
Âiñíèê Õàðêiâñüêîãî íàöiîíàëüíîãî óíiâåðñèòåòó iìåíi Â.Í. Êàðàçiíà

Ñåðiÿ "Ìàòåìàòèêà, ïðèêëàäíà ìàòåìàòèêà i ìåõàíiêà"

ÓÄÊ 517.977.1+517.935.4 � 931, 2010, ñ.99�112

Adding an integrator and uniform ISS stabilization for

switched MIMO triangular systems with unknown

switched signal and right invertible input-output maps

S. Dashkovskiy, S.S. Pavlichkov

University of Bremen, Germany

Taurida National University, Ukraine

dsn@math.uni-bremen.de, svyatoslav_pavlichkov@rambler.ru,
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stabilization for the switched systems in the strict-feedback form. More
speci�cally, we prove that a multi-input and multi-output triangular
switched system with an unknown switching signal, with right-invertible
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1. Introduction

In 90th and 2000th various backstepping algorithms (which were originally
motivated by earlier (1973) work [5]) were designed and become very fruitful
in solving many problems of robust and adaptive nonlinear control. Originally
developed for ODE systems [8], this technique was extended to other types of
systems (as examples we can mention Volterra systems [6], discrete-time systems
[17, 19], or delay systems [2]). On the other hand, during the last decade, switched
systems (with or without control) have received a lot of attention. Therefore it is
natural to extend well-known recursive designs to the switched systems case.

Some authors made their e�orts along this research line during the last years
[11, 3, 18, 16, 13]. However, it should be noted that most backstepping designs
for switched systems presume that some information about the switching signal
is available [3, 18]. Furthermore, sometimes the switching signal is treated as a
component of the control input to be designed [11]. The problem of asymptotic
stabilization with unknown switched signal was investigated in work [16]. More
speci�cally, in this work it was proven that the classical backstepping design is
possible for this class under the so-called �simultaneous domination assumption�,
which means the existence of a common virtual control and common Lyapunov
function at each step of the recursive design. On the other hand, no construc-
tive conditions for veri�cation of the �simultaneous domination assumption� were
proposed in [16].

In the most recent work [12] it was proved that the class of strict-feedback
form single-input and signle-output (SISO) switched systems considered in [16]
indeed does satisfy the �simultaneous domination assumption� and the Lyapunov
stabilization is possible (indepenendtly this result was announced in [1]). Thus,
in order to stabilize these systems by means of a smooth feedback, one does not
need to impose any additional assumptions on this class.

The goal of the current paper is to extend this above-mentioned result to the
case of ISS uniform stabilization for the multi-input and multi-output triangular
switched system with an unknown switching signal and with right-invertible input-
output links.

2. Preliminaries

Throughout the paper, by ⟨·, ·⟩ we denote the scalar product in Rq (for any
q ∈ N and from the context it will be clear which q is considered); for A ⊂ Rq by
A we denote the closure of A. For a vector ξ∈Rq, by |ξ| we denote its quadratic
norm, i.e., |ξ|=⟨ξ, ξ⟩

1
2 .

Also we use the following standard abbreviations: ODE for �ordinary di�eren-
tial equations�, MIMO for �multi-input and multi-output�, SISO for �single-input
and single-output�, GAS for �global asymptotic stability/globally asymptotically
stable�, GES for �global exponential stability/globally exponentially stable�, (and
respectively LAS and LES for the corresponding local asymptotic or exponential
stability), ISS for �input-to-state stability/input-to-state stable�.

We say that function α of [0,+∞) to [0,+∞) is of class K i� it is continuous,
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positive de�nite and strictly increasing, and α is of class K∞ if it is of class K

and unbounded. A function β of R+ ×R+ to R+ is said to be of class KL i� for
each �xed t ≥ 0 the function β(·, t) is of class K∞ and for each �xed s ≥ 0, we
have β(s, t) → 0 as t→ +∞ and t 7→ β(s, t) is decreasing.

