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Abstract We present methods and tools for modeling autonomously controlled pro-
duction networks and investigation of their stability properties. Production networks
are described as an interconnected dynamical systems of two types: systems of or-
dinary differential equations and time-delay systems. In particular with the help
of time-delays we incorporate transportation times and implement an autonomous
control method, namely the queue length estimator (QLE). By stability we mean,
roughly speaking, boundedness of the state of a system (e.g., the inventory level or
the work in progress) over the time under bounded external inputs. In our stability
analysis we consider the case, when all the subsystems describing logistics locations
are stable. We derive sufficient conditions that guarantee stability of the network. To
this end we utilize Lyapunov functions and a small gain condition.

1 Introduction

Production, supply networks and other logistic structures are typical examples of
complex systems with a nonlinear and sometimes chaotic dynamics. Their dynam-
ics is subject to different perturbations due to changes on market, changes in cus-
tomer behavior, information and transport congestions, unreliable elements of the
network etc. One of the approaches to handle such complex systems is to shift from
centralized to decentralized or autonomous control, i.e., to allow the entities of a
network to make their own decisions based on some given rules and available local
information [29, 30]. However a system emerging in this way can become unstable
and hence be not effective according to the logistic performance.
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Typical examples of unstable behavior are unbounded growth of unsatisfied or-
ders or unbounded growth of the queue of the workload to be processed by a ma-
chine. This causes a loss of customers and high inventory costs, respectively. To
avoid instability of a network one needs to investigate its behavior in advance. Math-
ematical modeling and analysis provide helpful tools for design, optimization and
control of such networks and for deeper understanding of their dynamical proper-
ties.

1.1 Production networks

The term production network is used to describe company or cross-company owned
networks with geographically dispersed plants. The primary objective of production
networks is to achieve economies of scale through joint planning of production pro-
cesses, a mutual use of common resources and integrated planning of value added
processes [28]. These types of networks can react quickly to perturbations due to
redundancies of common resources. But high flexibility causes interdependencies
between production processes in different plants, e.g., allocation problems for prod-
ucts or planning of transports and transport capacity [18, 1]. Therefore, production
planning and control (PPC) of production networks has to cover these tasks and
also has to provide methods for an integrated planning and synchronization within
the network, including planning of sales and inventory [28]. Under highly dynamic
and complex conditions current PPC methods cannot cope with disturbances or un-
foreseen events in an appropriate manner [15]. This can cause uncertainties of lead
times or unsteadiness of schedules, and it can also lead to instability.

1.2 Autonomous control

The main idea of autonomous cooperating logistic processes is to enable intelli-
gent logistic objects to route themselves through a logistic network according to
their own objectives and to make and execute decisions, based on local informa-
tion [29, 30]. In this context, intelligent logistic objects can be physical or mate-
rial objects (e.g., parts or machines) as well as immaterial objects (e.g., production
orders, information). It has already been shown that different autonomous control
methods can help to increase the logistics performance and robustness of single
production systems [19, 21]. Due to the high structural and dynamical complex-
ity of production networks one can expect that autonomous control has a positive
effect on the dynamical behavior of these networks. This was confirmed by inves-
tigations of the performance of autonomously controlled production networks [20].
On the other hand autonomously controlled production networks can show a sudden
change of the dynamical systems behavior in dependence of varying start parameters
and the logistics performance collapses in the sense of unpredictable and increasing
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throughput times and growing inventory [22]. Thus investigations of autonomously
controlled production networks stability are essential to identify such turning points
of dynamical systems behavior.

The autonomous control to be modeled and used in this contribution is based
on the queue length estimator (QLE), which was investigated in previous papers to-
gether with other existing autonomous control methods [21, 2, 23]. The QLE enables
parts to choose the next transportation way to an entity of the network according to
the local information about their current amount of the queuing workload.

1.3 Mathematical modeling and stability analysis

Roughly speaking, for production networks stability means that the state of the net-
work remains bounded over time under bounded external inputs.

The state of the system is the set of variables that determines the evolution of
the system (if the external inputs are given). In this contribution we will consider
the state of the system as the number of unprocessed parts, which is the sum of the
queue length and the work in progress (WIP).

Thus stable behavior of the network is decisive for the performance and vital-
ity of a network. To design stable logistic networks we are going to apply tools
from mathematical systems theory. In this context mathematical models describing
network’s behavior are needed.

For manufacturing systems parameters assuring stable behavior can be found by
using different models: fluid models [4], re-entrant lines [5] or manufacturing sys-
tems with different job types [6]. An approach with flows of multiple fluids was
used to analyze the stability region of an autonomously controlled shop floor sce-
nario [24]. Scholz-Reiter et al. [25] presented a fluid model of a production network
and obtained a stability region for a scenario with two locations and three types of
products. First approaches have already been done to derive stability conditions of
autonomously controlled production networks [7].

In this contribution a production network is described as an interconnection of
many dynamical subsystems that are logistic locations. To cope with different dy-
namical characteristics of the network we develop two types of models: systems,
based on ordinary differential equations (ODEs) and time-delay systems. Time-
delay systems are described by functional differential equations and take transporta-
tion times into account in contrast to models, based on ODEs. Both models describe
continuous material flows in the production network. The QLE is implemented in
both types of models.

