopic approach is based on a DES model, which represents a more detailed
view on this production network scenario. Due to the discrete nature of this model type
and the disaggregation of all plants, some parameters have to be adjusted to provide
comparability to the macroscopic model.

The DES model represents the material flow by discrete entities (parts) running
through the network in contrast to the mathematical model, which is based on continuous
equations. These parts arrive at plant P1 in certain time intervals, which are determined by
cumulating the arrival rate u(t). Whenever the cumulated arrival rate u(t) reaches an
integer value a part enters the system at the corresponding time point t. Accordingly, the
incoming workload in the DES model is equivalent to the incoming workload in the
mathematical model.

The internal structure on the shop floor level with the QLE and PHE method of each
plant, described in Section 5.1, is modelled. Due to the three parallel production lines, each
line offers one third of the maximal production rate �i of the whole plant, such that
the parameter of the maximal production rate of each workstation �ij, i ¼ 1, . . . , 6,
j ¼ 1, . . . , 9, is chosen to be �ij ¼ �i=3.

An illustration of the production network and the macroscopic and microscopic view
is given in Figure 3.

In the following section the stability analysis is done by applying a macroscopic and
a microscopic view on the network. The differential equation model is used to determine
parameters for which the stability of the given scenario is guaranteed on the network level
(macroscopic view). These bounds of parameters are interpreted as follows: for values of
parameters above this bound stability can be guaranteed mathematically, however below
this bound stability cannot be guaranteed. Furthermore, the mathematical model is
simulated by the software Matlab to verify and to improve the calculated bound of
stability numerically.

The results of the stability analysis of the macroscopic view will be compared with
the results of the microscopic view, in order to obtain a possibly precise stability region
similar to Scholz-Reiter et al. (2005a). To exclude that possible deviations of the
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stability results of the mathematical model and the DES model are caused by

modelling errors, the macroscopic Matlab simulation will also be compared with the

results of the DES model. Since both models, the mathematical and the DES models,

describe the same scenario, but on different abstraction levels (macroscopic and

microscopic view), the results can be compared, where the results of the microscopic

view are more detailed.

6. Mathematical stability analysis of the given production network

In this section we perform the stability analysis, described in Section 4, for the given

production network, modelled by a macroscopic view by differential equations and derive

stability conditions.
Consider the network given in Figure 3 and modelled in Section 5 by a macroscopic

view, in particular Equations (4). The question arises, under which conditions for the

maximal production rates �i the subsystems are ISS or LISS, respectively. This means that

the states of all subsystems will not increase to infinity. In other words we are looking for

the smallest �i, such that all subsystems are stable.
To answer this question we follow the steps of the mathematical stability theory

presented in the flowchart in Figure 1: we choose ViðxiÞ ¼ xi, i ¼ 1, . . . , 6 as the Lyapunov

Figure 3. Production network scenario and both modelling views.

12 B. Scholz-Reiter et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
F
r
i
e
d
r
i
c
h
 
A
l
t
h
o
f
f
 
K
o
n
s
o
r
t
i
u
m
]
 
A
t
:
 
1
1
:
4
9
 
3
 
M
a
r
c
h
 
2
0
1
1



function candidates for the subsystems, define the Lyapunov gains by:

�uðuðtÞÞ :¼ � ln 1�
uðtÞ kuk1 þ 0:5 � �6ð Þ

kuk1 1� "uð Þ�1

	 

, 14 "u 4 0

�61ðx6Þ :¼ � ln 1�
kuk1 þ 0:5 � �6

1� "61ð Þ�1
1� expð�x6Þð Þ

	 

, 14 "61 4 0

�1jðx1Þ :¼ � ln 1�
0:5 � �1

1� "1j
� �

�j
1� expð�x1Þð Þ

 !
, 14 "1j 4 0, j ¼ 2, 3

�j4ðxj Þ :¼ � ln 1�
1:2 � �2

1� "j4
� �

�4
1� expð�xj Þ
� � !

, 14 "j4 4 0, j ¼ 2, 3

�j5ðxj Þ :¼ � ln 1�
0:8 � �2

1� "j5
� �

�5
1� expð�xj Þ
� � !

, 14 "j5 4 0, j ¼ 2, 3

�j6ðxj Þ :¼ � ln 1�
�4 þ �5

1� "j6
� �

�6
1� expð�xj Þ
� � !

, 14 "j6 4 0, j ¼ 4, 5,

and show that ViðxiÞ are the ISS or LISS Lyapunov functions of the subsystems. Therefore

the two conditions of an ISS or LISS Lyapunov function, respectively, have to be verified.