Consider the nonlinear switched system

ẋ = Fσ(t)(t, x,∆) (1)

where [0,+∞) ∋ t 7→ σ(t) ∈ {1, . . . ,M} is the piecewise constant switching signal,
x ∈ Rn is the state, ∆(t) ∈ RN is the input, which is treated as an external
disturbance. Suppose that each Fσ is continuous w.r.t (t, x,∆) and satis�es the
local Lipschitz condition w.r.t. (x,∆).

Given any ∆(·) in L∞([0,+∞);RN ) by ∥∆(·)∥ denote its L∞ - norm on
[0,+∞[, and for each x0 ∈ Rn and each t0 ≥ 0 and each piecewise constant
σ(·) by x(t, x0, t0,∆(·), σ(·)) denote solution of the Cauchy problem x(t0) = x0,
of system (1) with these ∆ = ∆(t) and σ = σ(t).

De�nition 1 System (1) is said to be uniformly input-to-state stable (ISS) i�

there are β ∈ KL, and γ ∈ K such that for each t0, each x0 ∈ Rn and each

∆(·) ∈ L∞([t0,+∞);RN ) and each piece-wise constant t 7→ σ(t) ∈ {1, . . . ,M} we

obtain for all t ≥ t0

|x(t, x0, t0,∆(·), σ(·))|≤β(|x0|, t−t0)+γ(∥ ∆(·)∥L∞[t0,+∞[) (2)

De�nition 2 In the special case, if system (1) has the form

ẋ = Fσ(t)(x,∆)

it is said to be uniformly input-to-state stable (ISS) i� there are β ∈ KL, and
γ ∈ K such that for each x0 ∈ Rn, each ∆(·) ∈ L∞([0,+∞);RN ) and each

piecewise constant t 7→ σ(t) ∈ {1, . . . ,M} we obtain

|x(t, x0, 0,∆(·), σ(·))|≤β(|x0|, t)+γ(∥ ∆(·)∥L∞
), t ≥ 0. (3)

Remark 1. It is clear that in the special case ∆(t) ≡ 0 the uniform ISS
property implies that, whatever piecewise constant σ(·) is, x(t) ≡ 0 is a GAS
solution of the obtained ODE system (1).

Remark 2. Note that this de�nition is coordinate-free in the following sense:
if z = z(x) is a global di�eomorphism of the state space then the de�nition of
the uniform ISS property of system (1) is invatriant w.r.t. all such state transfor-
mations. The proof is the same as for the classical ISS concept introduced in [15]
and is based on the properties of γ ∈ K and β ∈ KL functions.

De�nition 3 Similarly to the ODE case, given a di�erentiable function V (t, x),
de�ne its derivative w.r.t. system (1) as

d

dt
V (t, x)|(1) =

∂V (t, x)

∂t
+
∂V (t, x)

∂x
Fσ(t, x,∆)
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for all σ ∈ {1, . . . ,M} and all (t, x,∆) (in the special case V = V (x) the �rst

term vanishes). If we deal with a control switched system

ẋ = Fσ(t)(t, x, u,∆), (4)

with controls u ∈ Rm then we de�ne

d

dt
V (t, x)|(4) =

∂V (t, x)

∂t
+
∂V (t, x)

∂x
Fσ(t, x, u,∆)

for all σ ∈ {1, . . . ,M} and all (t, x, u,∆), and, for a certain controller u = u(t, x),
we denote

d

dt
V (t, x)|(4),u=u(t,x) =

∂V (t, x)

∂t
+
∂V (t, x)

∂x
Fσ(t, x, u(t, x),∆)

for all σ ∈ {1, . . . ,M} and all (t, x,∆) (the same holds true for the special cases

u = u(x) and u = u(t)).

3. Main result.

We consider the following switched system

Ẋ = A(X,u) +Bσ(t)(X) + Cσ(t)(X)d(t), t ≥ 0, (5)

where σ(t) ∈ {1, . . . ,M} is the piecewise constant unknown swithching signal,
X = [x1, ..., xν ]

T , is the state with xi ∈ Rmi , i=1, ..., ν, u = [u1, ..., umν+1 ]
T in

Rmν+1 is the control, and d(t) = [d1(t), . . . , dN (t)]T is the external input signal
considered as some external disturbances.