We study input-to-state stability [26] of production networks. Our stability anal-
ysis is based on the Lyapunov function theory and small-gain theorems. We devide
the analysis in several steps: At the first step we describe the network’s behavior by
a mathematical model according to the type of its dynamics. Then we are looking
for Lyapunov functions and the corresponding Lyapunov gains to establish stability
of each subsystem. If all subsystems are stable, then we apply the so-called small-
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gain condition that takes into account the interconnection structure of the network.
If this condition is satisfied, then the stability of the network is proved, otherwise we
cannot conclude whether the network is stable or not. But we can repeat the stability
analysis choosing another Lyapunov function candidate and/or gains. Note, that the
choices of a Lyapunov function candidate and the gains are rather heuristic. This
framework is described in Figure 1. Note that we provide only sufficient conditions
for stability of a network.

This procedure can be applied to general nonlinear large-scale systems to per-
form a stability analysis and to derive bounds for parameters of a logistic system
for which its behavior is stable. These bounds can be used during the design and
management of production networks to achieve stable behavior.

Modelling ]
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Lyapunov functions

Choosmg }

Lyapunov oains

Checkmg Checkmg
Lyapunov conditions small-gain condition

| Stability (conditions)} L

No statement
about stability

Fig. 1 Scheme of the stability analysis procedure

The structure of the contribution is as follows. In Section 2, we give the nec-
essary notions of the dynamical systems and review the stability results for them,
namely ODE systems are considered in Subsection 2.1 and time-delay systems in
Subsection 2.2. These results will be used in Section 3 for modeling and analyzing
the behavior of logistics networks with and without time-delays. The application
will be supplemented by numerical simulations in Matlab for a certain scenario of a
production network in Section 4. Section 5 concludes the contribution and outlines
some approaches for the future work.
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2 Modeling methods and mathematical stability theory

In this section, we introduce two different methods to model dynamical networks
such as production networks. Furthermore, the stability theory for these methods is
presented.

2.1 Ordinary differential equations

One possibility to model production networks are ordinary differential equations
(ODE?), see for example [14]. ODEs describe the evolution of the state of the system
with continuous time € Ry, where R, := [0, 00).

By x” we denote the transposition of a vector x € R”, n € N. R denotes the
positive orthant {x € R" : x > 0} where we use the standard partial order for x,y €
R" given by

x>ye x>y, i=1,....nandx 2 y< Ji:x; <y
To handle the external inputs of the system, we use ODE with inputs of the form
X(t):f(x(t),u(t)),t€R+, (1)

where x(f) € RV denotes the state of the system at time ¢, u is the essentially
bounded measurable external input, i.e., # € Lo(R;,RY) and f: RN x RM — RN
describes the system dynamics. The norm in the space L..(R,RY) is given by
|||, :=ess sup |u(t)|, where || denotes the Euclidean norm.
t€[0,00

To have[ existence and uniqueness of a solution of a system of the form (1) the
function f is assumed to be a locally Lipschitz continuous function. The solution is
denoted by x(t;xo,u) or x(¢) for short, where xo is the initial condition at time ¢t = 0.

In general, production networks consist of n € N interconnected systems of the
form

Xi(t) = filx1(2), ..., xn(0),us(2)), t eR4, i =1,...,n, ()

where x; € RV, u; € RMi and f; : RE=1NitMi _, RN: are locally Lipschitz continuous
functions. Here, x;, j # i can be interpreted as internal inputs of the i-th subsystem
and the solution is denoted by x;(;x%,x;, j # i,u;) or x;(¢) for short, where x{ is the
initial condition at time ¢ = 0.

If we define N:=Y" \N;, M :=Y" My, x:=(xF,...x) u= (... ,ul)T
and f=(fI,..., )T, then the interconnected system of the form (2) can be written
as one single system of the form (1), which we call the whole system.

The purpose of this paper is to analyze production networks, which can be written
in the form (2), in view of stability.
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Definition 1. For the stability analysis the following classes of functions are useful:

P = {fR SR £(0)=0, f(x) >0, x£0},

A ={y:Ry —Ry| viscontinuous, ¥(0) =0 and strictly increasing},
Heo ={y€ x| yisunbounded},
Z ={y:Ry — Ry|7is continuous and strictly decreasing with lim, .. y(¢) =0},

AL ={B:Ry xR, — R | B is continuous,
B(-,t) e, ¥t >0, B(r,-) € L, ¥r>0}.

We will call functions of class &2 positive definite.

In the rest of the paper, by x,y > 0 we mean that x > 0 and y > 0 holds. Now we
introduce the following stability notion:

Definition 2. 1. System (1) is called locally input-to-state stable (LISS) if there
exist constants p, p, > 0 and functions 8 € # ¥, y € % such that for all initial
values |xo| < p and all inputs u € Lo(Ro,RM): |[u]|., < p, the inequality

()] < max {B (|xol ,£), ¥ (llull..)}

is satisfied for all # € R . Function Y is called (nonlinear) gain.

