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A Small Gain Condition for Interconnections of ISS
Systems With Mixed ISS Characterizations

Sergey Dashkovskiy, Michael Kosmykov, Fabian Wirth

Abstract—We consider interconnected nonlinear systems with
external inputs, where each of the subsystems is assumed to be
input-to-state stable (ISS). Sufficient conditions of small gain type
are provided guaranteeing that the interconnection is ISS with
respect to the external input. To this end we extend recently
obtained small gain theorems to a more general type of inter-
connections. The small gain theorem provided here is applicable
to situations where the ISS conditions are formulated differently
for each subsystem and are either given in the maximization or
the summation sense. Furthermore it is shown that the conditions
are compatible in the sense that it is always possible to transform
sum formulations to maximum formulations without destroying
a given small gain condition. An example shows the advantages
of our results in comparison with the known ones.

Index Terms—Control systems, nonlinear systems, large-scale
systems, stability criteria, Lyapunov methods.

I. INTRODUCTION

Stability of nonlinear systems with inputs can be described
in different ways as for example in sense of dissipativity
[23], passivity [21], [22], input-to-state stability (ISS) [18] and
others. In this paper we consider general interconnections of
nonlinear systems and assume that each subsystem satisfies
an ISS property. The main question of the paper is whether
an interconnection of several ISS systems is again ISS. As
the ISS property can be defined in several equivalent ways
we are interested in finding optimal formulations of the small
gain condition that are adapted to a particular formulation.
In particular we are interested in a possibly sharp stability
condition for the case when the ISS characterization of single
systems are different. Moreover we will provide a construction
of an ISS Lyapunov function for interconnections of such
systems.

Starting with the pioneering works [12], [11] stability of
interconnections of ISS systems has been studied by many
authors, see for example [15], [1], [3], [10]. In particular it is
known that cascades of ISS systems are ISS, while a feedback
interconnection of two ISS systems is in general unstable. The
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first result of the small gain type was proved in [12] for a
feedback interconnection of two ISS systems. The Lyapunov
version of this result is given in [11]. Here we would like to
note the difference between the small gain conditions in these
papers. One of them states in [11] that the composition of both
gains should be less then identity. The second condition in [12]
is similar but it involves the composition of both gains and
further functions of the form (id +αi). This difference is due
to the use of different definitions of ISS in both papers. Both
definitions are equivalent but the gains enter as a maximum
in the first definition, and a sum of the gains is taken in the
second one. The results of [12] and [11] were generalized for
an interconnection of n ≥ 2 systems in [4], [6], [13], [14].
In [4], [6] it was pointed out that a difference in the small
gain conditions remains, i.e., if the gains of different inputs
enter as a maximum of gains in the ISS definition or a sum of
them is taken in the definition. Moreover, it was shown that
the auxiliary functions (id+αi) are essential in the summation
case and cannot be omitted, [4]. In the pure maximization case
the small gain condition may also be expressed as a condition
on the cycles in the gain matrix, see e.g. [20], [4], [16], [13],
[14]. A formulation of ISS in terms of monotone aggregation
functions for the case of many inputs was introduced in [16],
[5], [7]. For recent results on the small gain conditions for a
wider class of interconnections we refer to [13], [8], [14].
In [9] the authors consider necessary and sufficient small
gain conditions for interconnections of two ISS systems in
dissipative form.

In some applications it may happen that the gains of a part
of systems of an interconnection are given in maximization
terms while the gains of another part are given in a summation
formulation. In this case we speak of mixed ISS formulations.
We pose the question whether and where we need the functions
(id + αi) in the small gain condition to assure stability in
this case. In this paper we consider this case and answer this
question. Namely we consider n interconnected ISS systems,
such that in the ISS definition of some k ≤ n systems the gains
enter additively. For the remaining systems the definition with
maximum is used. Our result contains the known small gain
conditions from [4] as a special case k = 0 or k = n, i.e., if
only one type of ISS definition is assumed. An example given
in this paper shows the advantages of our results in comparison
with the known ones.

This paper is organized as follows. In Section II we present
the necessary notation and definitions. Section III discusses
properties of gain operators in the case of mixed ISS formula-
tions. In particular we show that the mixed formulation can in
principle always be reduced to the maximum formulation. A
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new small gain condition adapted to the mixed ISS formulation
ensuring stability of the considered interconnection is proved
in Section IV. Section V provides a construction of ISS
Lyapunov functions under mixed small gain conditions. We
note some concluding remarks in Section VI.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Notation

In the following we set R+ := [0,∞) and denote the
positive orthant Rn+ := [0,∞)n. The transpose of a vector
x ∈ Rn is denoted by xT . On Rn we use the standard partial
order induced by the positive orthant given by

x ≥ y ⇐⇒ xi ≥ yi, i = 1, . . . , n,
x > y ⇐⇒ xi > yi, i = 1, . . . , n.

With this notation Rn+ := {x ∈ Rn : x ≥ 0}. We write
x 6≥ y ⇐⇒ ∃ i ∈ {1, . . . , n} : xi < yi. For a nonempty
index set I ⊂ {1, . . . , n} we denote by |I| the number of
elements of I . We write yI for the restriction yI := (yi)i∈I
of vectors y ∈ Rn+. Let RI be the anti-projection R|I|+ → Rn+,
defined by

x 7→
|I|∑
k=1

xkeik ∈ Rn+,

where {ek}k=1,...,n denotes the standard basis in Rn and I =
{i1, . . . , i|I|}.

For a function v : R+ 7→ Rm we define its restriction to the
interval [s1, s2] by

v[s1, s2](t) =
{
v(t), if t ∈ [s1, s2],
0, otherwise.

A function γ : R+ 7→ R+ is said to be of class K if it is
continuous, strictly increasing and γ(0) = 0. It is of class K∞
if, in addition, it is unbounded. Note that for any α ∈ K∞ its
inverse function α−1 always exists and α−1 ∈ K∞. A function
β : R+ × R+ 7→ R+ is said to be of class KL if, for each
fixed t, the function β(·, t) is of class K and, for each fixed s,
the function t 7→ β(s, t) is non-increasing and tends to zero
for t→∞. By id we denote the identity map.

Let | · | denote some norm in Rn, and let in particular
|x|max = max

i
|xi| be the maximum norm. The essential

supremum norm of a measurable function φ : R+ → Rm
is denoted by ‖φ‖∞. L∞ is the set of measurable functions
for which this norm is finite.

B. Problem statement

Consider the system

ẋ = f(x, u), x ∈ Rn, u ∈ Rm, (1)

and assume it is forward complete, i.e., for all initial values
x(0) ∈ Rn and all essentially bounded measurable inputs
u solutions x(t) = x(t;x(0), u) exist for all positive times.
Assume also that for any initial value x(0) and input u the
solution is unique.

The following notions of stability are used in the remainder
of the paper.