We assume that A(X,u), Bσ(X) and Cσ(X) have the following form

A(X,u) =


a1(x1, x2)
a2(x1, x2, x3)
. . .
aν(x1, x2, . . . , xν , u)

 ; Bσ(X) =


bσ,1(x1)
bσ,2(x1, x2)
. . .
bσ,ν(x1, x2, . . . , xν)



and Cσ(X) =


cσ,1(x1)
cσ,2(x1, x2)
. . .
cσ,ν(x1, x2, . . . , xν)

 (6)

for all σ = 1, . . . ,M and satisfy the following conditions:

(a) functions A(·, ·), Bσ(·), and Cσ(·) are of class Cν+1, and A(0, 0) = 0,
Bσ(0) = 0, and Cσ(0) = 0 for all σ = 1, . . . ,M ;

(b) for each �xed i = 1, . . . , ν function ai(x1, x2, . . . , xi, ·) is right invertible in
the following sense: there exists a function [x1, ..., xi, ξ] 7→ χi(x1, ..., xi, ξ) of
class Cν+1(R(m1+...mi)+mi ;Rmi+1) such that χi(0, ..., 0, 0) = 0 and

ai(x1, ..., xi, χi(x1, ..., xi, ξ)) = ξ for all (x1, ..., xi, ξ) in R(m1+...mi)+mi .
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Remark 3 Assumption (b) holds true for instance if following [5] we as-

sume that xi ∈ R1 and there is a > 0 such that |∂ai(x1,...,xi+1)
∂xi+1

| ≥ a > 0 for all

(x1, ..., xi+1) in Ri+1, i = 1, . . . , ν. Of course, in the general MIMO case mi ≥ 1,
if mi ≤ mi+1 for all i = 1, . . . , ν, then there are many systems which satisfy con-
dition (b) as well (while, if mi > mi+1, then by the well-known Sard theorem,
Condition (b) becomes impossible). It is also clear that condition (b) is more
restrictive than the case of the generalized triangular forms (GTF) introduced
(for ODE systems) in [7, 14]. Currently as open challenging problem is that of
extension of the result from [14] (as well as those of the current paper) to the
GTF switched systems.

Our main result devoted to the switched systems of the form (5) is as follows.

Theorem 1 Suppose that system (5) with A(·, ·), Bσ(·), Cσ(·) of form (6) satis�es

(a),(b). Then there exists a feedback u = u(X) of class C1 such that the closed-

loop system (5) with this u = u(X) is uniformly ISS with respect to the disturbance

d(t).

The proof of Theorem 1 is reduced to the recursive design given in the next
section.

4. Adding an integrator and backstepping design.

Consider a switched control system

ż = f(z, zk+1) + ψσ(t)(z) + φσ(t)(z)∆(t), t ∈ R (7)

where zk+1 ∈ Rnk is the control, z ∈ Rn, is the state, ∆(t) ∈ L∞([0,+∞);RN ) is
some external disturbance and [0,+∞) ∋ t 7→ σ(t) ∈ {1, . . . ,M} is the unknown

piecewise constant switching signal which takes values from some �nite set of
indices {1, . . . ,M}.

In addition, we consider its dynamical extension of the form{
ż = f(z, zk+1) + ψσ(t)(z) + φσ(t)(z)∆(t)

żk+1=fk+1(z, zk+1, u) + ψk+1,σ(t)(z, zk+1) + φk+1,σ(t)(z, zk+1)∆(t)
(8)

with states [z, zk+1]
T , controls u ∈ Rm (and with the same external disturbance

∆(t) and unknown switching signal σ(t)).
Next we suppose that systems (7)-(8) satisfy the following conditions

(i) functions f, ψσ, φσ and fk+1, ψk+1,σ, φk+1,σ are of class Cp

and f(0, 0) = ψσ(0) = 0, φσ(0) = 0 and fk+1(0, 0, 0) = ψk+1,σ(0, 0) = 0,
φk+1,σ(0, 0) = 0 for all σ ∈ {1, . . . ,M}