2. The i-th subsystem of (2) is called LISS if there exist constants p;, p;;, pj >0
and functions %, ¥% € % and f; € £ such that for all initial values |x?| <pi
and all inputs ||x; ||, < pij, |luill., < p} the inequality

()] < max By (3).0) st (J).) sl }

is satisfied for all # € R . ¥;; and ¥; are called (nonlinear) gains.

Note that, if p, p, = oo, then the system (1) is called (globally) ISS and if p;, p;;, p}' =
oo, then the i-th subsystem of (2) is called (globally) ISS.

In particular, LISS (for |x{| < pi, [|x;]|.. < pij, [|uill.. < p}*) and ISS (for all initial
values and external and internal inputs) guarantee that the norm of the trajectories
of each subsystem is bounded.

An important tool to verify LISS and ISS, respectively, of a system of the form
(2) are Lyapunov functions.

Definition 3. We assume that for each subsystem of the interconnected system (1)
there exists a function V; : R¥ — R, which is locally Lipschitz continuous and
positive definite. Then, for i = 1,...,n the function V; is called a LISS Lyapunov
function of the i-th subsystem of (2) if V; satisfies the following two conditions:
There exist functions y;, Wa; € %% such that

vii (al) < Vi) < i (i), Vo € R 3)

and there exist ¥;;, ¥ € 2, a positive definite function y; and constants p;, p;;, pj* >
0 such that
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Vi) 2 max {max 15 V06)) ) | = VW) i) < < (V)
for almost all x; € RV, [x?| < p;, |x;| < pij, ui € RMi, |u;] < p¥, ;i = 0, where

V denotes the gradient of the function V;. Functions ¥;; are called LISS Lyapunov
gains.

Note that, if p;, p;;, p;* = oo, then the LISS Lyapunov function of the i-th subsystem
becomes an ISS Lyapunov function of the i-th subsystem (see [12]). In general the
LISS Lyapunov gains differ from the gains in Definition 2.

The condition (3) means, that V; is positive definite and radially unbounded.
Function V; can be interpreted as the "energy" of the system. The condition (4)
means that outside of the region {x; : Vi(x;) < max {max;; 7i; (V;(x;)), % (Juil) }}
the "energy" of the system is decreasing. In particular, for every given external and
internal inputs with finite norms the energy of the system is bounded, which implies,
by (3), that also the trajectory of the i-th subsystem remains bounded for all time
t>0.

Furthermore we define the gain-matrix I" := (¥;j)uxn, &,j =1,...,n, % =0,
which definesamap I' : R} — R’ by

T
I'(s):= (mj;ixylj(sj),...,mjaxynj(sj)) ,seR]. %)

Note that the matrix I" describes in particular the interconnection structure of the
network, moreover it contains the information about the mutual influence between
the subsystems, which can be used to verify the (L)ISS property of networks.

Definition 4. I satisfies the local small gain condition (LSGC) on [0, w*], provided
that

I'(w*) <w"and I'(s) 2, Vs €[0,w*], s #0. (6)

Notation # denotes that there is at least one component i € {1,...,n} such that
r (S) i < Sj.

To check whether the interconnected system of the form (1) possesses the LISS
property we use the scheme in Figure 1. To this end, one has to find a LISS Lyapunov
function for each subsystem. If there exists a LISS Lyapunov function for each
subsystem, then this subsystem possesses the LISS property. Furthermore, if the
LISS Lyapunov gains satisfy the local small-gain condition, then the whole system
of the form (1) is LISS, which we recall in the following theorem (see [11]):

Theorem 1. Consider the interconnected system (2), where each subsystem has an
LISS Lyapunov function V;. If the corresponding gain-matrix I" satisfies the local
small-gain condition (6), then there exist constants p,p, > 0 such that the whole
system of the form (1) is LISS.

In [10] a similar ISS small-gain theorem for general networks was proved, where
the small-gain condition is of the form
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I'(s) 25, VseR\{0}.

2.2 Time-delay systems

In this section, we introduce systems with time-delays that allow modeling of trans-
portation times in logistic networks: material leaves one production location at time
¢ and reaches the following location at time ¢ + 6, where 6 > 0 is the transportation
time between these two production locations. Time-delay systems are described by
differential equations of the form

x(t) = f(,u). (7)

Here the term X' : T+ x(t + 1), T € [-0,0], ¥ € C([—6,0];R") represents the
state of the system at time ¢, where C([—6,0];R") denotes the space of continuous

functions defined on [—6,0] equipped with the norm [|X'[[[_g o := sup [x(t+ 7)]
' 7€[—6,0]

and values in RV, In (7) u is again an external input, f : C([—6,0];RY) x RY — RV
describes the dynamics of the system that is now dependent also on the previous
values of the function x.

In other words, the state of the time-delay system at the time ¢ is the set of values
of the function x in the period [t — 6,¢] and 0 can be interpreted as the maximal
involved delay. We assume that the conditions for the existence and uniqueness of
a solution of (7) are satisfied. Let the initial state be given by the function & €
C([-6,0;RN).

The stability notions introduced in the previous section can be defined for time-
delay systems as well:

Definition 5. System (7) is called LISS if there exist constants p,p, > 0 and func-
tions B € # % and y € ¢ such that for every initial condition ||&|| 0,0 < P, every
external input ||u||., < p, and for all 7 € R, it holds that

()| < max{B(I&1l_g.0,1): Y(llull)} ®)

where & € C([-0,0],R").