Further details on the choice of the gains and this verification can be found in

Dashkovskiy et al. (2009), which can be used here in a similar way, so we conclude that

ViðxiÞ are the ISS or LISS Lyapunov functions of the subsystems. This means that all

subsystems are ISS or LISS, respectively.
In this case the gain-matrix is of the form:

� ¼

0 �12 �13 0 0 0
0 0 0 �24 �25 0
0 0 0 �34 �35 0
0 0 0 0 0 �46
0 0 0 0 0 �56
�61 0 0 0 0 0

0
BBBBBB@

1
CCCCCCA
,

and satisfies the small-gain condition (see Dashkovskiy et al. (2009) for calculation

details). The gain-matrix contains information about the interconnections of a system:

every entry (gain) represents an interconnection. To guarantee that the Lyapunov gains are

well-defined we obtain conditions for �i:

�1 � 0:5 � �6 4 kuk1 ) �1 4 kuk1 þ 0:5 � �6,

�2 4 0:5 � �1,

�3 ¼ �2 4 0:5 � �1,

�4 4 1:2 � �2,

�5 4 0:8 � �2,

�6 4�5 þ �4,

from which we obtain that subsystem 1 is LISS with �u1 :¼ �1 � 0:5 � �6 4 kuk1. Note, that

these conditions are derived only for the particular scenario. For other scenarios one may

obtain other stability conditions. Subsystems 2 to 5 are ISS. If these conditions are
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satisfied for any input u(t), then by Theorem 1 in Section 4 for LISS we obtain that the

whole system is LISS, i.e., the states of the subsystems and therefore the state of the whole

system is bounded. Note that the choice of the input u(t) is arbitrary. The higher kuk1, the

higher the maximal production rates to guarantee the fulfilment of the conditions for �i
and to guarantee stability.

The stability conditions form a system of linear inequalities. By solving this system for

given input u(t) we can calculate explicit values for �i. The smallest values solving the

system of linear inequalities are the �i we are looking for. For them and larger values

stability of the system is guaranteed and the smallest �i form a bound of stability for given

input u(t).
The bounds calculated by the help of LISS Lyapunov functions are sufficient for the

stability of the system. These are worst case bounds for the case we have no information

about the input u. However, in practice we know about seasonal changes and other specific

variation properties of u. This information can be used to enlarge the set of parameters so

that the whole system remains stable, i.e., to guarantee stability for some smaller values

of the �i. For these smaller production rates, from a mathematical point of view, stable

systems behaviour neither can be guaranteed nor negated. Thus, the use of simulation

models may help to refine the calculated stability results. In this respect the DES model is

used to analyse the obtained stability regions (bounds for �i) for a given set of inputs u(t).
In order to obtain refined bounds of stability we simulate the system by the DES

model, where the results of the mathematical stability analysis are used as starting

points. This approach allows determining stability parameters of a complex autono-

mously controlled production network with less time consumption compared to a pure

trial and error simulation study. The macroscopic and microscopic views complement one

another.
Furthermore, to verify the comparability between the mathematical model and the

DES model we simulate the system modelled by differential equations with Matlab. We

also obtain refined bounds of stability in comparison to the calculated ones. These results

are displayed in Figure 6. Note that they can only be verified by simulations and not by

mathematical theory.

7. Simulation results

In this section the results of the stability analysis of the macroscopic and the microscopic

view for varying input parameters of demand are presented and refined by simulations.
For the simulations we choose the following input u(t):

uðtÞ :¼ AV � sinðtÞ þ 1ð Þ þ 5,

where AV is a real positive number. The choice of u takes seasonal changes of the demand

into account and gives some dynamics, which may appear in the real world. This choice is

one possibility for representing a demand. For other choices of the input one obtains

different stability regions.
Figure 4 shows the arrival rate for different arrival rate amplitude variations (AV¼ 5,

AV¼ 6 and AV¼ 7). Variations of AV cause a change of the mean arrival rate, as well as

a change of the amplitude of u(t). The sinusoidal arrival rate u(t) and the factor AV are

given. Furthermore, AV is varied in order to analyse different demand situations.

14 B. Scholz-Reiter et al.
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The variation of the arrival rate amplitude AV is increased stepwise in different
simulations from AV¼ 1 to AV¼ 80. Note, that AV determines the amplitude of the
arrival rate u(t), according to Figure 4.

