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We extend some recent (2009,2010) results devoted to the Lyapunov
stabilization for the switched systems in the strict-feedback form. More
specifically, we prove that a multi-input and multi-output triangular
switched system with an unknown switching signal, with right-invertible
input-output links, and with dynamics, which is affine in external distur-
bances is globally uniformly input-to-state stabilizable with respect to the
disturbances.
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crabimizaiisgs BXiJ-cTaH TPUKYTHHUX CHCTEM 3 TEepeMIKaHHAMHU 3
GaraTpMa BXOJaMM i BUXO/aMM, 3 HEBIJOMAMM MepEeMUKaAHHAMH 1 3
MpaBoOGOPOTHUME Bi/IOOparkeHHAMHU BXiI-BuUXiA. Y pobori y3aranib-
iorbea ekl nosi (2009,2010) pesynbraru, siki npucBadeni crabinizauii 3a
JIAmyHOBUM cHCTEM 3 [IEPEMUKAHHIMU TPUKYTHOrO BUrJsay. Todsnie, Mmu
JOBOAMMO, IO TPUKYTHI CHCTEMH 3 MPABOOOOPOTHUME BiIODPAKEHHSIMU
BXiJI-BUXiJT 1 3 TpPaBUMHU YacTUHAMY AMDIHHUME 100 30BHIIMHIX 30ypeHb
PIBHOMIPHO CTaOLII3yIOTHCS 33 BXOAOM-CTAHOM BiZIHOCHO 30YpPEHb.
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1. Introduction

In 90th and 2000th various backstepping algorithms (which were originally
motivated by earlier (1973) work [5]) were designed and become very fruitful
in solving many problems of robust and adaptive nonlinear control. Originally
developed for ODE systems [8], this technique was extended to other types of
systems (as examples we can mention Volterra systems [6], discrete-time systems
[17, 19], or delay systems [2]). On the other hand, during the last decade, switched
systems (with or without control) have received a lot of attention. Therefore it is
natural to extend well-known recursive designs to the switched systems case.

Some authors made their efforts along this research line during the last years
[11, 3, 18, 16, 13|. However, it should be noted that most backstepping designs
for switched systems presume that some information about the switching signal
is available |3, 18]. Furthermore, sometimes the switching signal is treated as a
component of the control input to be designed [11]. The problem of asymptotic
stabilization with unknown switched signal was investigated in work [16]. More
specifically, in this work it was proven that the classical backstepping design is
possible for this class under the so-called “simultaneous domination assumption”,
which means the existence of a common virtual control and common Lyapunov
function at each step of the recursive design. On the other hand, no construc-
tive conditions for verification of the “simultaneous domination assumption” were
proposed in [16].

In the most recent work [12] it was proved that the class of strict-feedback
form single-input and signle-output (SISO) switched systems considered in [16]
indeed does satisfy the “simultaneous domination assumption” and the Lyapunov
stabilization is possible (indepenendtly this result was announced in [1]). Thus,
in order to stabilize these systems by means of a smooth feedback, one does not
need to impose any additional assumptions on this class.

The goal of the current paper is to extend this above-mentioned result to the
case of ISS uniform stabilization for the multi-input and multi-output triangular
switched system with an unknown switching signal and with right-invertible input-
output links.

2. Preliminaries

Throughout the paper, by (-,-) we denote the scalar product in R? (for any
¢ € N and from the context it will be clear which ¢ is considered); for A C R? by
A we denote the closure of A. For a vector £ER?, by |¢| we denote its quadratic
norm, i.e., |€|=(&,€)2.

Also we use the following standard abbreviations: ODE for “ordinary differen-
tial equations”, MIMO for “multi-input and multi-output”, SISO for “single-input
and single-output”, GAS for “global asymptotic stability /globally asymptotically
stable”, GES for “global exponential stability/globally exponentially stable”, (and
respectively LAS and LES for the corresponding local asymptotic or exponential
stability), ISS for “input-to-state stability/input-to-state stable”.