Definition 2.1: System (1) is called
(i) input-to-state stable (ISS), if there exist functions
β ∈ KL and γ ∈ K, such that for all x(0) ∈ Rn , u ∈
L∞(R+,Rm)

|x(t)| ≤ β(|x(0)|, t) + γ(‖u‖∞) , t ≥ 0. (2)

(ii) globally stable (GS), if there exist functions σ, γ̂ of
class K, such that for all x(0) ∈ Rn , u ∈ L∞(R+,Rm)

|x(t)| ≤ σ(|x(0)|) + γ̂(‖u‖∞) , t ≥ 0. (3)

(iii) System (1) has the asymptotic gain (AG) property, if
there exists a function γ ∈ K, such that for all x(0) ∈
Rn , u ∈ L∞(R+,Rm)

lim sup
t→∞

|x(t)| ≤ γ(‖u‖∞). (4)

Remark 2.2: An equivalent definition of ISS is obtained if
instead of using summation of terms in (2) the maximum is
used as follows:

|x(t)| ≤ max{β̃(|x(0)|, t), γ̃(‖u‖∞)}. (5)

Note that for a given system sum and maximum formulations
may lead to different comparison functions β̃, γ̃ in (5) than
those in (2). In a similar manner an equivalent definition can
be formulated for GS in maximization terms.

Remark 2.3: In [19] it was shown that a system (1) is ISS
if and only if it is GS and has the AG property.

We wish to consider criteria for ISS of interconnected
systems. Thus consider n interconnected control systems given
by

ẋ1 = f1(x1, . . . , xn, u1)
...

ẋn = fn(x1, . . . , xn, un)
(6)

where xi ∈ RNi , ui ∈ Rmi and the functions fi :
R
∑n
j=1 Nj+mi → RNi are continuous and for all r ∈ R

are locally Lipschitz continuous in x = (x1
T , . . . , xn

T )T

uniformly in ui for |ui| ≤ r. This regularity condition for
fi guarantees the existence and uniqueness of solution for the
ith subsystem for a given initial condition and input ui.

The interconnection (6) can be written as (1) with x :=
(xT1 , . . . , x

T
n )T , u := (uT1 , . . . , u

T
n )T and

f(x, u) =
(
f1(x1, . . . , xn, u1)T , . . . , fn(x1, . . . , xn, un)T

)T
.

If we consider the individual subsystems, we treat the state
xj , j 6= i as an independent input for the ith subsystem.

We now intend to formulate ISS conditions for the subsys-
tems of (6), where some conditions are in the sum formulation
as in (2) while other are given in the maximum form as in (5).
Consider the index set I := {1, . . . , n} partitioned into two
subsets IΣ, Imax such that Imax = I \ IΣ.

The ith subsystem of (6) is ISS, if there exist functions βi
of class KL, γij , γi ∈ K∞∪{0} such that for all initial values
xi(0) and inputs u ∈ L∞(R+,Rm) there exists a unique
solution xi(·) satisfying for all t ≥ 0

|xi(t)| ≤ βi(|xi(0)|, t) +
n∑
j=1

γij(‖xj[0,t]‖∞) + γi(‖u‖∞) ,

(7)
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i ∈ IΣ, and

|xi(t)|≤max{βi(|xi(0)|, t),max
j
{γij(‖xj[0,t]‖∞)},γi(‖u‖∞)}

(8)
if i ∈ Imax.

Remark 2.4: Note that without loss of generality we can
assume that IΣ = {1, . . . , k} and Imax = {k+1, . . . , n} where
k := |IΣ|. This can be always achieved by a permutation of
the subsystems in (6).

Since ISS implies GS and the AG property, there exist
functions σi, γ̂ij , γ̂i ∈ K ∪ {0}, such that for any initial
value xi(0) and input u ∈ L∞(R+,Rm) there exists a unique
solution xi(t) and for all t ≥ 0

|xi(t)|≤σi(|xi(0)|)+
n∑
j=1

γ̂ij(‖xj[0,t]‖∞)+ γ̂i(‖u‖∞) , i ∈ IΣ,

(9)
|xi(t)|≤max{σi(|xi(0)|),max

j
{γ̂ij(‖xj[0,t]‖∞)},γ̂i(‖u‖∞)},

(10)
i ∈ Imax, which are the defining inequalities for the GS
property of the i-th subsystem.

The AG property is defined in the same spirit by assuming
that there exist functions γij , γ̃i ∈ K ∪ {0}, such that for
any initial value xi(0) and inputs xj ∈ L∞(R+,RNj ), i 6= j,
u ∈ L∞(R+,Rm) there exists a unique solution xi(t) and

lim sup
t→∞

|xi(t)| ≤
n∑
j=1

γij(‖xj‖∞) + γi(‖u‖∞), i ∈ IΣ , (11)

lim sup
t→∞

|xi(t)| ≤ max{max
j
{γij(‖xj‖∞)}, γi(‖u‖∞)}, (12)

i ∈ Imax .

We collect the gains γij ∈ K∞ ∪ {0} of the ISS conditions
(7), (8) in a matrix Γ = (γij)n×n, with the convention γii ≡ 0,
i = 1, . . . , n. The operator Γ : Rn+ → Rn+ is then defined by

Γ(s) := (Γ1(s), . . . ,Γn(s))T , (13)

where the functions Γi : Rn+ → R+ are given by
Γi(s) := γi1(s1) + · · · + γin(sn) for i ∈ IΣ and Γi(s) :=
max{γi1(s1), . . . , γin(sn)} for i ∈ Imax. In particular, if
IΣ = {1, . . . , k} and Imax = {k + 1, . . . , n} we have

Γ(s) =



γ12(s2) + · · ·+ γ1n(sn)
...

γk1(s1) + · · ·+ γkn(sn)
max{γk+1,1(s1), . . . , γk+1,n(sn)}

...
max{γn1(s1), . . . , γn,n−1(sn−1)}


. (14)

In [4] small gain conditions were considered for the case
IΣ = I = {1, . . . , n}, respectively Imax = I . In [16], [7] more
general formulations of ISS are considered, which encompass
the case studied in this paper. In this paper we exploit the
special structure to obtain more specific results than available
before.

Our main question is whether the interconnection (6) is ISS
from u to x. To motivate the approach we briefly recall the

small gain conditions for the cases IΣ = I , resp. Imax = I ,
which imply ISS of the interconnection, [4]. If IΣ = I , we
need to assume that there exists a D := diagn(id + α), α ∈
K∞ such that

Γ ◦D(s) 6≥ s, ∀s ∈ Rn+\{0} , (15)

and if Imax = I , then the small gain condition

Γ(s) 6≥ s, ∀s ∈ Rn+\{0} (16)

is sufficient. In case that both IΣ and Imax are not empty we
can use

max
i=1,...,n

{xi} ≤
n∑
i=1

xi ≤ n max
i=1,...,n

{xi} (17)

to pass to the situation with IΣ = ∅ or Imax = ∅. But this leads
to more conservative gains. To avoid this conservativeness we
are going to obtain a new small gain condition for the case
IΣ 6= I 6= Imax. As we will see there are two essentially
equivalent approaches to do this. We may use the weak triangle
inequality

a+ b ≤ max{(id + η) ◦ a, (id + η−1) ◦ b} , (18)

which is valid for all functions a, b, η ∈ K∞ as discussed
in Section III-A to pass to a pure maximum formulation of
ISS. However, this method involves the right choice of a large
number of weights in the weak triangular inequality which
can be a nontrivial problem. Alternatively tailor-made small
gain conditions can be derived. The expressions in (15), (16)
prompt us to consider the following small gain condition. For
a given α ∈ K∞ let the diagonal operator Dα : Rn+ → Rn+ be
defined by

Dα(s) := (D1(s1), . . . , Dn(sn))T , s ∈ Rn+ , (19)

where Di(si) := (id + α)(si) for i ∈ IΣ and Di(si) := si
for i ∈ Imax. The small gain condition on the operator Γ
corresponding to a partition I = IΣ ∪ Imax is then

∃ α ∈ K∞ : Γ ◦Dα(s) 6≥ s, ∀s ∈ Rn+\{0}. (20)

We will abbreviate this condition as Γ ◦ Dα 6≥ id. In this
paper we will prove that this small gain condition guarantees
the ISS property of the interconnection (6) and show how an
ISS-Lyapunov function can be constructed if this condition is
satisfied in the case of a Lyapunov formulation of ISS.