Remark 1. An equivalent definition of LISS of time-delay systems can be obtained
by replacing the inequality (8) in Definition 5 by the inequality

([ g0 < max{B(I&ll_g.07,1), ¥(llull..)}- €)

Really, if the system (7) is LISS in the form (9), then it is LISS according to Defini-
tion 5, because of [x(r)| < [|x'[|_g ¢

In the other direction, if (7) is LISS according to the Definition 5, then there exist
P,pu>0, B €L and y € X such that for every initial condition ||& 6.0 < P>
every external input ||u|., < p, and for all # > 6 it holds



Modeling methods and stability analysis 9

[l og= sup R+ < max{ sup B(I&ll_ggr+7),¥(llull)}
7€[—6,0] 7€[—06,0]

max{ﬁ(||§|\[,97o] I = 9)")/(Hu||oo)}

For 1 € [0, 6] it holds [|x'[|_g ¢ < max{B(||§||[79’0] ,0),7(||u||..) }- Now define for
all » > 0,7 > 0 the function

~ [ B(rht—06),r>06
Brnt)= { (0 —1)+B(1,0), 1 € [0,0].

One can simply check that B € #.%. Now, for every initial condition ||& | 6.0 <P
every external input ||u||., < p, and for all # > 0 it holds

1l . < max {BUIEN g )1): ¥(lull.) }
therefore the system (7) is LISS also in the form (9).

If we consider n interconnected systems, then we write each subsystem as
(1) = filxr, - x5, wi(D)), (10)

where x'; 1= x;(t +7), T € [~6,0] can be interpreted as internal input of the i-th sub-
system, i = 1,...,n. The initial functions are given by & € C([—0,0];RM). Again,
this network can be written in the form (7). The notion of LISS for interconnected

time-delay systems is as follows:

Definition 6. The i-th subsystem of (10) is called LISS if there exist constants
Pi, Pij; pi* > 0 and functions ; € #'.Z and }/l-‘j-,y;‘ eX,i,j=1,...,n, i# jsuch
that for initial functions ||<§l-||[_9’0] < p;, for inputs ||xjH[797w) < pij, |luill < p}* and
for all r € Ry it holds

|xi<r>|sfnax{ﬁ,-<@n[_e,m,r>,rr;;;co,4<||x,-!|[9,w>>,w<|u||m>}7 (11

where ijH[_G’W) = sup )‘xj(t)‘.

As in the delay-free case, Lyapunov functions are a useful tool to investigate sta-
bility of systems with time-delays, where one can use Lyapunov-Razumikhin func-
tions or Lyapunov-Krasovskii functionals (see [27], [17]). In this paper we only use
Lyapunov-Razumikhin functions for the stability analysis. An approach by the help
of Lyapunov-Krasovskii functionals can be found in [17] and [9]. The existence
of an ISS Lyapunov-Razumikhin function implies ISS for systems of the form (7).
This was shown in [27] and can be transferred to LISS in a similar way. For the def-
inition of LISS Lyapunov-Razumikhin functions we introduce the upper right-hand
side derivative of a locally Lipschitz continuous function V : R¥ — R along the
solution x(¢), which is defined by
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D"V (x()) =lim sup Vx(t+h) = V(x()) .
h—0t h

For interconnected time-delay systems the LISS Lyapunov-Razumikhin func-
tions are defined in the following way:

Definition 7. We assume that for each subsystem of the interconnected system
(10) there exists a function V; : RV — R, which is locally Lipschitz continu-
ous and positive definite. Then, for i = 1,...,n the function V; is called an LISS
Lyapunov-Razumikhin function for the i-th subsystem of (10) if there exist con-
stants p;, p;j, p* > 0 and functions ; € 42, yjﬁ,yj‘ e U{0}, e X, i,j=
1,...,n such that

vii(x]) < Vilxi) < wai(fl), Vx: € RV, (12)
Vi) = max {ma; (1 1V Cep) 1D, 7l | = DFViw) < —lVicx)) (13)

for all initial functions ||&i[/_g ) < pi, for all inputs x| < pij Juil < pf and
for all + € R, where V;i(xj(t)) = Vj(x;(t+7)), T€[—-0,0] and ||de(xj)|| =

max;_g<s<t |Vj(xj(s))“

Furthermore we define the gain-matrix for time-delay systems by I” := (yf]-)nx,,
and the map I" : R". — R, by

T
I'(s):= (mjz_lx"yfj(sj),...7mjax9ﬁj(sj)> ,seR].

With help of the following theorem we can check, whether an interconnected
system with time-delays is LISS.

Theorem 2. Consider the interconnected system (10), where each subsystem has a
LISS Lyapunov-Razumikhin function V;. If the corresponding gain-operator T sat-
isfies the local small-gain condition from Definition 4, then there exist constants
P, Py > 0 such that the whole system of the form (7) is LISS.

This follows from Theorem 1 in [9] with the corresponding changes according
to the LISS property.

Theorems 1 and 2 will be used in the following section for a stability analysis of
production networks.