We say that function « of [0, 4+00) to [0, +00) is of class K iff it is continuous,
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positive definite and strictly increasing, and « is of class K if it is of class K
and unbounded. A function 5 of Ry X R4 to R4 is said to be of class XL iff for
each fixed t > 0 the function B(-,t) is of class Ko and for each fixed s > 0, we
have (s,t) = 0 as t — 400 and ¢t — [(s,t) is decreasing.

Consider the nonlinear switched system

L.U:Fo(t)(tax’A) (1)

where [0, +00) 3 t — o(t) € {1,..., M} is the piecewise constant switching signal,
r € R" is the state, A(t) € RY is the input, which is treated as an external
disturbance. Suppose that each F, is continuous w.r.t (¢,z,A) and satisfies the
local Lipschitz condition w.r.t. (z,A).

Given any A(-) in Loo([0,+00); RY) by ||A(-)|| denote its Lo, - norm on
[0, 400, and for each 20 € R™ and each to > 0 and each piecewise constant
o(-) by z(t,2° tg, A(-),0(+)) denote solution of the Cauchy problem z(tg) = 29,
of system (1) with these A = A(¢) and 0 = o(t).

Definition 1 System (1) is said to be uniformly input-to-state stable (ISS) iff
there are B € KL, and v € K such that for each tg, each z° € R"™ and each
A() € Loo([to, +00); RY) and each piece-wise constant t — o(t) € {1,..., M} we
obtain for all t > tg

j(t, 2% to, A(), a (NI<B(I2°], t=t0) (I A L fro,4-00() (2)
Definition 2 In the special case, if system (1) has the form
T = Fa(t) (.%', A)

it is said to be uniformly input-to-state stable (ISS) iff there are f € KL, and
v € X such that for each 2° € R", each A(-) € Loo([0,4+00); RN) and each
piecewise constant t — o(t) € {1,..., M} we obtain

‘x(t7x0707A(')?U('))‘Sﬁ(|xo‘7t)+7(|’ A()HLoo)ﬂ t=>0. (3)

Remark 1. It is clear that in the special case A(t) = 0 the uniform ISS
property implies that, whatever piecewise constant o(-) is, x(t) = 0 is a GAS
solution of the obtained ODE system (1).

Remark 2. Note that this definition is coordinate-free in the following sense:
if z = F(x) is a global diffeomorphism of the state space then the definition of
the uniform ISS property of system (1) is invatriant w.r.t. all such state transfor-
mations. The proof is the same as for the classical ISS concept introduced in 15|
and is based on the properties of v € X and 5 € XL functions.

Definition 3 Similarly to the ODE case, given a differentiable function V (t,x),
define its derivative w.r.t. system (1) as

d oV (t,x) N oV (t,x)

Ey(t,z, A)
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for all o € {1,..., M} and all (t,z,A) (in the special case V. = V(x) the first
term vanishes). If we deal with a control switched system

x = Fa(t)(twr’uaA)? (4)
with controls uw € R™ then we define

d OV (t,x) N oV (t,x)

forallo € {1,..., M} and all (t,x,u,A), and, for a certain controller u = u(t, x),
we denote
d _ OV(t,x)  OV(t,x)

%V(t7x)|(4),u:u(t,x) = o + B Fy(t,z,u(t,z),A)

forallo € {1,...,M} and all (t,z,A) (the same holds true for the special cases
u=u(x) and u = u(t)).

Fy(t,x,u, A)

3. Main result.

We consider the following switched system

X = A(X,u) + By (X) + Co (X)d(0), t>0, (5)
where o(t) € {1,...,M} is the piecewise constant unknown swithching signal,
X = [xl,...,x,,]T, is the state with z; € R™i, i=1,...,v, u = [ul,...,umu+1]T in

R™+1 is the control, and d(t) = [dy(t),...,dn(t)]" is the external input signal
considered as some external disturbances.
We assume that A(X,u), Bs(X) and C,(X) have the following form