Before developing the theory we discuss an example to
highlight the advantage of the new small gain condition (20),
cf. Theorem 4.4. In order not to cloud the issue we keep the
example as simple as possible.

Example 2.5: We consider an interconnection of n = 3
systems given by

ẋ1 =− x1 + γ13(|x3|) + γ1(u)
ẋ2 =− x2 + max{γ21(|x1|), γ23(|x3|)}
ẋ3 =− x3 + max{γ32(|x2|), γ3(u)}

(21)

where the γij and γi are given K∞ functions. Using the
variation of constants method and the weak triangle inequality
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(18) we see that the trajectories can be estimated by:

|x1(t)| ≤β1(|x1(0)|, t) + γ13(||x3[0,t]||∞) + γ1(‖u‖∞)
|x2(t)| ≤max{β2(|x2(0)|, t), (id + η) ◦ γ21(||x1[0,t]||∞),

(id + η) ◦ γ23(||x3[0,t]||∞)}
|x3(t)| ≤max{β3(|x3(0)|, t), (id + η) ◦ γ32(||x2[0,t]||∞),

(id + η) ◦ γ3(‖u‖∞)} ,
(22)

where the βi are appropriate KL functions and η ∈ K∞ is
arbitrary.

This shows that each subsystem is ISS. In this case we have

Γ =

 0 0 γ13

(id + η) ◦ γ21 0 (id + η) ◦ γ23

0 (id + η) ◦ γ32 0

 .

Then the small gain condition (20) requires that there exists
an α ∈ K∞ such that γ13(s3)

max{(id+η)◦γ21◦(id+α)(s1),(id+η)◦γ23(s3)}
(id + η) ◦ γ32(s2)

 6≥
 s1

s2

s3


(23)

for all s ∈ R3
+\{0}. If (23) holds then considering sT (r) :=

(γ13 ◦ (id +η)◦γ32(r), r, (id +η)◦γ32(r))T , r > 0 we obtain
that the following two inequalities are satisfied

(id + α) ◦ γ13 ◦ (id + η) ◦ γ32 ◦ (id + η) ◦ γ21(r) < r, (24)
(id + η) ◦ γ23 ◦ (id + η) ◦ γ32(r) < r. (25)

It can be shown by contradiction that (24) and (25) imply (23).
To give a simple example assume the that the gains are

linear and given by γ13 := γ21 := γ23 := γ32(r) = 0.9 r,
r ≥ 0. Choosing α = η = 1/10 we see that the inequalities
(24) and (25)) are satisfied. So by Theorem 4.4 we conclude
that system (1) is ISS. In this simple example we also see that
a transformation to the pure maximum case would have been
equally simple. An application of the weak triangle inequality
for the first row with η = α would have led to the pure
maximization case. In this case the small gain condition may
be expressed as a cycle condition [20], [4], [16], [13], [14],
which just yields the conditions (24) and (25).
We would like to note that application of the small gain
condition from [4] will not help us to prove stability for this
example, as can be seen from the following example.

Example 2.6: In order to apply results from [4] we could
(e.g. by using (17)) obtain estimates of the form

|x1(t)| ≤ β1(|x1(0)|, t) + γ13(||x3[0,t]||∞) + γ1(‖u‖∞)
|x2(t)| ≤ β2(|x2(0)|, t) + γ21(||x1[0,t]||∞) (26)

+ γ23(||x3[0,t]||∞)
|x3(t)| ≤ β3(|x3(0)|, t) + γ32(||x2[0,t]||∞) + γ3(‖u‖∞) .

With the gains from the previous example the corresponding
gain matrix is

Γ =

 0 0 0.9
0.9 0 0.9
0 0.9 0

 ,

and in the summation case with linear gains the small gain
condition is r(Γ) < 1, [4]. In our example r(Γ) > 1.19,
so that using this criterion we cannot conclude ISS of the
interconnection.

The previous examples motivate the use of the refined
small gain condition developed in this paper for the case
of different ISS characterizations. In the next section we
study properties of the gain operators and show that mixed
ISS formulations can in theory always be transformed to a
maximum formulation without losing information on the small
gain condition.

III. GAIN OPERATORS

In this section we prove some auxiliary results for the
operators satisfying small gain condition (20). In particular,
it will be shown that a mixed (or pure sum) ISS condition
can always be reformulated as a maximum condition in such
a way that the small gain property is preserved.1

The following lemma recalls a fact, that was already noted
in [4].

Lemma 3.1: For any α ∈ K∞ the small gain condition Dα◦
Γ 6≥ id is equivalent to Γ ◦Dα 6≥ id.

Proof: Note that Dα is a homeomorphism with inverse
v 7→ D−1

α (v) :=
(
D−1

1 (v1), . . . , D−1
n (vn)

)T
. By monotonic-

ity of Dα and D−1
α we have Dα ◦ Γ(v) 6≥ v if and only if

Γ(v) 6≥ D−1
α (v). For any w ∈ Rn+ define v = Dα(w). Then

Γ ◦Dα(w) 6≥ w. This proves the equivalence.
For convenience let us introduce µ : Rn+ × Rn+ → Rn+

defined by

µ(w, v) := (µ1(w1, v1), . . . , µn(wn, vn))T , w ∈ Rn+, v ∈ Rn+,
(27)

where µi : R2
+ → R+ is such that µi(wi, vi) := wi + vi

for i ∈ IΣ and µi(wi, vi) := max{wi, vi} for i ∈ Imax. The
following counterpart of Lemma 13 in [4] provides the main
technical step in the proof of the main results.

Lemma 3.2: Assume that there exists an α ∈ K∞ such that
the operator Γ as defined in (13) satisfies Γ ◦Dα 6≥ id for a
diagonal operator Dα as defined in (19). Then there exists a
φ ∈ K∞ such that for all w, v ∈ Rn+,

w ≤ µ(Γ(w), v) (28)

implies ‖w‖ ≤ φ(‖v‖).
Proof: Without loss of generality we assume IΣ =

{1, . . . , k} and Imax = I \IΣ, see Remark 2.4, and hence Γ is
as in (14). Fix any v ∈ Rn+. Note that for v = 0 there is nothing
to show, as then w 6= 0 yields an immediate contradiction to
the small gain condition. So assume v 6= 0.