Now we can calculate for each AV explicit �i, which satisfy the stability conditions. For
example, let AV¼ 10, then kuk1 ¼ 25 and the production rates have to be chosen as
�1 4 50, �2 4 25, �3 4 25, �4 4 30, �5 4 20, �6 4 50 to guarantee stability by mathemat-
ical theory. If AV is varied from 1 to 80 we obtain a stability region.

In order to find the smallest �i for the DES model for certain values of AV, the
calculated smallest �i of the mathematical model are used. These production rates are
reduced in steps of 1% per plant until the simulated WIP starts to grow persistently in a
time interval of 30 hours to about 10%. In this case the simulation is stopped, since it is
reasonable to assume that the WIP of a plant is no more bounded over time. The rise of
10% is sufficient, because it was observed that values from 1% to 9% provide nearly
similar results. Values above an average increase of 20% yield to high errors in the decision
if a system is stable or not.

Figure 5 shows exemplary stable and unstable simulation results of the Matlab
simulation and of the DES simulation with the QLE method. If the arrival rate amplitude
is set to AV¼ 10 and the production rates were chosen as �1 ¼ 30:1, �2 ¼ 15:1, �3 ¼ 15:1,
�4 ¼ 18:2, �5 ¼ 12:2, �6 ¼ 30:5, then the stable situation is observed.

Choosing the production rates for the plants only a bit smaller (�1 ¼ 29, �2 ¼ 14:51,
�3 ¼ 14:51, �4 ¼ 17:52, �5 ¼ 11:52, �6 ¼ 29:5) the behaviour becomes unstable as shown
in Figure 5.

In the unstable situation the WIP of the plants P1 and P5 does not remain bounded and
grows continuously with an average of 0.43 and 0.081 units per time unit. A simulation
showing this kind of dynamical behaviour is stopped and evaluated as unstable. On the
other hand the WIP in the stable situation exhibits variations, due to the fluctuating arrival
rate, but it does not grow continuously and remains bounded for all times.

Figure 6 presents the smallest maximal production rate of plant P5 from the
microscopic and the macroscopic view, representatively. Figures of other plants are not
displayed here, because they are similar to Figure 6, unlike some quantitative information.

Figure 4. Varied arrival rates for AV¼ 5, AV¼ 6, AV¼ 7.
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Figure 5. Stable and unstable behaviour of the Matlab and the DES simulation.

Figure 6. Bounds of stability of different models and methods.
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Regarding the calculated smallest �i it can be observed that the smallest �i grows linear
with the AV. This can be explained by an increased incoming workload for higher values
of the AV. Due to the increase of the mean arrival rate the plants have to offer more
capacity to process the higher workload. Thus, the smallest �i have to be larger.

From a mathematical point of view stability of the system can only be guaranteed for
production rates on and above the mathematically calculated curve in Figure 6, whereas
below this curve we cannot give any information about stability of the system. Here,
simulations were used to find more precise bounds of stability. For the maximal
production rates above the curve in Figure 6, obtained by simulations of the DES model,
stability was observed, whereas below this curve the behaviour becomes unstable. The
region between the curve (the bound of stability) found by the mathematical stability
analysis and the bounds of the simulations is the more precise identification of the stability
region (denoted by simulated stability region in Figure 6). It should be pointed out, that for
different scenarios one obtains different stability regions.

Regarding the smallest �i, obtained by the DES model, it can be noticed that both
autonomous control methods provide nearly the same results. The curves of the smallest
�i, obtained by the application of the QLE and the PHE method, almost overlap for each
plant. A nearly linear trend of the smallest �i for rising values of AV can be found for both
methods. However, the curve of the PHE method behaves more back and forth than the
curve of the QLE method. This may be caused by the usage of data from the past for parts
using the PHE method. Due to this past information it may happen that single decisions of
parts are not adequate and lead to longer waiting times and consequently to a higher WIP.
Thus the bound of stability of the PHE method is not as sharp as the bound of
the QLE method. Summarising the results of the DES model one can say that the
different autonomous control methods cause only slight differences in view of the stability
regions.

The simulation time of the DES model depends on the number of parts, which are in
the network: the higher the AV, the larger is the number of parts. Using the QLE method
the time needed for one single simulation at the time interval from 0 to 100 is 13.48 seconds
for AV¼ 5 and 158.38 seconds for AV¼ 100, where a computer with a 3GHz processor
and 4GB RAM was used.