(1)

ai(xq, x2) bo.1
az(wy, x2,x3) bo2(1,x2)
A(X,u) = ;i Be(X) = ’
au(x17x27"‘7$l/7u) bO’,l/(xlaw27"‘7$l/)
Ca,l(vfl)
and  Cy(x) = | o2l (6)
Cop(T1,22,...,2y)

for all 0 = 1,..., M and satisfy the following conditions:

(a) functions A(:,-), By(-), and Cy(-) are of class C**! and A(0,0) = 0,
B,;(0) =0, and C;(0) =0 for all o =1,..., M;

(b) for each fixed i = 1,...,v function a;(z1,x2,...,x;, ) is right invertible in
the following sense: there exists a function [z1, ..., z;, §] — xi(z1, ..., i, &) of
class CV 1 (R +-mi)+mi. Rmit1) guch that x;(0, ...,0,0) = 0 and

mi+..m;)+m;

ai(xlv "'7xi7Xi(x17 7x17€)) :E for all (‘rla ...,l'i,f) in R(
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Remark 3 Assumption (b) holds true for instance if following [5] we as-
sume that ; € R! and there is a > 0 such that |%| > a > 0 for all

) Tit+1
(21, ..., zi41) in R 4 =1,... v. Of course, in the general MIMO case m; > 1,
if m; <mjyq forall e =1,...,v, then there are many systems which satisfy con-

dition (b) as well (while, if m; > m;41, then by the well-known Sard theorem,
Condition (b) becomes impossible). It is also clear that condition (b) is more
restrictive than the case of the generalized triangular forms (GTF) introduced
(for ODE systems) in [7, 14]. Currently as open challenging problem is that of
extension of the result from [14] (as well as those of the current paper) to the
GTF switched systems.

Our main result devoted to the switched systems of the form (5) is as follows.

Theorem 1 Suppose that system (5) with A(-,-), By(+), Cs(+) of form (6) satisfies
(a),(b). Then there exists a feedback u = u(X) of class C1 such that the closed-

loop system (5) with this u = w(X) is uniformly ISS with respect to the disturbance
d(t).

The proof of Theorem 1 is reduced to the recursive design given in the next
section.
4. Adding an integrator and backstepping design.

Consider a switched control system

z= f(z, Zk+1) + wa(t) (Z) + wa(t)(z)A(t), teR (7)
where 2,1 € R™ is the control, z € R™, is the state, A(t) € Loo([0, +00); RY) is
some external disturbance and [0, +00) 3t — o(t) € {1,..., M} is the unknown

piecewise constant switching signal which takes values from some finite set of
indices {1,..., M}.
In addition, we consider its dynamical extension of the form

{ 2= f(z,2141) + %@)(Z) + gog(t)(z)A(t) (8)
Zer1=fk1(2, 2111, 0) + Vig1,000) (25 2611) + Prt1,0(0) (25 2611) AE)
with states [z, zkH]T, controls u € R™ (and with the same external disturbance
A(t) and unknown switching signal o(t)).

Next we suppose that systems (7)-(8) satisfy the following conditions

(i) functions f, Yo, @o and fit1, Vkt1,0.  Prt1e are of class CP
and f(0,0) = ¥,(0) = 0, ¢s(0) = 0 and fr11(0,0,0) = 7/%-1—1,0(070) =0,
Vk+1,0(0,0) =0for all o € {1,..., M}

(ii) fos1(2, 2he1, ) is right invertible for every [z, zp11]7 in R x R™ in the
following sense: there exists the map R"™ x R™ x R™ > [z, z541,&] —
u(z, zx+1,€) € R™ of class CP such that fri1(z, 2p41, u(z, 25+1,€)) = £ for
all [z, zg11,&] in R™ x R™ x R™ and u(0,0,0) = 0.



104 S. Dashkovskiy, S.S. Pavlichkov

Our main Theorem 1 can be reduced to the following statement on adding an
integrator.