We first show, that for those w ∈ Rn+ satisfying (28) at least
some components of w have to be bounded. To this end let
D̃ : Rn+ → Rn+ be defined by

D̃(s) :=
(
s1 + α−1(s1), . . . , sk + α−1(sk), sk+1, . . . , sn

)T
1We would like to thank one of the anonymous reviewers for posing the

question whether this is possible.
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for s ∈ Rn+ and let s∗ := D̃(v). Assume there exists w =
(w1, . . . , wn)T satisfying (28) and such that wi > s∗i , i =
1, . . . , n. In particular, for i ∈ IΣ we have

s∗i < wi ≤ γi1(w1) + . . .+ γin(wn) + vi (29)

and hence from the definition of s∗ it follows that

s∗i = vi + α−1(vi) < γi1(w1) + . . .+ γin(wn) + vi.

And so vi < α(γi1(w1)+ . . .+γin(wn)). From (29) it follows

wi ≤ γi1(w1) + . . .+ γin(wn) + vi
< (id+ α) ◦ (γi1(w1) + . . .+ γin(wn)). (30)

Similarly, by the construction of w and the definition of s∗

we have for i ∈ Imax

vi = s∗i < wi ≤ max{γi1(w1), . . . , γin(wn), vi} , (31)

and hence

wi ≤ max{γi1(w1), . . . , γin(wn)}. (32)

From (30), (32) we get w ≤ Dα ◦ Γ(w). By Lemma 3.1
this contradicts the assumption Γ ◦ Dα 6≥ id. Hence some
components of w are bounded by the respective components
of s1 := s∗. Iteratively we will prove that all components of
w are bounded.

Fix a w satisfying (28). Then w 6> s1 and so there exists an
index set I1 ⊂ I , possibly depending on w, such that wi > s1

i ,
i ∈ I1 and wi ≤ s1

i , for i ∈ Ic1 = I \ I1. Note that by the
first step Ic1 is nonempty. We now renumber the coordinates
so that

wi > s1
i and wi ≤

n∑
j=1

γij(wj) + vi , (33)

i = 1, . . . , k1,

wi > s1
i and wi ≤ max{max

j
γij(wj), vi} , (34)

i = k1 + 1, . . . , n1,

wi ≤ s1
i and wi ≤

n∑
j=1

γij(wj) + vi, , (35)

i = n1 + 1, . . . , n1 + k2

wi ≤ s1
i and wi ≤ max{max

j
γij(wj), vi} , (36)

i = n1 + k2 + 1, . . . , n ,

where n1 = |I1|, k1 + k2 = k. Using (35), (36) in (33), (34)
we get

wi ≤
n1∑
j=1

γij(wj) +
n∑

j=n1+1

γij(s1
j ) + vi, (37)

i = 1, . . . , k1,

wi ≤ max{ max
j=1,...,n1

γij(wj), max
j=n1+1,...,n

γij(s1
j ), vi}, (38)

i = k1 + 1, . . . , n1 .

Define v1 ∈ Rn1
+ by

v1
i :=

n∑
j=n1+1

γij(s1
j ) + vi , i = 1, . . . , k1 ,

v1
i := max{ max

j=n1+1,...,n
γij(s1

j ), vi} , i = k1 + 1, . . . , n1.

Now (37), (38) take the form:

wi ≤
n1∑
j=1

γij(wj) + v1
i , i = 1, . . . , k1, (39)

wi ≤ max{ max
j=1,...,n1

γij(wj), v1
i } , i = k1 + 1, . . . , n1.(40)

Let us represent Γ =
(

ΓI1I1 ΓI1Ic1
ΓIc1I1 ΓIc1Ic1

)
and define the maps

ΓI1I1 : Rn1
+ → Rn1

+ , ΓI1Ic1 : Rn−n1
+ → Rn1

+ , ΓIc1I1 : Rn1
+ →

Rn−n1
+ and ΓIc1Ic1 : Rn−n1

+ → Rn−n1
+ analogous to Γ. Let

DI1(s) := ((id+ α)(s1), ... , (id+ α)(sk1), sk1+1, ... , sn1)T .

From Γ ◦ Dα(s) 6≥ s for all s 6= 0, s ∈ Rn+ it follows by
considering s = (zT , 0)T that ΓI1I1 ◦ DI1(z) 6≥ z for all
z 6= 0, z ∈ Rn1

+ . Using the same approach as for w ∈ Rn+ it
can be proved that some components of w1 = (w1, . . . , wn1)T

are bounded by the respective components of s2 := D̃I1(v1).
We proceed inductively, defining

Ij+1 $ Ij , Ij+1 := {i ∈ Ij : wi > sj+1
i }, (41)

with Icj+1 := I \ Ij+1 and

sj+1 := D̃Ij ◦ (µj(ΓIjIcj (sjIcj ), vIj )), (42)

where D̃Ij is defined analogously to D̃, the map ΓIjIcj :
Rn−nj+ → Rnj+ acts analogously to Γ on vectors of the
corresponding dimension, sjIcj = (sji )i∈Icj is the restriction
defined in the preliminaries and µj is appropriately defined
similar to the definition of µ.
The nesting (41), (42) will end after at most n−1 steps: there
exists a maximal l ≤ n, such that

I % I1 % . . . % Il 6= ∅

and all components of wIl are bounded by the corresponding

sς := max{s∗, RI1(s2), . . . , RIl(s
l+1)}

:=

 max{(s∗)1, (RI1(s2))1, . . . , (RIl(s
l+1))1}

...
max{(s∗)n, (RI1(s2))n, . . . , (RIl(s

l+1))n}


where RIj denotes the anti-projection R|Ij |+ → Rn+ defined
above.

By the definition of µ for all v ∈ Rn+ it holds

0 ≤ v ≤ µ(Γ, id)(v) := µ(Γ(v), v).

Let the n-fold composition of a map M : Rn+ → Rn+ of the
form M ◦ . . . ◦M be denoted by [M ]n. Applying D̃ we have

0 ≤ v ≤ D̃(v) ≤ D̃◦(µ(Γ, id))(v) ≤ · · · ≤ [D̃ ◦ µ(Γ, id)]n(v).
(43)

From (42) and (43) for w satisfying (28) we have w ≤
sς ≤ [D̃ ◦ µ(Γ, id)]n(v). The term on the right-hand side
does not depend on any particular choice of nesting of
the index sets. Hence every w satisfying (28) also satisfies
w ≤ [D̃ ◦ µ(Γ, id)]

n
(|v|max, . . . , |v|max)T and taking the

maximum-norm on both sides yields |w|max ≤ φ(|v|max) for
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some function φ of class K∞. For example, φ can be chosen
as

φ(r) := max{([D̃ ◦ µ(Γ, id)]
n
(r, . . . , r))1, . . . ,

([D̃ ◦ µ(Γ, id)]
n
(r, . . . , r))n}.

This completes the proof of the lemma.
We also introduce the important notion of Ω-paths [7]. This

concept is useful in the construction of Lyapunov functions
and will also be instrumental in obtaining a better understand-
ing of the relation between max and sum small gain conditions.

Definition 3.3: A continuous path σ ∈ Kn∞ is called an Ω-
path with respect to Γ if

(i) for each i, the function σ−1
i is locally Lipschitz con-

tinuous on (0,∞);
(ii) for every compact set P ⊂ (0,∞) there are finite

constants 0 < c < C such that for all points of
differentiability of σ−1

i and i = 1, . . . , n we have

0 < c ≤ (σ−1
i )′(r) ≤ C, ∀r ∈ P (44)

(iii) for all r > 0 it holds that Γ(σ(r)) < σ(r).
By [7, Theorem 8.11] the existence of an Ω-path σ follows

from the small gain condition (16) provided an irreducibility
condition is satisfied. To define this notion we consider the
directed graph G(V, E) corresponding to Γ with nodes V =
{1, . . . , n}. A pair (i, j) ∈ V × V is an edge in the graph if
γij 6= 0. Then Γ is called irreducible if the graph is strongly
connected, see e.g. the appendix in [4] for further discussions
on this topic.