3 Modeling and stability analysis of production networks

In this section, we model general production networks and perform a stability anal-
ysis, where the methods and tools presented in the previous section are used. We
will derive a sufficient condition, which guarantees stability of a general network.
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3.1 Description and Modeling of a general production network

We consider a production network, consisting of n market entities, which can be
raw material suppliers (e.g., extracting or agricultural companies), producers, dis-
tributors and consumers, for example. Each entity is understood as a subsystem of
the whole network. For simplicity we assume that there is only one unified type of
material, i.e., all primary products, used in the production network, can be measured
as a number of units of this unified material.

The state of the i-th subsystem at time ¢t € R is the quantity of unprocessed
material within the i-th subsystem at time . It will be denoted by x;(z). The state of
the whole network at time # is denoted by x(¢) = (x1(t),...,x,(¢))?. A subsystem can
get material from an external source, which is denoted by u;, and from subsystems
of the network (internal inputs).

Modeling without time-delays

At first we consider a production network without transportation times and use
ordinary differential equations to model it. Let the i-th subsystem processes the raw
material from its inventory with rate f;;(,x(¢)) > 0 and sends the produced goods
(measured in units of unified material) to the j-th subsystem with rate fj;(¢,x(t)).
Thus, the total rate of the distribution from the i-th subsystem to other subsystems is
Yo fji(t,x(t)) and the rest is sent to some customers not considered in the network.

For general functions fji it is hard to derive stability conditions. Therefore we
will investigate the special case fji(t,x(t)) = cji(x(t))fi(xi(t)), cji(x) € Ry and
Fi(t,x(t)) = &i(x()) fi(xi(2)), €ii(x) € Ry, where f;(x;(¢)) € 2 is proportional to
the processing rate of the system, c;;(x(t)), i # j are some positive distribution
coefficients and ¢&;(x(¢)) > 0. We interpret the constant distribution coefficients as
central planning and on the other hand variable distribution coefficients can be used
for some autonomous control method, e.g., the QLE.

Under these assumptions the dynamics of the i-th subsystem is described by or-
dinary differential equations as in (2):

%(t) = i cij(x(0)) fi (i (1) +ui(t) = Ea(x(0) filxi(t)), i=1,...,n. (14)

J=Lj#
Denoting c;; := —¢;; we can rewrite the above equations in a vector form as an
interconnected system of the form (1)

(1) = Cx(t)) f (x(1)) +u(t), (15)

where F(x(t)) = (i (61 (1)), s fo (6a (1)) () = (11 (1) ua (1))T and C(x) €
Rnxn.

This model will be used in the next subsection for a stability analysis of general
production networks.
Modeling with time-delays

Now we model general production networks with transportation times using
time-delay systems. The time needed for the transportation of material from the j-th
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to the i-th entity is denoted by 7;; € R,.. Then the dynamics of the i-th subsystem
can be described by retarded differential equations similar to (14):

Here, the external input and the processing rate do not depend on any time-
delay, but the internal inputs from other subsystems do, represented by the terms
cij(x(t)) fj(x;(t — 7;;)). This means that the input of subsystem i at time 7 from sub-
system j is the amount of material that was sent by the j-th subsystem at the time
t — ;. The terms ¢;;(x(¢)) can also depend on x;(r — 7;;), but we write ¢;;(x(¢)) for
short.

In the next subsection we perform a stability analysis for such systems, where
we use the Lyapunov-Razumikhin approach.

3.2 Stability analysis

For the stability analysis we apply the framework shown in Figure 1. This frame-
work is based on the result of Theorem 2. At first, we model the production net-
work using ODEs. Then we look for the ISS-Lyapunov function for each subsys-
tem described in (14). To this end we iteratively choose some candidate to be ISS-
Lyapunov function and the corresponding Lyapunov gains and check whether the
conditions on an ISS Lyapunov function are satisfied. If an ISS-Lyapunov function
is found, then we verify the small-gain condition. If it is satisfied, then Theorem 2
is applied to establish ISS.

Stability analysis of production networks modeled without time-delays

At first, we consider the case f; € #., i=1,...,n, in particular f; are unbounded.
Later we will show how the same method can be applied with minimal modifications
for bounded f; € # \ Hs.

Note that the conditions f; € #z, for all x > 0 ¢;;(x) < 0 and ¢;;(x) >0, i # j
imply that if x(0) > O (thatis x;(0) > O foralli=1,...,n) and u(z) > 0, forallz > 0,
then x(¢) > 0 for all t > 0.

Thus, R = [0,00)" is invariant under the flow of internal and external inputs (if
the external inputs are positive). One can perform the following analysis and prove
the results in R”. Since we are interested in the stability analysis of production
networks it is enough to perform the analysis in this paper in R’} .

There are many candidates to be ISS-Lyapunov functions. We consider the one
that is easy to check, i.e. V;(x;) = |x;| = x; for the i-th entity. Obviously, V;(x;) satis-
fies the condition (3). To prove that the condition (4) holds, we choose the functions
Y:j» %> Mi (see Definition 3) as

w(s) = (S s 7)) w(s) =77 (). an
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where 6]~, aj, j=1,...,n and r; are positive reals. It follows from (17) that
x> %y (%)) = Filx) < 21+ 8)) filx),

xi > Yi(juil) = |wil < rifi(x).