Theorem 2 Assume that Conditions (i),(i1) hold true and, for system (7) with

the Lyapunov function V(z) = %(z,z) and for every X > 0 there exists

v(:) € Koo U{0} such that the following inequality holds

d
21V Ol za=0 = (2, f(2,0) + 9o (2) + 9o (2)A) < =AV(2) +7(|A])

forall zeR", AeRY, ce{l,...,M} (9)
Then, for system (8) with the Lyapunov function

1

1
Vit1(2, 2641) = §<Z72’> + §<Zk+172k+1>7

for every £ >0, for every § >0 and for vp+1(-) € Koo given by vr+1(|A]) =
= Y(|A]) + §|A|?, there exists a feedback wu(z,zpi1) of class CP~' such that
u(0,0) = 0 and such that the following Lyapunov inequality holds true

d
asz—&-l(zv 2+ )| (8) u=u(zyzip) S —(A = )Vir1(2, 2611) + 1 (JA])

forall z€R", z €R™ AcRY oc{l,...,M} (10)
Ifn =0 (and k =0) and system (7) is empty, then the extension (8) becomes

Z21=f1(21,u) + V100 (21) + 1,00 (21) A(F).

In this case, if Conditions (i),(ii) hold, we say by definition that the conditions of
the current theorem are satisfied with v(|A|) = 0 and the current theorem states
the existence of the corresponding feedback u(z1) (u(0) = 0) which satisfies (10)
with ye+1(JA]) = 1 (|A]) = 5|A%.

Let us note that (10) implies the uniform ISS of the system (8),if 0 <e <
< . Indeed, take any piecewise constant [0,+00) > t — o(t) € {1,...,M},
any disturbance A(-) € Lo and define Viyi(t) = Vig1(2(%), 2zk+1(t)). Define
Ao := A — € > 0. Then mulipying

d
%Vk.}rl(t) < =AoVit1(t) + ve+1(JA(E)]) forallt >0

by e*! we obtain

d
%(VkJrl(T)e)\oT) < Vo1 (JA(T)]eXT  for all 7> 0

and then integrating we have

¢
0 < Vig1(t) < Vig1(0)e ot + /7k+1(\A(T)|)e_A°(t_T)dT for all t > 0,
0
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i.e.,
_ 1
0 < [[2(t), zhr1 (D) < |[2(0), 2541 (0)] e AO“ryo’mﬂ(H AQ)l,,) forallt >0,

which yields Definition 1.
Let us assume for a moment that Theorem 2 is proved and prove that Theo-
rem 2 implies Theorem 1. The proof of Theorem 2 is given in the next section.
Proof of Theorem 1. The proof is by induction over ¢ = 1,..., 1.
(The base case i = 1) Fix an arbitrary A > 0. For ¢ = 1, consider the system

i1 = a1(z1,22) + bo(r),1(21) + o)1 (x1)d(t), t=>0 (11)

with states z; € R™!, controls zo € R™2, external disturbances d € RY and
an unknown switching signal o(t) € {1,...,M}. Take the Lyapunov function
Vi(z1) = 3(z1,21), and any § > 0. Applying Theorem 2, we obtain the existence
of a feedback zo = a(x1) of class C* such that

d
%Vl(xlﬂ(ll),xz:al(xl) < = AVi(21) + 6(d, d) (12)
for all o € {1,..., M}, 1 € R™ and all d € RY. At this first step, we consider
the (identical) state transformation z = 21 := 21 —ap = 1 —a@p with ag = @y = 0,
which brings the dynamics of (11) to the form

A~ A~ A~

2= f(z,2i41) + Vo (2) + Go(2)A, L, 2= f(2,22) + Yoy (2) + Gory(2)A
(13)

z=z1 =115 f(2,22) =a1(z,72); Vo(2) =0s1(2), A=d, P5=cs1(2)
Then from (12), we obtain

%(Vl(z))‘(w),m:oq(z) = _)‘Vl(z) + (5<A, A> with Vl(z) = %<272>' (14)
(The inductive step i — (i+1)) Suppose that for any A > 0, and an arbitrarily
small 6 > 0 there exist functions ag = 0, a1 (z1), ..., @i(z1, ..., zi), @ = 0, a1 (z1),
.., @i(wq,...,x;) of classes CVT1 Cv, ..., CY~"*L1 respectively such that the
following conditions hold:
1. @;(0) =0 and @;(0) = 0 and the coordinate transformation