We note that if Γ is reducible, then it may be brought into
upper block triangular form by a permutation of the indices

Γ =


Υ11 Υ12 . . . Υ1d

0 Υ22 . . . Υ2d

...
. . .

...
0 . . . 0 Υdd

 (45)

where each block Υjj ∈ (K∞ ∪ {0})dj×dj , j = 1, . . . , d, is
either irreducible or 0.

The following is an immediate corollary to [7, Theo-
rem 8.11], where the result is only implicitly contained.

Corollary 3.4: Assume that Γ defined in (13) is irreducible.
Then Γ satisfies the small gain condition if and only if an Ω-
path σ exists for D ◦ Γ.

Proof: The hard part is the implication that the small gain
condition guarantees the existence of an Ω-path, see [7]. For
the converse direction assume that an Ω-path exists for D ◦Γ
and that for a certain s ∈ Rn+, s 6= 0 we have D◦Γ(s) ≥ s. By
continuity and unboundedness of σ we may choose a τ > 0
such that σ(τ) ≥ s but σ(τ) 6> s. Then s ≤ D ◦ Γ(s) ≤
D ◦Γ(σ(τ)) < σ(τ). This contradiction proves the statement.

A. From Summation to Maximization

We now use the previous consideration to show that an
alternative approach is possible for the treatment of the mixed
ISS formulation, which consists of transforming the complete

formulation in a maximum formulation. Using the weak tri-
angle inequality (18) iteratively the conditions in (7) may be
transformed into conditions of the form (8) with

|xi(t)| ≤ βi(|xi(0)|, t) +
n∑
j=1

γij(‖xj[0,t]‖∞) + γi(‖u‖∞)

(46)
≤ max{β̃i(|xi(0)|, t),max

j
{γ̃ij(‖xj[0,t]‖∞)}, γ̃i(‖u‖∞)}

(47)
for i ∈ IΣ. To get a general formulation we let j1, . . . , jki
denote the indices j for which γij 6= 0. Choose auxiliary
functions ηi0, . . . , ηiki ∈ K∞ and define χi0 := (id + ηi0)
and χil = (id + η−1

i0 ) ◦ . . . ◦ (id + η−1
i(l−1)) ◦ (id + ηil), l =

1, . . . , ki, and χi(ki+1) = (id +η−1
i0 )◦ · · · ◦ (id +η−1

iki
). Choose

a permutation πi : {0, 1, . . . , ki + 1} → {0, 1, . . . , ki + 1} and
define

β̃i := χiπi(0) ◦ βi , γ̃ijl := χiπi(l) ◦ γijl , (48)
l = 1, . . . , ki , γ̃i := χiπi(ki+1) ◦ γi ,

and of course γ̃ij ≡ 0, j /∈ {j1, . . . , jk1}. In this manner the
inequalities (46) are valid and a maximum ISS formulation
is obtained. Performing this for every i ∈ IΣ we obtain an
operator Γ̃ : R+

n → R+
n defined by(

Γ̃1(s), . . . , Γ̃n(s)
)T

, (49)

where the functions Γ̃i : Rn+ → R+ are given by
Γ̃i(s) := max{γ̃i1(s1), . . . , γ̃in(sn)} for i ∈ IΣ and Γ̃i(s) :=
max{γi1(s1), . . . , γin(sn)} for i ∈ Imax. Here the γ̃ij’s are
given by (48), whereas the γij’s are the original gains.

As it turns out the permutation is not really necessary and it
is sufficient to peel off the summands one after the other. We
will now show that given a gain operator Γ with a mixed or
pure sum formulation which satisfies the small gain condition
D ◦ Γ 6≥ id, it is always possible to switch to a maximum
formulation which also satisfies the corresponding small gain
condition Γ̃ 6≥ id. In the following statement ki is to be
understood as defined just after (47).

Proposition 3.5: Consider a gain operator Γ of the form
(13). Then the following two statements are equivalent

(i) the small gain condition (20) is satisfied,
(ii) for each i ∈ IΣ there exist ηi,0, . . . , ηi,(ki+1) ∈ K∞,
such that the corresponding small gain operator Γ̃ satisfies
the small gain condition (16).

Remark 3.6: We note that in the case that a system (6)
satisfies a mixed ISS condition with operator Γ, then the
construction in (46) shows that the ISS condition is also
satisfied in the maximum sense with the operator Γ̃. On the
other hand the construction in the proof does not guarantee
that if the ISS condition is satisfied for the operator Γ̃ then it
will also be satisfied for the original Γ.

Proof: “⇒”: We will show the statement under the
condition that Γ is irreducible. In the reducible case we may
assume that Γ is in upper block triangular form (45). In each
of the diagonal blocks we can perform the transformation
described below and the gains in the off-diagonal blocks are
of no importance for the small gain condition.
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In the irreducible case we may apply Corollary 3.4 to obtain
a continuous map σ : [0,∞)→ Rn+, where σi ∈ K∞ for every
component function of σ and so that

D ◦ Γ ◦ σ(τ) < σ(τ) , for all τ > 0. (50)

Define the homeomorphism T : Rn+ → Rn+, T : s 7→
(σ1(s1), . . . , σn(sn)). Then T−1 ◦ D ◦ Γ ◦ T 6≥ id and we
have by (50) for e =

∑n
i=1 ei, that

T (τe) = σ(τ) > D ◦ Γ ◦ σ(τ) = D ◦ Γ ◦ T (τe) ,

so that for all τ > 0

T−1 ◦D ◦ Γ ◦ T (τe) < τe . (51)

We will show that T−1 ◦ Γ̃ ◦ T (τe) < τe for an appropriate
choice of the functions ηij . By the converse direction of
Corollary 3.4 this shows that T−1 ◦ Γ̃ ◦ T 6≥ id and hence
Γ̃ 6≥ id as desired.

Consider now a row corresponding to i ∈ IΣ and let
j1, . . . , jki be the indices for which γij 6= 0. For this row
(51) implies

σ−1
i ◦ (id + α) ◦

∑
j 6=i

γij(σj(r))

 < r , ∀r > 0 , (52)

or equivalently

(id + α) ◦

∑
j 6=i

γij ◦ σj ◦ σ−1
i

 ◦ σi(r) < σi(r) , ∀r > 0 .

(53)
This shows that

(id + α) ◦

∑
j 6=i

γij ◦ σj ◦ σ−1
i

 < id , on (0,∞) . (54)

Note that this implies that
(

id−
∑
j 6=i γij ◦ σj ◦ σ

−1
i

)
∈ K∞

because α ∈ K∞. We may therefore choose γ̂ij > γij ◦ σj ◦
σ−1
i , j = j1, . . . , jki in such a manner that

id−
ki∑
l=1

γ̂ijl ∈ K∞ .

Now define for l = 1, . . . , ki

ηil :=

id−
∑
k≤l

γ̂ijk

 ◦ γ̂−1
ijl

∈ K∞ .