(ii) fk+1(z, zk+1, ·) is right invertible for every [z, zk+1]
T in Rn × Rnk in the

following sense: there exists the map Rn × Rnk × Rnk ∋ [z, zk+1, ξ] 7→
u(z, zk+1, ξ) ∈ Rm of class Cp such that fk+1(z, zk+1, u(z, zk+1, ξ)) = ξ for
all [z, zk+1, ξ] in Rn × Rnk × Rnk and u(0, 0, 0) = 0.
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Our main Theorem 1 can be reduced to the following statement on adding an
integrator.

Theorem 2 Assume that Conditions (i),(ii) hold true and, for system (7) with

the Lyapunov function V (z) := 1
2⟨z, z⟩ and for every λ > 0 there exists

γ(·) ∈ K∞ ∪ {0} such that the following inequality holds

d

dt
V (z)|(7),zk+1=0 = ⟨z, f(z, 0) + ψσ(z) + φσ(z)∆⟩ ≤ −λV (z) + γ(|∆|)

for all z ∈ Rn, ∆ ∈ RN , σ ∈ {1, . . . ,M} (9)

Then, for system (8) with the Lyapunov function

Vk+1(z, zk+1) =
1

2
⟨z, z⟩+ 1

2
⟨zk+1, zk+1⟩,

for every ε > 0, for every δ > 0 and for γk+1(·) ∈ K∞ given by γk+1(|∆|) =
= γ(|∆|) + δ|∆|2, there exists a feedback u(z, zk+1) of class Cp−1 such that

u(0, 0) = 0 and such that the following Lyapunov inequality holds true

d

dt
Vk+1(z, zk+1)|(8),u=u(z,zk+1) ≤ −(λ− ε)Vk+1(z, zk+1) + γk+1(|∆|)

for all z ∈ Rn, zk+1 ∈ Rnk , ∆ ∈ RN , σ ∈ {1, . . . ,M} (10)

If n = 0 (and k = 0) and system (7) is empty, then the extension (8) becomes

ż1=f1(z1, u) + ψ1,σ(t)(z1) + φ1,σ(t)(z1)∆(t).

In this case, if Conditions (i),(ii) hold, we say by de�nition that the conditions of

the current theorem are satis�ed with γ(|∆|) = 0 and the current theorem states

the existence of the corresponding feedback u(z1) (u(0) = 0) which satis�es (10)

with γk+1(|∆|) = γ1(|∆|) = δ|∆|2.

Let us note that (10) implies the uniform ISS of the system (8), if 0 < ε <
< λ. Indeed, take any piecewise constant [0,+∞) ∋ t 7→ σ(t) ∈ {1, . . . ,M},
any disturbance ∆(·) ∈ L∞ and de�ne Vk+1(t) := Vk+1(z(t), zk+1(t)). De�ne
λ0 := λ− ε > 0. Then mulipying

d

dt
Vk+1(t) ≤ −λ0Vk+1(t) + γk+1(|∆(t)|) for all t ≥ 0

by eλ0t we obtain

d

dt
(Vk+1(τ)e

λ0τ ) ≤ γk+1(|∆(τ)|eλ0τ for all τ ≥ 0

and then integrating we have

0 ≤ Vk+1(t) ≤ Vk+1(0)e
−λ0t +

t∫
0

γk+1(|∆(τ)|)e−λ0(t−τ)dτ for all t ≥ 0,
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i.e.,

0 ≤ |[z(t), zk+1(t)]|2 ≤ |[z(0), zk+1(0)]|2e−λ0t+
1

λ0
γk+1(∥ ∆(·)∥L∞

) for all t ≥ 0,

which yields De�nition 1.

Let us assume for a moment that Theorem 2 is proved and prove that Theo-
rem 2 implies Theorem 1. The proof of Theorem 2 is given in the next section.

Proof of Theorem 1. The proof is by induction over i = 1, . . . , ν.