21 =71 —Qqp Z1 =21 — Qg
29 = xg — a1 (21) 29 = xg — 01 (21) (15)

zi = — (21, .0y 2im1) zi = o — (1, .0, Ti1)
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brings the dynamics of the system

:'Cl_al(wl,ﬂ?Q)-i-b (t),1 1(x )—l—ca(t) (z )d(t)
By = az(w1, T2, T3) + by(r) 2(T1, T2) + o) 2(T1, T2)d(2)

T = (Ii(l’l, L2y eey l‘i+1) + ba(t),i(xh L2y ey 33'1) + CU(t),i(ajlv L2y eeey xl)d(t)

(16)

with states [z1, ..., .I'Z']T, controls z;11 and external disturbances d to the form
2= f(z,2041) + Vo) (2) + Gorr) (2)A(t) (17)
where z = [z1,...,2;] is the state defined by the transformation (15), z;41 is

the control, A(-) = d(-) is the disturbance, o(t) € {1,...,M} is the unknown
(piecewise constant) switching signal.
2. For the Lyapunov function V;(z) = 3(z,z) we obtain

d
%(‘fl(z))’(lﬂ,xprl:al(zh,zl) = _)“/l(z) + 5<d7 d> (18)

for all z, d and all o € {1, ..., M }.
Let the system

zZ= fA(Z,A.%'H_l) + Tﬂa(t) (2) _': @o(t) (Z)A(t) (19)
Tit1 = fir1(2 Tig1, W) + Vig1,00)(2, Tit1) + Pig1,00) (25 Tir1)A(R)

(with states [z,2;41], controls w € R™+2 and disturbances A = d) be the corre-
sponding dynamical extension obtained by the state transformation

21 =21 — O 21 =21 — Qp
29 = xg — aq(21) 29 = x9 — aq (1)
i.e.,
Zi :xi—ai(zl,...,zi_l) 2 le‘—ai({ﬂl,...,{l?i_l)
Li+1 = Ti+1 Li4+1 = Ti+1

of the system

&1 = a1(21,22) + b (1)1 (71) + o)1 (21)d(2)
By = az(r1, T2, 73) + bo(r) 2 (3317332) +Ca(t),2(951,902)d(t)

T = a;(T1, 22, ooy Tit1) + bor) i (T1, T2, o, i) + Cor)i(T1, T2, -, 73)d(E)
Tit1 = Qi1 (21, 02, oy Tig1, W) + ba( ),z+1($17$27 oy Tig 1)+
\ +CU(t),i+1(x17 L2y .ees,s $1+1)d(t)

(with states [z1, ..., Zi+1], controls w € R™i+2 and disturbances d). Then the state
transformation z = z, 241 = Tj+1 — a;+1(2) brings the system (19) to the form

{ z= (2, 2i11) + Vo) (2) + Qo) (2)A(L) (20)
Zit1 = fir1(2, 2i11, W) + Vo(),iv1(2, 2i41) + Oo(e),ir1(2, 2i41) A1)
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(with states [z, zi+1], controls w € R™i+2 and disturbances A(t) = d(t)) By the
induction hypothesis (more specifically by the definition of «; and by (18)), system
(20) satisfies all the assumptions of Theorem 2. Applying Theorem 2, for each
A >0, each ¢ >0 and each & > 0, we obtain the existence of a feedback
w = a;y1(2,2i41) of class CY~% with a;41(0,0) = 0 such that the Lyapunov
function Vit1(z) = Vi(z) + & (2it1, zi41) satisfies the inequality

d
a(‘/z‘—i-l(za Zi-l—l))‘(20),w:a¢+1(zl,...,zi,zi+1) = _()‘ - €)W+1(27 Z’H-l) + 5<d7 d> (21)