It is straightforward to check that

(id + ηil) =

(
id−

∑
k<l

γ̂ijk

)
◦ γ̂−1

ijl
,

(id + η−1
il ) =

(
id−

∑
k<l

γ̂ijk

)
◦

id−
∑
k≤l

γ̂ijk

−1

.

With χil := (id+η−1
i1 )◦. . .◦(id+η−1

i(l−1))◦(id+ηil) it follows
that

χil ◦γijl ◦σjl ◦σ
−1
i = (id+η−1

i1 )◦ . . .◦(id+η−1
i,l−1)◦(id+ηil)

◦γijl ◦ σjl ◦ σ
−1
i = γ̂−1

ijl
◦ γijl ◦ σjl ◦ σ

−1
i < id .

This shows that it is possible to choose ηij , i ∈ IΣ such that
all the entries in T−1 ◦ Γ̃◦T are smaller than the identity. This
shows the assertion.

“⇐”: To show the converse direction let the small gain
condition (16) be satisfied for the operator Γ̃. Consider i ∈ IΣ.

We consider the following two cases for the permuta-
tion π used in (48). Define p := min{π(0), π(ki + 1)}.
In the first case {π(0), π(ki + 1)} = {ki, ki + 1}, i.e.,
π(l) < p, ∀ l ∈ {1, . . . , ki}. Alternatively, the second case
is ∃l ∈ {1, . . . , ki} : π(l) > p.

We define αi ∈ K∞ by

αi :=



η−1
ip ◦

∑
π(l)>p

γijl ◦

(∑
j

γij

)−1

,

if ∃j ∈ {1, . . . , ki} : π(j) > p ,

ηi,p−1 ◦ γi,jπ−1(p−1)
◦

(∑
j

γij

)−1

,

if ∀j ∈ {1, . . . , ki} π(j) < p .

(55)

Consider the ith row of D ◦Γ and the case ∃j ∈ {1, . . . , ki} :
π(j) > p. (Note that for no l ∈ {1, . . . , ki} we have π(l) = p).

(id + αi) ◦
∑
j

γij =
∑
j

γij + αi ◦
∑
j

γij

=
∑
j

γij + η−1
ip ◦

∑
π(l)>p

γijl

◦

(∑
j

γij

)−1

◦
∑
j

γij

=
∑
j

γij + η−1
ip ◦

∑
π(l)>p

γijl

=
∑

π(l)<p

γijl + (id + η−1
ip ) ◦

∑
π(l)>p

γijl .

(56)
Applying the weak triangle inequality (18) first to the right-
most sum in the last line of (56) and then to the remaining
sum we obtain ∑

π(l)<p

γijl + (id + η−1
ip ) ◦

∑
π(l)>p

γijl

≤
∑

π(l)<p−1

γijl + max{(id + ηi,p−1) ◦ γi,π−1(p−1),

(id + η−1
i,p−1) ◦ (id + η−1

ip ) ◦ max
π(l)>p

{(id + η−1
i,p+1) ◦ . . .

◦(id + η−1
i,π(l)−1) ◦ (id + ηiπ(l)) ◦ γijl}} ≤ . . .

≤ max
l
{χiπ(l) ◦ γijl} . (57)

The last expression is the defining equation for
Γ̃i(s1, . . . , sn) = max

l=1,...,ki
{χiπ(l) ◦ γijl(sjl)}. Thus from

(56), (57) we obtain Γ̃i ≥ (D ◦ Γ)i.
Consider now the case ∀l ∈ {1, . . . , ki} π(l) < p. A

similar approach shows that Γ̃i ≥ (D ◦ Γ)i. Following the
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same steps as in the first case we obtain

(id + αi) ◦
∑
j

γij =
∑
j

γij + ηi,p−1 ◦ γi,jπ−1(p−1)

=
∑

π(l)<p−1

γijl + (id + ηi,p−1) ◦ γi,jπ−1(p−1)

≤
∑

π(l)<p−2

γijl + max{(id + ηi,p−2) ◦ γijπ−1(p−2)
, (58)

(id + η−1
i,p−2) ◦ (id + ηi,(p−1)) ◦ γi,jπ−1(p−1)

}
≤ . . . ≤ max

l
{χiπ(l) ◦ γijl} .

Again from (58) Γ̃i ≥ (D ◦ Γ)i.
Taking α = minαi ∈ K∞ it holds that Γ̃ ≥ D ◦ Γ. Thus if

Γ̃ 6≥ id, then D ◦ Γ 6≥ id.

IV. SMALL GAIN THEOREM

We now turn back to the question of stability. In order to
prove ISS of (6) we use the same approach as in [4]. The main
idea is to prove that the interconnection is GS and AG and
then to use the result of [19] by which AG and GS systems
are ISS.

So, let us first prove small gain theorems for GS and AG.
Theorem 4.1: Assume that each subsystem of (6) is GS and

a gain matrix is given by Γ = (γ̂ij)n×n. If there exists D as
in (19) such that Γ ◦D(s) 6≥ s for all s 6= 0, s ≥ 0 , then the
system (1) is GS.

Proof: Let us take the supremum over τ ∈ [0, t] on both
sides of (9), (10). For i ∈ IΣ we have

‖xi[0,t]‖∞ ≤ σi(|xi(0)|) +
n∑
j=1

γ̂ij(‖xj[0,t]‖∞) + γ̂i(‖u‖∞)

(59)
and for i ∈ Imax it follows

‖xi[0,t]‖∞ ≤ max{σi(|xi(0)|),max
j
{γ̂ij(‖xj[0,t]‖∞)},

γ̂i(‖u‖∞)}.
(60)

Let us denote w =
(
‖x1[0,t]‖∞, . . . , ‖xn[0,t]‖∞

)T
,

v =

 µ1(σ1(|x1(0)|), γ̂1(‖u‖∞))
...

µn(σn(|xn(0)|), γ̂n(‖u‖∞))


= µ(σ(|x(0)|), γ̂(‖u‖∞)),

where we use notation µ and µi defined in (27). From (59),
(60) we obtain w ≤ µ(Γ(w), v). Then by Lemma 3.2 there
exists φ ∈ K∞ such that

‖x[0,t]‖∞ ≤ φ(‖µ(σ(|x(0)|), γ̂(‖u‖∞))‖)
≤ φ(‖σ(|x(0)|) + γ̂(‖u‖∞)‖)
≤ φ(2‖σ(|x(0)|)‖) + φ(2‖γ̂(‖u‖∞)‖)

(61)

for all t > 0. Hence for every initial condition and essentially
bounded input u the solution of the system (1) exists for all
t ≥ 0 and is uniformly bounded, since the right-hand side of
(61) does not depend on t. The estimate for GS is then given
by (61).

Theorem 4.2: Assume that each subsystem of (6) has the
AG property and that solutions of system (1) exist for all

positive times and are uniformly bounded. Let a gain matrix
Γ be given by Γ = (γij)n×n. If there exists a D as in (19)
such that Γ ◦D(s) 6≥ s for all s 6= 0, s ≥ 0, then system (1)
satisfies the AG property.

Remark 4.3: The existence of solutions for all times is
essential, otherwise the assertion is not true. See Example 14
in [4].