Figure 6 also contains the results of the Matlab simulation. These simulations and the
model used to calculate the smallest �i are based on the same differential equations. Thus,
the comparability of the simulated and calculated results, based on differential equations,
is given. Figure 6 depicts that the results of the Matlab simulation also nearly overlap with
the results of the DES model. Hence, the mathematical model is a good approximation
of the scenario and the results of both views (macroscopic and microscopic) can be
compared. The average differences between the QLE method and the Matlab simulation
are 2.01% and between the Matlab simulation and the PHE method are 2.66%,
respectively.

Regarding Figure 6 it can be noticed that compared to the mathematically calculated
bounds of stability, all bounds of the simulations are lower and more precise for all values
of AV. This result is caused by the usage of the worst case within the mathematical stability
property ISS, namely the supremum norm k � k1. In particular for oscillating inputs (e.g.,
seasonal changes of the demand) the maximal value is used for all the time to derive
stability parameters, such that lower inputs will not be considered over the time. Whereas
in the simulation (DES model and Matlab) the actual input for time t is used, which is not
the maximal value for all the time for an oscillating input and therefore lower stability

International Journal of Production Research 17

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
F
r
i
e
d
r
i
c
h
 
A
l
t
h
o
f
f
 
K
o
n
s
o
r
t
i
u
m
]
 
A
t
:
 
1
1
:
4
9
 
3
 
M
a
r
c
h
 
2
0
1
1



parameters can be obtained for the simulation. As a result, the gap between calculated and
simulated stable maximal production rates increases with the parameter AV.

For complex systems, especially for large-scale networks with feedback loops, the
determination of the maximal production rates to keep the system stable is a challenging
task. To identify the stability region by simulations one has to check the stability of the
network for a large set of maximal production rates. As presented above, the simulation
time increases exponentially by the number of parts and plants in the network. In
particular, for large-scale networks this is a problem, which cannot be solved in an
acceptable time. The dual approach presented, helps to derive and refine stable system
parameters in applicable time, which is the major advantage of this approach. It can be
transferred to general networks, due to the mathematical stability theory, presented in
Section 4, is for general networks (n coupled systems) and the simulations can also be
adapted to larger and complex systems.

8. Conclusions and outlook

Summarising the results presented above one can say that the stability region of an
autonomously controlled production network can be precisely obtained and verified in an
acceptable time by a dual approach. An analytical (mathematical) investigation was used
to derive conditions, which guarantee stability of the network for arbitrary input. By
specification of the input, parameters for which stability of the system can be guaranteed
were calculated. These results were refined by the usage of a DES model with more specific
system parameters, i.e., additional autonomous control methods on the shop floor level.
It was shown that more precise bounds of stability, which form the stability region, can be
found by simulations compared to the mathematically calculated bounds of the
mathematical stability analysis. A comparison of the results of the DES model and the
Matlab simulations showed that the approximation by the use of the mathematical model
is suitable for this scenario.

A mathematical model, based on differential equations, can be used to calculate
parameters, for which stability can be guaranteed. These parameters are sufficient for
stability of the system and they form bounds of stability for certain production networks.
Using these parameters the bounds of stability can be refined by a simulation model
(DES). This approach allows determining stability parameters of a complex autonomously
controlled production network with less time consumption compared to a pure trial and
error simulation study. The mathematical stability analysis and simulations by the DES
model complement one another.

This approach can be transferred to other more complex logistic networks. By
application of the stability analysis as presented here one can derive stability parameters to
guarantee stability of the more complex networks. The parameters help to design the
network to avoid negative outcomes and to achieve logistic and economic goals.

In future research activities we will consider transportation connections (delivery
times) between the plants to display the reality in our models in more detail.
Mathematically we have to take into account time-delay, hybrid and/or switched systems
and its stability theory, which is an actual mathematical research topic, especially for
interconnected dynamical systems. On the other hand the QLE and PHE method have to
be adapted to take into account transportation and in particular to handle perturbations
in production networks (e.g., closed transportation connections, transportation delays).

18 B. Scholz-Reiter et al.
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Also, the autonomous control methods have to be described mathematically and to be
integrated in the differential equations. Then, it is possible to perform a stability analysis
on these models, which are closer to the reality.

By taking into account transportation connections (delivery times) and stochastic
inputs (demands) a further dynamical effect may occur, known as the ‘bullwhip effect’.
This effect increases the amplitude of the WIP of a system and the throughput time and
causes surplus production and high inventory costs. The investigation and analysis of the
influence of the application of the models and the autonomous control methods presented
in this paper to reduce the bullwhip effect will also be an interesting research topic in the
future.
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