(The base case i = 1) Fix an arbitrary λ > 0. For i = 1, consider the system

ẋ1 = a1(x1, x2) + bσ(t),1(x1) + cσ(t),1(x1)d(t), t ≥ 0 (11)

with states x1 ∈ Rm1 , controls x2 ∈ Rm2 , external disturbances d ∈ RN and
an unknown switching signal σ(t) ∈ {1, . . . ,M}. Take the Lyapunov function
V1(x1) =

1
2⟨x1, x1⟩, and any δ > 0. Applying Theorem 2, we obtain the existence

of a feedback x2 = α1(x1) of class C
ν such that

d

dt
V1(x1)|(11),x2=α1(x1) ≤ −λV1(x1) + δ⟨d, d⟩ (12)

for all σ ∈ {1, . . . ,M}, x1 ∈ Rm1 and all d ∈ RN . At this �rst step, we consider
the (identical) state transformation z = z1 := x1−α0 = x1−α0 with α0 = α0 = 0,
which brings the dynamics of (11) to the form

ż = f̂(z, xi+1) + ψ̂σ(t)(z) + φ̂σ(t)(z)∆, i.e., ż = f̂(z, x2) + ψ̂σ(t)(z) + φ̂σ(t)(z)∆
(13)

with

z = z1 = x1; f̂(z, x2) = a1(z, x2); ψ̂σ(z) = bσ,1(z), ∆ = d, φ̂σ = cσ,1(z)

Then from (12), we obtain

d

dt
(V1(z))|(13),x2=α1(z) = −λV1(z) + δ⟨∆,∆⟩ with V1(z) =

1

2
⟨z, z⟩. (14)

(The inductive step i→ (i+1)) Suppose that for any λ > 0, and an arbitrarily
small δ > 0 there exist functions α0 = 0, α1(z1), . . . , αi(z1, ..., zi), α0 = 0, α1(x1),
. . . , αi(x1, ..., xi) of classes Cν+1, Cν , . . . , Cν−i+1, respectively such that the
following conditions hold:

1. αi(0) = 0 and αi(0) = 0 and the coordinate transformation
z1 = x1 − α0

z2 = x2 − α1(z1)
. . .
zi = xi − αi(z1, ..., zi−1)

⇐⇒


z1 = x1 − α0

z2 = x2 − α1(x1)
. . .
zi = xi − αi(x1, ..., xi−1)

(15)
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brings the dynamics of the system
ẋ1 = a1(x1, x2) + bσ(t),1(x1) + cσ(t),1(x1)d(t)

ẋ2 = a2(x1, x2, x3) + bσ(t),2(x1, x2) + cσ(t),2(x1, x2)d(t)

. . .
ẋi = ai(x1, x2, ..., xi+1) + bσ(t),i(x1, x2, ..., xi) + cσ(t),i(x1, x2, ..., xi)d(t)

(16)
with states [x1, ..., xi]

T , controls xi+1 and external disturbances d to the form

ż = f̂(z, xi+1) + ψ̂σ(t)(z) + φ̂σ(t)(z)∆(t) (17)

where z = [z1, ..., zi] is the state de�ned by the transformation (15), xi+1 is
the control, ∆(·) = d(·) is the disturbance, σ(t) ∈ {1, . . . ,M} is the unknown
(piecewise constant) switching signal.

2. For the Lyapunov function Vi(z) =
1
2⟨z, z⟩ we obtain

d

dt
(Vi(z))|(17),xi+1=αi(z1,...,zi) = −λVi(z) + δ⟨d, d⟩ (18)

for all z, d and all σ ∈ {1, ...,M}.
Let the system{
ż = f̂(z, xi+1) + ψ̂σ(t)(z) + φ̂σ(t)(z)∆(t)

ẋi+1 = f̂i+1(z, xi+1, w) + ψ̂i+1,σ(t)(z, xi+1) + φ̂i+1,σ(t)(z, xi+1)∆(t)
(19)