Using the inequalities from the right hand side of the implications above and assum-
ing that the following condition holds

n
Z cij 1—|—5 i) + cii(x) +r; < —h;, Vx € R, for some h; > 0, (18)
J=Lj#i

we obtain that for all x; € Ry : Vj(x;) > max {max ; %i; (V;(x;)), % (Jui]) } (compare
with (4)) it holds that

dV avi(xi(t))
il ):C,J ) F50xs(1)) + ui(e)

IN

( Zn: Cij(X(t))Zf(l+5j)+cl'i(x(f))+ri>fi(xi(f)) < —ui(Vi(xi(1))),

J=1j#i

where w;(r) := h; f;(r) and thereby condition (4) is satisfied. Thus, under the condi-
tion (18), Vi(x;) = |x;| is an ISS Lyapunov function for the i-th entity with the gains,
given by (17).

To check whether the interconnected system (15) is ISS we need to verify the
small-gain condition. It is well-known that this condition is equivalent to the cycle
condition (see [10]): forall p=2,...,n, for all (ki,...,k,) € {1,...,n}?, where k; =
kp, it holds

7k1k207k2k3O~~~°7kp71kp(s) <. (19)

Consider a composition ¥k, © Y,k;» then it holds

Yeky © Yioks fkl (ak 1+8k fk2 (sz (ak 1+5k fk3( )>))

=i (a0

In the same way we obtain the expression for the cycle condition in (19) (here
we use that ky = k,):

Yerks © Veoks © -+ © Ve 1, (5) = fir! (mfkl (s)> <s.

Thus, the small gain condition (19) holds true for all §; > 0 and by Theorem 1
the whole system is ISS.
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If we assume that the ¢;; are bounded, i.e., there exists M > 0 such that for all
x € RY:¢jj(x) <M forall i,j=1,...,n, i # j, then the inequality (18) can be
simplified:
i aij i aij
Vwi>05|5j>0,j:1,...,n: Z Cij(x)a*?5j§M Z (7?6]' < wj.

J=Li#i J=Li#i

Using these estimates, we can rewrite (18) as

n
Z cij(x)aj < —Ci,'(x)a,' — &,
=it

T T

where & = a;(r;+h;+w;). In matrix notation, witha = (ay,...,a,)" ,€=(€1,...,&)",

it takes the form
C(x)a < —¢. (20)
We summarize our investigations in the following proposition.

Proposition 1. Consider a network as in (14) and assume that the c;; are bounded
foralli,j=1,...,n,i# j. Ifthereexistac R", e cR", a; >0, >0,i=1,...,n
such that the condition C(x)a < —& holds for all t > 0, then the whole network (15)
is ISS.

Remark 2. If the matrix C does not depend on x, then the condition Ca < —¢€ is
equivalent to Ca < 0 (with a, € as in the proposition above). But if C = C(x), then
the existence of a positive vector a, Ca < 0 is not enough to guarantee ISS of the
system (15).

Remark 3. Recall, that for the case, when C is a constant matrix with negative ele-
ments on the main diagonal and all other elements are nonnegative, C is diagonal
dominant (see, e.g., [3]), if it holds c¢;; +Z#i cij<Oforalli=1,...,n. In this case,
one can easily prove with help of Gershgorin circle theorem (see [3], Fact 4.10.17),
that C is Hurwitz. Similarly, the previous condition can be replaced with another
one: there are n numbers a; > 0 such that ¢;a; + Y j4icija; <Oforalli=1,...,n
(which is equivalent to the existence of a positive vector a such that Ca < 0). In this
case the matrix is also Hurwitz (see, e.g., [13]).

Now we consider f; € # \ He, i =1,...,n, i.e., functions fi are monotonously
increasing, but only up to a certain limit ¢; := sup,. { fi(x;)}. For such f; the global
ISS property cannot be achieved, but we can establish the LISS property. We choose
again the function V; = |x;| = x; as LISS Lyapunov function candidate for the i-th
subsystem and the corresponding gains as follows

) =7 (s hio) 109 = ()
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Note that in contrast to the previous case, where the coefficients a; involved in
the gain functions were chosen arbitrarily, the o; are taken from the boundedness
assumptions on the functions f;. The reason is to obtain a range of a function % fi(s)

;.

equal to the domain of definition of £,
Applying the same methods as for f; € %, we obtain the following proposition:

Proposition 2. Consider a network as in (14). Let f; € ¥\ He, and o = Squ,eR{JFj (xj)}

j=1,.n 0= (ap,...,o0)". Ifthere exist g€ R, gi>0ande € R", >0, i =
1,...,n such that

Clx)a+g < —¢, 21

then the whole network (15) is LISS. Furthermore, the constants p and p, from the
Definition 2 can be chosen as p := oo, p, := min;—; ., g and (21) holds for all
€ LRy, RY) ¢ |til|loo < gy foralli=1,...,n.

Remark 4. The stability analysis for functions f; € .#" is skipped here, because some
more technical details are necessary that would increase the size of the paper dras-
tically. The result is similar to Proposition 2.