Thus, using the induction over ¢ = 1,...,v, we obtain for ¢ = v and for
every A > 0 and § > 0 that there exist 2(v + 1) functions o = 0, a1(z1), ...,
ay(21, ..., 20), and ag = 0, @y (x1), ..., ay(z1,...,2,), such that a; and @; are of
class C*~"*! and «;(0) = @;(0) = 0 and such that the following two properties
hold

1. The state transformation

Z21 =1 — Qp Z1 =21 — Qg
29 = w9 — a1(21) PN 29 = x9 — ay (1) (22)
2y =Ty — Qy_1(21, eeey Zu—1) 2y =Ty — Qy—1(T1, ey Ty—1)
or in vector form
Z=X-a(Z), & Z=X-alX) (23)
brings the dynamics of the system (5) to the form
2 = F(Z,0) + Qoo (2) + Ru( 2)d(2), (21)

with states Z € R"™ 1™ controls u € R™+! and external disturbances d(t),

where F(Z,u), Qys(Z), and R,(Z) are defined by the transformation (22) as fol-
lows

F(Z,u) = A(Z + a(Z),u) - MZ;XQ(Z))A(Z +a(Z)u),  (25)
o(2)= Bo(z +a(2) - DL gz 0z, e
Ro(2) = Cy(Z + a(2)) — WC’U(ZJra(Z)). (27)

2. For the Lyapunov function V,(Z) := 3(Z, Z) with Z=[z1, ..., 2] given by

(22) we have
d

dt
Thus, the control u=ay,(Z) uniformly ISS stabilizes (24). Taking the state trans-
formation Z — X which is inverse to (22), we obtain the statement of our Theo-
rem 1.

(Vo (2))l(24) u=a, (2) = —AVu(Z) + 6(d, d) (28)
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5. Proof of Theorem 2

Next we use the following straightforward equality

1
<Z7 f(zv Zk-l-l) - f(zv 0)> = / a0 <Za f(zv 92k+1)>d(9 = <Zv J(zv Zk+1)zk+1>
0

Therefore

d

g1 Vi1 (2 zie1) @), = (2, f (25 2641) + Y0 (2) + 00 (2) A)+

H( 2kt 15 fotr1(2, 21, 1) + Vit1,0(2, 2h41) + Prri,o(2 2641)A) =
= (2, [(2,0) + o (2) + o (2)A) + (2, J (2, 2k+1) 241)
241, fot1(2, 2011, ) + Vrt1,0(2, 2h41) + Prt1,0(2, 2641) D) <
< AV (2) +(1AD + (Zrrns i (252001, w) + T (220012 + Yrr1,0 (25 2040)+
+@k11,0(2; 2k41)A). 30)

(
Our next goal is to find a controller u = u(z, zx+1) such that the last term in (30)
will provide (10) with the new gain 71 mentioned in the statement of Theorem 2
to be proved.
By definition we denote the components of z and zx41 as follows:

1 n]T nk+1]T‘

1
and  2g41 = [Zpi1s -0 2t

Using the well-known Hadamard lemma we obtain the existence of matrix func-
tions Wyi1,0(2, 2k+1) and @gi15(2, 2k41) of class CP~1 such that

z
Vit1,0(2, 2641) = Yrt1,0(2, 241) { ] and
Zk+1
z
Okt1,0 (2, 2h11) = Proy1,0(2, 2541) [ _ } forall o=1,..., M. (31)

Next we estimate (30) by using (31). To make the estimates shorter, we omit the
arguments (2, 2x11) of U y1,0(2, 2k41) and Pri1,0(2, 2541)-

Take an arbitrary € > 0. From the first equality of (31) it follows that for
every z € R", every zp4+1 € R™ and every o € {1,..., M} we obtain

z
<Zk+1,‘11k+1,o(27 Zht1) [ - }> =
+
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= Z 1zk+1\11k+1 Se2 + Z