(with states [z, xi+1], controls w ∈ Rmi+2 and disturbances ∆ = d) be the corre-
sponding dynamical extension obtained by the state transformation

z1 = x1 − α0

z2 = x2 − α1(z1)
. . .
zi = xi − αi(z1, ..., zi−1)
xi+1 = xi+1

i.e.,


z1 = x1 − α0

z2 = x2 − α1(x1)
. . .
zi = xi − αi(x1, ..., xi−1)
xi+1 = xi+1

of the system

ẋ1 = a1(x1, x2) + bσ(t),1(x1) + cσ(t),1(x1)d(t)

ẋ2 = a2(x1, x2, x3) + bσ(t),2(x1, x2) + cσ(t),2(x1, x2)d(t)

. . .
ẋi = ai(x1, x2, ..., xi+1) + bσ(t),i(x1, x2, ..., xi) + cσ(t),i(x1, x2, ..., xi)d(t)

ẋi+1 = ai+1(x1, x2, ..., xi+1, w) + bσ(t),i+1(x1, x2, ..., xi+1)+

+cσ(t),i+1(x1, x2, ..., , xi+1)d(t)

(with states [x1, ..., xi+1], controls w ∈ Rmi+2 and disturbances d). Then the state
transformation z = z, zi+1 = xi+1 − αi+1(z) brings the system (19) to the form{

ż = f(z, zi+1) + ψσ(t)(z) + φσ(t)(z)∆(t)

żi+1 = fi+1(z, zi+1, w) + ψσ(t),i+1(z, zi+1) + φσ(t),i+1(z, zi+1)∆(t)
(20)
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(with states [z, zi+1], controls w ∈ Rmi+2 and disturbances ∆(t) = d(t)) By the
induction hypothesis (more speci�cally by the de�nition of αi and by (18)), system
(20) satis�es all the assumptions of Theorem 2. Applying Theorem 2, for each
λ > 0, each ε > 0 and each δ > 0, we obtain the existence of a feedback
w = αi+1(z, zi+1) of class Cν−i with αi+1(0, 0) = 0 such that the Lyapunov
function Vi+1(z) = Vi(z) +

1
2⟨zi+1, zi+1⟩ satis�es the inequality

d

dt
(Vi+1(z, zi+1))|(20),w=αi+1(z1,...,zi,zi+1) = −(λ− ε)Vi+1(z, zi+1) + δ⟨d, d⟩ (21)

Thus, using the induction over i = 1, . . . , ν, we obtain for i = ν and for
every λ > 0 and δ > 0 that there exist 2(ν + 1) functions α0 = 0, α1(z1), . . . ,
αν(z1, ..., zν), and α0 = 0, α1(x1), . . . , αν(x1, ..., xν), such that αi and αi are of
class Cν−i+1 and αi(0) = αi(0) = 0 and such that the following two properties
hold

1. The state transformation
z1 = x1 − α0

z2 = x2 − α1(z1)
. . .
zν = xν − αν−1(z1, ..., zν−1)

⇐⇒


z1 = x1 − α0

z2 = x2 − α1(x1)
. . .
zν = xν − αν−1(x1, ..., xν−1)

(22)

or in vector form

Z = X − α(Z), ⇐⇒ Z = X − α(X) (23)

brings the dynamics of the system (5) to the form

Ż = F (Z, u) +Qσ(t)(Z) +Rσ(t)(Z)d(t), (24)

with states Z ∈ Rm1+...+mν , controls u ∈ Rmν+1 and external disturbances d(t),
where F (Z, u), Qσ(Z), and Rσ(Z) are de�ned by the transformation (22) as fol-
lows

F (Z, u) = A(Z + α(Z), u)− ∂α(Z + α(Z))

∂X
A(Z + α(Z), u), (25)

Qσ(Z) = Bσ(Z + α(Z))− ∂α(Z + α(Z))

∂X
Bσ(Z + α(Z)), (26)

Rσ(Z) = Cσ(Z + α(Z))− ∂α(Z + α(Z))

∂X
Cσ(Z + α(Z)). (27)

2. For the Lyapunov function Vν(Z) :=
1
2⟨Z,Z⟩ with Z=[z1, ..., zν ] given by

(22) we have
d

dt
(Vν(Z))|(24),u=αν(Z) = −λVν(Z) + δ⟨d, d⟩ (28)