Proof: Let τ be an arbitrary initial time. From the
definition of the AG property we have for i ∈ IΣ

lim sup
t→∞

|xi(t)| ≤
n∑
j=1

γij(‖xj[τ,∞]‖∞) + γi(‖u‖∞) (62)

and for i ∈ Imax

lim sup
t→∞

|xi(t)| ≤ max{max
j
{γij(‖xj[τ,∞]‖∞)}, γi(‖u‖∞)}.

(63)
Since all solutions of (6) are bounded we obtain by [4,
Lemma 7] that

lim sup
t→∞

|xi(t)| = lim sup
τ→∞

(‖xi[τ,∞]‖∞) =: li(xi), i = 1, . . . , n.

By this property from (62), (63) and [19, Lemma II.1] it
follows that

li(xi) ≤
n∑
j=1

γij(lj(xj)) + γi(‖u‖∞)

for i ∈ IΣ and

li(xi) ≤ max{max
j
{γij(lj(xj))}, γi(‖u‖∞)}

for i ∈ Imax. Using Lemma 3.2 we conclude

lim sup
t→∞

‖x(t)‖ ≤ φ(‖u‖∞) (64)

for some φ of class K, which is the desired AG property.
Theorem 4.4: Assume that each subsystem of (6) is ISS and

let Γ be defined by (13). If there exists a D as in (19) such
that Γ ◦D(s) 6≥ s for all s 6= 0, s ≥ 0, then system (1) is ISS.

Proof: Since each subsystem is ISS it follows in particular
that it is GS with gains γ̂ij ≤ γij . By Theorem 4.1 the whole
interconnection (1) is then GS. This implies that solutions of
(1) exists for all times.

Another consequence of ISS property of each subsystem
is that each of them has the AG property with gains γij ≤
γij . Applying Theorem 4.2 the whole system (1) has the AG
property.

This implies that (1) is ISS by Theorem 1 in [19].
Remark 4.5: Note that applying Theorem 1 in [19] we lose

information about the gains. The gains can be explicitly found
using the framework of Lyapunov theory, see Theorem 5.3
in [7]. As well for the case of maximization of gains some
estimates for the resulting gain of an interconnection were
derived in [14].

Remark 4.6: In [17] it was shown for the cases I = IΣ, I =
Imax that small gain conditions (15) and (16) are equivalent to
ISS of the discrete system s+ = µ(Γ(s), v) with corresponding
µ and Γ. We expect that following argumentation as in the
proof of Theorem IV.1 in [17] and using Lemma 3.2 and
Corollary 3.4 it can be shown that the small gain condition
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(20) is equivalent to the ISS property of the corresponding
discrete system s+ = µ(Γ(s), v).

Remark 4.7: A more general formulation of ISS conditions
for interconnected systems can be given in terms of so-
called monotone aggregation functions (MAFs, introduced in
[16], [7]). In this general setting small gain conditions also
involve a scaling operator D. Since our construction relies
on Lemma 3.2 a generalization of the results in this paper
could be obtained if sums are replaced by general MAFs and
maximization is retained. We expect that the assertion of the
Theorem 4.4 remains valid in the more general case, at least
if the MAFs are subadditive.

The following section gives a Lyapunov type counterpart of
the small gain theorem obtained in this section and shows
an explicit construction of an ISS Lyapunov function for
interconnections of ISS systems.

V. CONSTRUCTION OF ISS LYAPUNOV FUNCTIONS

Again we consider an interconnection of n subsystems in
form of (6) where each subsystem is assumed to be ISS and
hence there is a smooth ISS Lyapunov function for each
subsystem. We will impose a small gain condition on the
Lyapunov gains to prove the ISS property of the whole system
(1) and we will look for an explicit construction of an ISS
Lyapunov function for it. For our purpose it is sufficient to
work with not necessarily smooth Lyapunov functions defined
as follows.

A continuous function α : R+ → R+, where α(r) = 0 if
and only if r = 0, is called positive definite.

A function V : Rn → R+ is called proper and positive
definite if there are ψ1, ψ2 ∈ K∞ such that

ψ1(‖x‖) ≤ V (x) ≤ ψ2(‖x‖) , ∀x ∈ Rn.

Definition 5.1: A continuous function V : Rn → R+ is
called an ISS Lyapunov function for the system (1) if

1) it is proper, positive definite and locally Lipschitz con-
tinuous on Rn\{0}

2) there exists γ ∈ K, and a positive definite function α
such that in all points of differentiability of V we have

V (x) ≥ γ(‖u‖)⇒ ∇V (x)f(x, u) ≤ −α(‖x‖). (65)

Note that we do not require an ISS Lyapunov function to be
smooth. However as a locally Lipschitz continuous function it
is differentiable almost everywhere.

Remark 5.2: In Theorem 2.3 in [7] it was proved that the
system (1) is ISS if and only if it admits an (not necessarily
smooth) ISS Lyapunov function.

ISS Lyapunov function for subsystems can be defined in the
following way.

Definition 5.3: A continuous function Vi : RNi → R+ is
called an ISS Lyapunov function for the subsystem i in (6) if

1) it is proper and positive definite and locally Lipschitz
continuous on RNi\{0}

2) there exist γij ∈ K∞ ∪ {0}, j = 1, . . . , n, i 6= j, γi ∈ K
and a positive definite function αi such that in all points of
differentiability of Vi we have

for i ∈ IΣ

Vi(xi) ≥ γi1(V1(x1)) + . . .+ γin(Vn(xn)) + γi(‖u‖)⇒

∇Vi(xi)fi(x, u) ≤ −αi(‖xi‖) (66)

and for i ∈ Imax

Vi(xi) ≥ max{γi1(V1(x1)), . . . , γin(Vn(xn)), γi(‖u‖)} ⇒

∇Vi(xi)fi(x, u) ≤ −αi(‖xi‖). (67)

Let the matrix Γ be obtained from matrix Γ by adding
external gains γi as the last column and let the map Γ :
Rn+1

+ → Rn+ be defined by:

Γ(s, r) := {Γ1(s, r), . . . ,Γn(s, r)} (68)

for s ∈ Rn+ and r ∈ R+, where Γi : Rn+1
+ → R+ is given by

Γi(s, r) := γi1(s1) + · · ·+ γin(sn) + γi(r) for i ∈ IΣ and by
Γi(s, r) := max{γi1(s1), . . . , γin(sn), γi(r)} for i ∈ IΣ.

Before we proceed to the main result of this section let us
recall a related result from [7] adapted to our situation:

Theorem 5.4: Consider the interconnection given by (6)
where each subsystem i has an ISS Lyapunov function Vi with
the corresponding Lyapunov gains γij , γi, i, j = 1, . . . , n as
in (66) and (67). Let Γ be defined as in (68). Assume that
there is an Ω-path σ with respect to Γ and a function φ ∈ K∞
such that

Γ(σ(r), φ(r)) < σ(r), ∀r > 0. (69)

Then an ISS Lyapunov function for the overall system is given
by

V (x) = max
i=1,...,n

σ−1
i (Vi(xi)).

We note that this theorem is a special case of [7, Theorem 5.3]
that was stated for a more general Γ than here. Moreover it
was shown that an Ω-path needed for the above construction
always exists if Γ is irreducible and Γ 6≥ id in Rn+. The pure
cases IΣ = I and Imax = I are already treated in [7], where
the existence of φ that makes Theorem 5.4 applicable was
shown under the condition D ◦ Γ 6≥ id for the case IΣ = I
and Γ 6≥ id for the case Imax = I .