Stability analysis of production networks with time-delays

Now we perform a stability analysis for general production networks with trans-
portation times modeled by time-delay systems of the form (16), where we use the
tools presented in the Section 2.2.

Consider the case f; € %4, i = 1,...,n, in particular f; are unbounded. We
choose V;(x;) = |x;] = x; as an ISS-Lyapunov-Razumikhin function candidate for
the i-th entity. Obviously, V;(x;) satisfies the condition (12). To prove that the con-
dition (13) holds we choose the functions yg and ¥ as ¥, % in (17), where }/l‘f =0
because there is no time-delay in the internal dynamic (see the term &;(x(¢)) fi (x:(1))
in the model). The difference to (17) is that the time-delay is taken into account in
the argument of the gains. From the condition (13) we have

Vi(xi) > max{mj%lX?ﬁ(lled(xj)lD%(IMD},

where V{(x;()) = V;(x;(t — 7)) and ||V (x;)|| = max, g <s< |V;(x;(s))|. This
means ¥4 (||V{ (x;)|) > 7;(V;(x;)) and furthermore for 7;; > T;; = ¥4(|V;(x;(t —
%)) = 1 (Vi (xj(t = %))

From the definition of the gains we get by application of the Theorem 2 the

following proposition by similar calculations as for the stability analysis based on
ODE:s.

Proposition 3. Consider a network as in (16).

1. Assume that the c;; are bounded for all i,j = 1,...,n, i # j. If there exist a €
R" ¢ eR" a;>0, § >0, i=1,...,n such that the condition C(x)a < —¢€
holds NVt > 0, then the whole network is ISS.
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2. Let fj € H \ He, and q; 1= sup, {fj(xj)}, j=L...n, a:=(aun,....,00)" If
there exist g € R}, g,>0andseR £ >0, l—l ., 1 such that

Cx)a+g< —¢, (22)

then the whole network is LISS. Furthermore, the constants p and p, from the
Definition 5 can be chosen as p := o and p, := min,—1 ., g and (22) holds for
allu € L (R, RY) ¢ |uilloo < g3 foralli=1,...,n

These results are applied to a certain scenario of a production network in the fol-
lowing section.

4 Example of a certain scenario of a production network

System without time-delays

We consider a certain scenario of a production network without transportation
times as in Figure 2. There, the numbers of the nodes are given in the centers of
the corresponding circles. The first entity gets some raw material from an external
suppller denoted by u. At each entity the material will be processed with the rates
cifi = ciiqif, gi > 0 and immediately sent to the entities according to the network
topology in Figure 2 with certain distribution coefficients ¢;;. One half of the pro-
duction of the entity four will be sent to customers, not considered in the network.
The distribution coefficients are given by

-2 0 0 05
o (x(t)) =150 0

C(x(t)) = C31(X(t)) O _2 0 ’ (23)
0 1 1 =25
where we implement the queue length method by choosing
— A F— B h A . _€2292 B:= 3393
e (x(t)) == A+B’ e31(x(1)) = A+B’ where A= e P = H+e-

The term € > 0 assures that the ¢;;(x(¢)) are well-defined and for simplicity one can
choose € close to zero. Note that ¢o; +c¢31 = 1.

To analyze whether the network has the ISS property we only have to check the
condition (20), which can be easily verified with a; = 1, i = 1,...,4. By Proposi-
tion 1 the whole network is ISS.

The gains are of the form

W) =7 (s i) =7 (4

where §; > 0. For example, let f(s) =+/sand ¢; =1, i = 1,...,4. Then we have

(). seRe,
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Fig. 2 Example of a scenario of a production network

Yij(s) = ms, seR,.

Such a function £ describes a typical production policy.
The differential equations that describe the systems behavior are of the form

X1 (1) = ut) + 1y/xa(t) —24/x1 (1),

(1) =155
)

x(t) " xs(t)
%4(t) = /x2(t) + /x3 (1) — 2.5v/x4(2).

+

17

Let the initial state be given by x(0) = (2,5,4,3)7 and the input function be u =
10 - (sin(¢) 4 1) that is a fluctuation of customer demand from O to 20. Note, that
one can choose any other initial state and input u for which the condition (20) is
satisfied. Then we get the stable behavior, displayed in Figures 3 and 4, where a

simulation is performed with Matlab.

50, 6
45- i
40- 2
35 .
30
25 '3
20-
15 2
10 .
5
0 10 20 30 ] 0 10 20 30 I 50
t t

Fig. 3 Stable evolution of the amount of unprocessed parts within subsystems one and two
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t

Fig. 4 Stable evolution of the amount of unprocessed parts within subsystems three and four

If the distribution coefficients are chosen ascj| = —1, cop =—1, c33 =—1, cgq =
—1, i.e., the condition (20) is not satisfied, then we cannot make a statement about
stability. Indeed, in this case we get the following unstable behavior displayed in
Figures 5 and 6. It means that the number of unprocessed parts within a subsystem
increases up to infinity.