Thus, the control u=αν(Z) uniformly ISS stabilizes (24). Taking the state trans-
formation Z 7→ X which is inverse to (22), we obtain the statement of our Theo-
rem 1.
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5. Proof of Theorem 2

Next we use the following straightforward equality

⟨z, f(z, zk+1)− f(z, 0)⟩ =
1∫

0

d

dθ
⟨z, f(z, θzk+1)⟩dθ = ⟨z, J(z, zk+1)zk+1⟩

where

J(z, zk+1) =

1∫
0

∂f

∂xk+1
f(z, θzk+1)dθ (29)

Therefore

d

dt
Vk+1(z, zk+1)|(8),u = ⟨z, f(z, zk+1) + ψσ(z) + φσ(z)∆⟩+

+⟨zk+1, fk+1(z, zk+1, u) + ψk+1,σ(z, zk+1) + φk+1,σ(z, zk+1)∆⟩ =

= ⟨z, f(z, 0) + ψσ(z) + φσ(z)∆⟩+ ⟨z, J(z, zk+1)zk+1⟩

+⟨zk+1, fk+1(z, zk+1, u) + ψk+1,σ(z, zk+1) + φk+1,σ(z, zk+1)∆⟩ ≤

≤ −λV (z) + γ(|∆|) + ⟨zk+1, fk+1(z, zk+1, u) + JT (z, zk+1)z + ψk+1,σ(z, zk+1)+

+φk+1,σ(z, zk+1)∆⟩. (30)

Our next goal is to �nd a controller u = u(z, zk+1) such that the last term in (30)
will provide (10) with the new gain γk+1 mentioned in the statement of Theorem 2
to be proved.

By de�nition we denote the components of z and zk+1 as follows:

z = [z1, . . . , zn]T and zk+1 = [z1k+1, . . . , z
nk+1

k+1 ]T .

Using the well-known Hadamard lemma we obtain the existence of matrix func-
tions Ψk+1,σ(z, zk+1) and Φk+1,σ(z, zk+1) of class C

p−1 such that

ψk+1,σ(z, zk+1) = Ψk+1,σ(z, zk+1)

[
z

zk+1

]
and

φk+1,σ(z, zk+1) = Φk+1,σ(z, zk+1)

[
z

zk+1

]
for all σ = 1, . . . ,M. (31)

Next we estimate (30) by using (31). To make the estimates shorter, we omit the
arguments (z, zk+1) of Ψk+1,σ(z, zk+1) and Φk+1,σ(z, zk+1).

Take an arbitrary ε > 0. From the �rst equality of (31) it follows that for
every z ∈ Rn, every zk+1 ∈ Rnk and every σ ∈ {1, . . . ,M} we obtain⟨

zk+1,Ψk+1,σ(z, zk+1)

[
z

zk+1

]⟩
=
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=
∑

1≤i≤nk+1

1≤j≤n

1

ε
zik+1Ψ

i,j
k+1,σεz

j +
∑

1≤i≤nk+1

1≤j≤nk+1

zik+1Ψ
i,j
k+1,σz

j
k+1 ≤

≤ 1

2

∑
1≤i≤nk+1

1≤j≤n

(
1

ε2
(
zik+1

)2 (
Ψi,j

k+1,σ

)2
+ε2(zj)2

)
+

+
1

2

∑
1≤i≤nk+1

1≤j≤nk+1

((
zik+1

)2
+

(
Ψ

i,j
k+1,σ

)2
(zjk+1)