2k+1‘1’k+1 Uzk+1 <

1<i<ng4q 1<i<ngiq
1<j<n 1<) <nps
1 L i \2 YR
= 9 Z <€2 (%k+1) (‘%im) +e°(27) >+
1<i<ngq
1<j<n
1 i 2 0 e
5 Z (Zk:—i-l) (‘I’k+1o) (2101)" ) <
1<i<ng 4
1<j<ng41

M
1 1 . : o 2 1 ‘
<Y > S%h1%he1 (\1/2;1170) +3 ST )
=1

2
1<i<ngyq 1<i<ngqq
1<j<n 1<j<n
1 1 M Mg+41 Nk41 9
oy .
T3k Z (2k11) 5 B Z Z Zi+1 Z ( k1 0) Y1 =
1<i<ng4q o=1 j=1
1 .
252nk+1<z, 2y + (zkt+1, H(z, 2141)), where H'(2, zp41) =
1 M n 1 o M nk+41
=3 Z Z Eﬁzlﬁ;ﬂ (‘I’Zilg) + ”k+12k+1 +3 Z Z (‘l’k+1 a) i1, (32)
o=1j=1 o=1 j=1
where W%

—i,j .
k10 and \Ilkil,a denote the corresponding components of Wi

Slmllarly, from the second equality of (31), for every 6 > 0 and for each z € R",
each z;4+1 € R™ and each o € {1,..., M} we obtain

z
<2k‘+laq)k+1,a(zazkz+1) [ - ] A> =

1. - .
= > 5ok 0P o2 > 5Zk+16Al(I)k+1 o171 <

1<i<ng 4 1<i<ng 4
1<I<N 1<I<N
1<i<n 1<j<ng1
< 1 Z (52A2+ +2} iz’ (q)i’j zj)2> +
< 3 i k152 %kt 1 Pht1,00
I<i<ngiq
1<IKN

1<j<n
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1 ) 1 . —i . 2
_,_5 Z (52A12 + ziﬁlﬁziﬂ (‘I);cil,a,lziﬂ) > <

1<i<ngqq
1<IKN
1<j<np41
N 1 Nk+1 1 9
2 2 ] ‘ j
< Ny (nbngeg)62 Y A7 + 3 Yo Y 52%k+1 (%L,mzz]) +
1<j<n
1<o<M
1 Nk+1 1 o 9
, . vy ,
i) Z Zhy1 Z 572/%%1 (‘I’k»+1,o,l'zi+1) , (33)
=1 1<I<N
1<j<ng41
1<o<M
where @Z’il’ 1 and ﬂil,a,l denote the corresponding components of ®;41 ..

Summing up (30)-(33), we obtain

d 1
@Vkﬂ(% 21| (8)u < —(A = 552nk+1)V(z) +(|A]) + a1 (0 + ngg1) 67| AP+

(21 frr1 (2 2ep1u) + I (2, 2041) 2 + H(2, 2011) + G(2, 2041)),  Where

. . . N 2
G'(z,zp11) = % Z 5122,2_,_1 <<I>;€’i_1707123) +
1<I<KN
1<j<n
1<o<M

1 . . N2
+§ Z 5%2;@+1 (@il,mﬂiﬂ)
1<I<N
1<j<ng41
1<o<M

By Assumption (ii), there is u(z, zx41) of class CP~! such that u(0,0) = 0 and

Frr1(2, 26p1,u(2, 2641)) + I (2, 2001) 2 + H(2, 2541) + G(2, 2541) =

1
=—(\— §€2nk+1)zk+1 for all [z, zk41] € R" x R,

(Note that .J, H, G are of class CP~! in general (due to the proof of the Hadamrd
lemma); therefore the feedback u(z, 24 1) obtained is of class CP~! as a composi-
tion of functions of class CP (see Assumption (ii)) and those of class CP~1).

Since € > 0 and & > 0 are chosen arbitrarily small, this completes the proof
of Theorem 2.