40
180- 35
160- 0
140
120 25

100 <20

80 15
60

ol 10
20 5

0 10 20 30 40 10 20 30 10 50
¢ t

E]

Fig. 5 Unstable evolution of the amount of unprocessed parts within subsystems one and two

System with time-delays

Now we consider the same scenario of a production network as in Figure 2, but
with transportation times. The distribution coefficients c;; for the stable situation are
given by (23) with ¢3; and c3; which represent the queue length method and take
into account time-delays:

— A-— _ »ng B.— _ €343
e (x(1)) := T3 where A := xz(tfizf)H,B = ionTe
. B - Rp  F. 33q
c31(x(2)) == BN where A := xz(r—221312)+s’B = X}(t_”rgf)ﬂ.
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Fig. 6 Unstable evolution of the amount of unprocessed parts within subsystems three and four

Now we choose f;(s) = g;/s with q; =3, 2 =2, g3 = 1.5, g4 = 1.6. The condition
(20) is satisfied, which can be easily checked and therefore the network has the ISS
property. The retarded differential equations of the system are of the form

X](I) = M(I) + 1féﬁ\/)u(l‘ — T14) —6\/)(1 (t),
_ 3
(1) = —522 3 /a1 - 51) - 3v/x(1),
0 (t="11) " x3(1—121)
3
i(r) = — 2B 3 (1= 1) - 3v/x 1),

x(t=131) ' x3(1—731)

X4(t) = 2\/X2(l— T42) + 1.5\/)63([ — T43) —4\/)C4(l‘).

We choose 7;; = 2 and the initial function x(s) = (2,5,4,3), s € [-2,0]. The input
function is given by the constant function # = 20 in contrast to the oscillating input
used before. Then we get the stable behavior, displayed in Figure 7. Although we
choose a constant input we observe an oscillating behavior of the number of unpro-
cessed parts of the subsystems. The reason is the implemented queue length method
in the terms c31(x(¢)) and c3; (x(¢)): Here only the number of unprocessed parts at
the time r — 71 or t — 731 is used for the calculation of the distribution coefficients
¢i1(x(t)), i =2,3. The number of unprocessed parts, which has been sent during the
time (¢ — 7;1,0] and has not yet been arrived at subsystem two or three, is not taken
into account. Then, it happens that more parts are sent to a subsystem with larger
queue than to the other subsystem until the distribution coefficients of both subsys-
tems, depending on the number of unprocessed parts at time ¢ — 7;;, are equal. After
this point the proportionally higher number of sent parts arrive at the subsystem,
which increases continuously the queue length and leads to a smaller distribution
coefficient ¢;| in contrast to the distribution coefficient of the other subsystem. Now
the procedure goes on in the opposite direction until the distribution coefficients are
equal again. This cycle repeats and causes the observed oscillating behavior.

Now we increase the time-delays by choosing 7;; = 4 and the initial function
x(s) = (2,5,4,3)7, 5 € [~4,0]. Furthermore, we choose € = 0.001 to assure that
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14f ---X1

Fig. 7 Stable Evolution with the time-delays 7;; = 2

the distribution coefficients c|; are well-defined. All other parameters are the same.
Then we get the behavior of the number of unprocessed parts of the subsystems dis-
played in Figure 8. The increased time-delays 7;; = 4 cause higher amplitudes, i.e.,
larger maximal values of the number of unprocessed parts of a subsystem in contrast
to the time-delays 7;; = 2 used in Figure 7. Furthermore, as a result of this increased
oscillations we observe that for some time intervals the number of unprocessed parts
of subsystem two and three equals or is close to zero, which means that the entities
do not produce parts in these time intervals. In the conclusions we provide some
ideas to avoid such negative outcomes.

5 Summary

5.1 Conclusions

We have modeled and investigated general production networks in view of stabil-
ity with and without transportation times. Two modeling methods were presented:
modeling by differential equations with and without time-delays. They were used
to model general production networks, where an autonomous control method, the
queue length method, was implemented. Based on these models we have presented
tools to perform a stability analysis using (L)ISS-Lyapunov or (L)ISS-Lyapunov-
Razumikhin functions. We have derived a condition which guarantees that a net-
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Fig. 8 Stable Evolution with the time-delays 7;; = 4

work possesses the (L)ISS property. This result was applied to a scenario of a pro-
duction network with and without transportation times. Here we have found out that
the maximum number of unprocessed parts of a subsystem with time-delays can be
higher than that of a subsystem without time-delays. Furthermore we have observed
an oscillating behavior of the number of unprocessed parts of a subsystem with
time-delays, which was caused by the modeled queue length method. The larger the
time-delay, the higher is this oscillating behavior and could cause downtimes of the

production.

5.2 Future work

The choices of the parameters c;; for the modeling of the queue length method can
be changed: the number of parts which are on the way to a subsystem, but not yet
arrive there, can be taken into account. This means that full information access of
the market entities of a network is necessary, which is not always available. This
problem should be investigated. Another way of modeling the queue length method
can be performed by using switched systems [16]. For such modeling method the
tools to perform a stability analysis for general networks have to be developed. One
can extend the modeling of production networks by taking into account state jumps,
e.g., loading and unloading processes, one can use hybrid or impulsive systems
with and without time-delays [8]. Then the developed dwell-time condition plays a
significant role and should be investigated in more detail.
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