2

)
≤

≤ 1

2

M∑
σ=1

∑
1≤i≤nk+1

1≤j≤n

1

ε2
zik+1z

i
k+1

(
Ψi,j

k+1,σ

)2
+
1

2

∑
1≤i≤nk+1

1≤j≤n

ε2(zj)2+

+
1

2
nk+1

∑
1≤i≤nk+1

(
zik+1

)2
+

1

2

M∑
σ=1

nk+1∑
j=1

zjk+1

nk+1∑
i=1

(
Ψ

i,j
k+1,σ

)2
zjk+1 =

=
1

2
ε2nk+1⟨z, z⟩+ ⟨zk+1,H(z, zk+1)⟩, where H i(z, zk+1) =

=
1

2

M∑
σ=1

n∑
j=1

1

ε2
zik+1

(
Ψi,j

k+1,σ

)2
+

1

2
nk+1z

i
k+1 +

1

2

M∑
σ=1

nk+1∑
j=1

(
Ψ

j,i
k+1,σ

)2
zik+1, (32)

where Ψi,j
k+1,σ and Ψ

i,j
k+1,σ denote the corresponding components of Ψk+1,σ.

Similarly, from the second equality of (31), for every δ > 0 and for each z ∈ Rn,
each zk+1 ∈ Rnk and each σ ∈ {1, . . . ,M} we obtain⟨

zk+1,Φk+1,σ(z, zk+1)

[
z

zk+1

]
∆

⟩
=

=
∑

1≤i≤nk+1

1≤l≤N
1≤j≤n

1

δ
zik+1δ∆lΦ

i,j
k+1,σ,lz

j +
∑

1≤i≤nk+1

1≤l≤N
1≤j≤nk+1

1

δ
zik+1δ∆lΦ

i,j
k+1,σ,lz

j
k+1 ≤

≤ 1

2

∑
1≤i≤nk+1

1≤l≤N
1≤j≤n

(
δ2∆2

l+ +zik+1

1

δ2
zik+1

(
Φi,j
k+1,σ,lz

j
)2

)
+
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+
1

2

∑
1≤i≤nk+1

1≤l≤N
1≤j≤nk+1

(
δ2∆2

l + zik+1

1

δ2
zik+1

(
Φ
i,j
k+1,σ,lz

j
k+1

)2
)

≤

≤ nk+1(n+nk+1)δ
2

N∑
l=1

∆2
l +

1

2

nk+1∑
i=1

zik+1

∑
1≤l≤N
1≤j≤n
1≤σ≤M

1

δ2
zik+1

(
Φi,j
k+1,σ,lz

j
)2

+

+
1

2

nk+1∑
i=1

zik+1

∑
1≤l≤N

1≤j≤nk+1

1≤σ≤M

1

δ2
zik+1

(
Φ
i,j
k+1,σ,lz

j
k+1

)2
, (33)

where Φi,j
k+1,σ,l and Φ

i,j
k+1,σ,l denote the corresponding components of Φk+1,σ.

Summing up (30)-(33), we obtain

d

dt
Vk+1(z, zk+1)|(8),u ≤ −(λ− 1

2
ε2nk+1)V (z) + γ(|∆|) + nk+1(n+ nk+1)δ

2|∆|2+

+⟨zk+1, fk+1(z, zk+1, u) + JT (z, zk+1)z +H(z, zk+1) +G(z, zk+1)⟩, where

Gi(z, zk+1) :=
1

2

∑
1≤l≤N
1≤j≤n
1≤σ≤M

1

δ2
zik+1

(
Φi,j
k+1,σ,lz

j
)2

+

+
1

2

∑
1≤l≤N

1≤j≤nk+1

1≤σ≤M

1

δ2
zik+1

(
Φ
i,j
k+1,σ,lz

j
k+1

)2
.

By Assumption (ii), there is u(z, zk+1) of class C
p−1 such that u(0, 0) = 0 and

fk+1(z, zk+1, u(z, zk+1)) + JT (z, zk+1)z +H(z, zk+1) +G(z, zk+1) =

= −(λ− 1

2
ε2nk+1)zk+1 for all [z, zk+1] ∈ Rn × Rnk .

(Note that J, H, G are of class Cp−1 in general (due to the proof of the Hadamrd
lemma); therefore the feedback u(z, zk+1) obtained is of class Cp−1 as a composi-
tion of functions of class Cp (see Assumption (ii)) and those of class Cp−1).

Since ε > 0 and δ > 0 are chosen arbitrarily small, this completes the proof
of Theorem 2.
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