Bicuuk Xapkisebkoro nanjonasnsuoro yuisepcurery im. B.H. Kapasina, 931 (2010) 111

Acknowledgement. This research is funded by the German Research Foun-
dation (DFG) as part of the Collaborative Research Center 637 “Autonomous
Cooperating Logistic Processes: A Paradigm Shift and its Limitations” (SFB
637). This result was announced in the conference [1].

REFERENCES

1. S. Dashkovskiy, S.S. Pavlichkov. Stabilization of a class of nonlinear switched
systems with unobservable switching function // X Crimean International
Mathematical School “Lyapunov function method and its applications” Book
of Abstracts, Alushta 13-18 September 2010 Simferopol, DIAIPI P. 166

2. S.5. Ge, F. Hong, T.H. Lee, Adaptive neural control of nonlinear time-delay
systems with unknown virtual control coefficients IEEE Transactions on Sys-
tem, Man, Cybernetics B 34(1) (2004) 499-516.

3. Han T.T., Ge S.S., Lee T.H. Adaptive neural control for a class of switched
nonlinear systems // Syst. Contr. Lett. — 2009. - 58. — P. 109-118.

4. Lyapunov A. M. General problem on stability of motion.— M.: Gostexizdat,
1960. — 471 p.

5. Korobov V.I. Controllability and stability of certain nonlinear systems // Dif-
ferential Equa-tions. — 1973. — 9. — P. 614-619.

6. V.I. Korobov, S.S. Pavlichkov, W.H. Schmidt, Global robust controllability of
the triangular integro-differential Volterra systems, J. Math. Anal. Appl. 309
(2005) 743 — 760.

7. V.I. Korobov, S.S. Pavlichkov, Global properties of the triangular systems in
the singular case, J. Math. Anal. Appl., vol. 342, 2008, pp 1426-1439.

8. Krstic M., Kanellakopoulos I., Kokotovic P. Nonlinear and adaptive control
design. — NY: Wiley, 1995. — 563 p.

9. Y.Lin, Y.Wang, and D.Cheng, On non-uniform and semi-uniform input-to-
state stability for time-varying systems, Proc. 16th IFAC 2005.

10. Lyapunov A. M. General problem on stability of motion.— M.: Gostexizdat,
1960. — 471 p.

11. Long F., Zhang S., Yang J. Backstepping Stabilization for a class of SISO
switched nonlinear systems with trigonal structure // Int. J. of Computer
Science and Network Security., — 2007. — 7. — P. 110-113.

12. Ma R., Zhao J. Backstepping design for global stabilization of switched non-
linear systems in lower triangular form under arbitrary switchingsI // Auto-
matica. — 2010. — doi:10.1016 /j.automatica.2010.06.050



112 S. Dashkovskiy, S.S. Pavlichkov

13. Han T.T., Ge S.S., Lee T.H. Adaptive neural control for a class of switched
nonlinear systems // Syst. Contr. Lett. — 2009. — 58. — P. 109-118.

14. S.S. Pavlichkov, S.S. Ge, Global stabilization of the generalized MIMO trian-
gular systems with singular input-output links, IEEE Trans. Automat. Control,
vol. 54(8), 2009, pp 1794-1806.

15. Sontag E.D. Smooth stabilization implies coprime factorization // IEEE
Trans. Automat. Control, — 1989. — 34. — P. 435-443.

16. Wu J.-L. Stabilizing controller design for switched nonlinear systems in strict-
feedback form // Automatica. — 2009.— 45. — P 1092-1096.

17. P. C. Yeh, P.V. Kokotovic, Adaptive control of a class of nonlinear discrete-
time systems Int. J. Control 62(2) (1995) 303-324.

18. Yu J.-T. A new adaptive backstepping Coulomb friction compensator for servo
control systems // Asian Journal of Control. — 2009. - 11. - P 1-10.

19. Y. Zhang, C.Y. Wen, Y.C. Soh, Discrete-time robust backstepping adap-
tive control for nonlinear time-varying systems IEEFE Trans. Automat. Control
45(9) (2000) 1749-1755.

Article history: Received: 1 October 2010; Final form: 18 November 2010;
Accepted: 19 November 2010.