The next result gives a counterpart of [7, Corollaries 5.5
and 5.6] specified for the situation where both IΣ and Imax

can be nonempty.
Theorem 5.5: Assume that each subsystem of (6) has an

ISS Lyapunov function Vi and the corresponding gain matrix
is given by (68). If Γ is irreducible and if there exists Dα as in
(19) such that Γ ◦Dα(s) 6≥ s for all s 6= 0, s ≥ 0 is satisfied,
then the system (1) is ISS and an ISS Lyapunov function is
given by

V (x) = max
i=1,...,n

σ−1
i (Vi(xi)), (70)

where σ ∈ Kn∞ is an arbitrary Ω-path with respect to D ◦ Γ.
Proof: From the structure of Dα it follows that

σi > (id + α) ◦ Γi(σ), i ∈ IΣ,
σi > Γi(σ), i ∈ Imax.

The irreducibility of Γ ensures that Γ(σ) is unbounded
in all components. Let φ ∈ K∞ be such that for all
r ≥ 0 the inequality α(Γi(σ(r))) ≥ max

i=1,...,n
γi(φ(r))
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holds for i ∈ IΣ and Γi(σ(r)) ≥ max
i=1,...,n

γi(φ(r)) for

i ∈ Imax. Note that such a φ always exists and can be
chosen as follows. For any γi ∈ K we choose γ̃i ∈ K∞
such that γ̃i ≥ γi. Then φ can be taken as φ(r) :=
1
2 min{ min

i∈IΣ,j∈I
γ̃−1
j (α(Γi(σ(r)))), min

i∈Imax,j∈I
γ̃−1
j (Γi(σ(r)))}.

Note that φ is a K∞ function since the minimum over K∞
functions is again of class K∞. Then we have for all
r > 0, i ∈ IΣ that

σi(r) > Di ◦ Γi(σ(r)) = Γi(σ(r)) + α(Γi(σ(r)))

≥ Γi(σ(r)) + γi(φ(r)) = Γi(σ(r), φ(r))

and for all r > 0, i ∈ Imax

σi(r) > Di◦Γi(σ(r)) = Γi(σ(r)) ≥ max{Γi(σ(r)), γi(φ(r))}

= Γi(σ(r), φ(r)).

Thus σ(r) > Γ(σ(r), φ(r)) and the assertion follows from
Theorem 5.4.

The irreducibility assumption on Γ means in particular that
the graph representing the interconnection structure of the
whole system is strongly connected. To treat the reducible case
we consider an approach using the irreducible components of
Γ. If a matrix is reducible it can be transformed to an upper
block triangular form via a permutation of the indices, [2].

The following result is based on [7, Corollaries 6.3 and 6.4].
Theorem 5.6: Assume that each subsystem of (6) has an

ISS Lyapunov function Vi and the corresponding gain matrix
is given by (68). If there exists Dα as in (19) such that Γ ◦
Dα(s) 6≥ s for all s 6= 0, s ≥ 0 is satisfied, then the system
(1) is ISS, moreover there exists an Ω-path σ and φ ∈ K∞
satisfying Γ(σ(r), φ(r)) < σ(r),∀ r > 0 and an ISS Lyapunov
function for the whole system (1) is given by

V (x) = max
i=1,...,n

σ−1
i (Vi(xi)).

Proof: After a renumbering of subsystems we can assume
that Γ is of the form (45). Let D be the corresponding diagonal
operator that contains id or id + α on the diagonal depending
on the new enumeration of the subsystems. Let the state x
be partitioned into zi ∈ Rdi where di is the size of the ith
diagonal block Υii, i = 1, . . . , d. And consider the subsystems
Σj of the whole system (1) with these states

zj := (xTqj+1, x
T
qj+2, . . . , x

T
qj+1

)T ,

where qj =
∑j−1
l=1 dl, with the convention that q1 = 0.

So the subsystems Σj correspond exactly to the strongly
connected components of the interconnection graph. Note that
each Υjj , j = 1, . . . , d satisfies a small gain condition of
the form Υjj ◦ Dj 6≥ id where Dj : Rdj → Rdj is the
corresponding part of Dα.

For each Σj with the gain operator Υjj , j = 1, . . . , d and
external inputs zj+1, . . . , zd, u Theorem 5.5 implies that there
is an ISS Lyapunov function Wj = max

i=qj+1,...,qj+1
σ̂−1
i (Vi(xi))

for Σj , where (σ̂qj+1, . . . , σ̂qj+1)T is an arbitrary Ω-path with
respect to Υjj ◦ Dj . We will show by induction over the
number of blocks that an ISS Lyapunov function for the whole

system (1) of the form V (x) = max
i=1,...,n

σ−1
i (Vi(xi)) exists, for

an appropriate σ.
For one irreducible bock there is nothing to show. Assume

that for the system corresponding to the first k − 1 blocks
an ISS Lyapunov function exists and is given by Ṽk−1 =

max
i=1,...,qk

σ−1
i (Vi(xi)). Consider now the first k blocks with

state (z̃k−1, zk), where z̃k−1 := (z1, . . . , zk−1)T . Then we
have the implication

Ṽk−1(z̃k−1) ≥ γ̃k−1,k(Wk(zk)) + γ̃k−1,u(‖u‖) ⇒
∇Ṽk−1(z̃k−1)f̃k−1(z̃k−1, zk, u) ≤ −α̃k−1(‖z̃k−1‖) ,

where γ̃k−1,k, γ̃k−1,u are the corresponding gains, f̃k−1, α̃k−1

are the right hand side and dissipation rate of the first k − 1
blocks.

The gain matrix corresponding to the block k then has the
form

Γk =
(

0 γ̃k−1,k γ̃k−1,u

0 0 γk,u

)
.

For Γk by [7, Lemma 6.1] there exist an Ω-path σ̃k =
(σ̃k1 , σ̃

k
2 )T ∈ K2

∞ and φ ∈ K∞ such that Γk(σ̃k, φ) < σ̃k

holds. Applying Theorem 5.4 an ISS Lyapunov function for
the whole system exists and is given by

Ṽk = max{(σ̃k1 )−1(Ṽk−1), (σ̃k2 )−1(Wk)}

A simple inductive argument shows that the final Lyapunov
function is of the form V (x) = max

k=1,...,d
(σ−1
k (Wk(zk)), where

for k = 1, . . . , d− 1 we have (setting σ0
2 = id)

σ−1
k =

(
σ̃d−1

1

)−1 ◦ · · · ◦
(
σ̃k1
)−1 ◦

(
σ̃k−1

2

)−1

and σd = σ̃d−1
2 . This completes the proof.

VI. CONCLUSION

We have considered large-scale interconnections of ISS
systems. The mutual influence of the subsystems on each
other may either be expressed in terms of summation or
maximization of the corresponding gains. We have shown
that such a formulation may always be reduced to a pure
maximization formulation, however the presented procedure
requires the knowledge of an Ω-path of the gain matrix, which
amounts to having solved the problem. Also an equivalent
small gain condition has been derived which is adapted to the
particular problem. A simple example shows the effectiveness
and advantage of this condition in comparison to known
results. Furthermore, the Lyapunov version of the small gain
theorem provides an explicit construction of ISS Lyapunov
function for the interconnection.
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