
PRODUCTION NETWORKS AS COMMUNITIES OF
AUTONOMOUS UNITS AND THEIR STABILITY

Sergey Dashkovskiy1, Hans-Jörg Kreowski2, Sabine Kuske2, Andrii Mironchenko1,
Lars Naujok1, and Caroline von Totth2

1AWG Mathematical Modeling of Complex Systems
Department for Mathematics and Computer Science, University of Bremen

P.O. Box 330 440, D-28334 Bremen, Germany
e-mail: {dsn,andmir,larsnaujok}@math.uni-bremen.de

2 Research Group Theoretical Computer Science
Department for Mathematics and Computer Science, University of Bremen

P.O. Box 330 440, D-28334 Bremen, Germany
e-mail: {kreo,kuske,caro}@informatik.uni-bremen.de

Abstract: In this paper, a discrete variant of production networks is
considered. Besides the mathematical models in terms of matrices and
vectors, production networks are modeled as communities of autonomous
units in a rule-based, graph-transformational and visual manner. More-
over, a sufficient criterion for the stability of a production network is
given where stability means that there exist suitable storage capacities
at the production sites that never flow over.
AMS Subject Classification: 39A30, 90B10, 90B30, 90C35
Key Words and Phrases: Graph transformation, autonomous units,
production networks, production models, deterministic network models,
stability

1. Introduction

In this paper, we consider a discrete variant of production networks (see,
e.g., Wiendahl et al. [1]) inspired by the work in Scholz-Reiter et al. [2],
Görges et al. [3] and Dashkovskiy et al. [4] on continuous production net-
works and their stability. For a certain scenario it has been shown that
the application of local autonomous control methods on integrated pro-
duction and transport processes improves the handling of internal and
external dynamics. A production network in this scenario consists of
production sites, which are represented as nodes, and of links between
sites, which are represented as directed edges. There is a particular input

site with a continuous inflow. The production at each site runs continu-
ously at some rates that are bounded by the maximum production rates
and subject to suitable constraints. The processed product of each site
is continuously distributed to the direct neighbors for further processing
according to fixed distribution rates. Moreover, there is an output site
with a continuous output which is computed in some suitable way. A
production network is called stable if the quantity of products at each
site is bounded all the time. In [4] conditions were derived by mathe-
matical systems theory, which guarantee stability of the network. The
calculation of these conditions is based on the work of Dashkovskiy et al.
in [5], [6], and [7].

In the present paper, the continuity is replaced by stepwise input,
production, transportation, and output. To take into account dynamic
changes of the input, the input flow is not assumed to be constant.
Moreover, the production rates are not determined uniquely, but may
vary within certain bounds (Section 3). The discrete production net-
works are modeled in a graph-transformational way as communities of
autonomous units (cf. Hölscher et al. [8], [9] and Kreowski et al. [10], [11])
in Section 4. These rule-based and visual models allow one to use graph-
transformational tools like GrGen.NET to simulate production networks
in such a way that production processes are not only statistically ana-
lyzed, but also visualized displaying their smooth running or the overflow
of bottlenecks (Section 6). Each production site becomes a unit that can
act independently of the other sites within certain bounds. This allows
one to use decentralized decision criteria for the choice of the production
and distribution rates; however, this aspect will not be further addressed
in the paper, being a subject of future work.

If the input rate is constant and the production rates are chosen ex-
haustively, meaning that the current quantities are processed completely
up to the maximum production rates in each step, then the production
network becomes deterministic with a unique production process. In this
case, the distribution rates and the input rate induce a system of linear
equations. If this linear system is solvable, then the production network
turns out to be stable, as shown in Section 7. As this result applies to
the graph-transformational model of production systems, the investiga-
tion introduces a new kind of analytical problems to the area of graph
transformation that may be of interest beyond the topic of this paper.
The question of stability is of similar interest in the discrete case as in the
continuous one, because the quantities left at the production sites may
grow beyond any bound so that their storage can overflow eventually.

b

c

a a

Figure 1. An edge-labeled directed graph G0

Summarizing, the paper is structured in the following way. After the
preliminaries of graph transformation as used in the paper, the discrete
variant of production networks and processes is introduced in Section 3.
The visual and rule-based models of production networks are specified
in Section 4 in form of communities of autonomous units while a sample
run is illustrated in Section 5. Section 6 describes an implementation of
our production networks in the graph transformation engine GrGen.NET
that gives some first ideas of the potentials of the visual modeling. In Sec-
tion 7, a sufficient condition for the stability of deterministic production
networks is given based on the solvability of a system of linear equations
which is induced by the distribution rates and the input quantity. Section
8 concludes the paper.

2. Preliminaries

In this section, we recall the basic notions and notations of graph trans-
formation as they are used in the paper.

2.1. Graphs. We consider the class of edge-labeled directed graphs.
More precisely, let Σ be a set of labels. An edge-labeled directed graph
over Σ is a system G = (V,E, s, t, l), where V is a set of nodes, E is a set
of edges, s, t : E → V are the source and target mappings which assign
to each edge its source and target node, respectively, and l : E → Σ is a
mapping assigning a label to each edge in E.

Figure 1 shows an example of a graph G0 consisting of three nodes
v1,v2 and v3 (from left to right), an a-labeled edge from v1 to v2, a b- as
well as a c-loop at v2, and finally an a-labeled edge from v2 to v3.

The set of all graphs over Σ is denoted by GΣ. Loops are allowed, as
are parallel edges. Moreover, a special symbol ∗ is reserved to mimic
unlabeled edges and therefore omitted in drawings of graphs.

Let G,H ∈ GΣ be graphs. A graph morphism g : G → H is a pair
of structure-preserving mappings gV : VG → VH and gE : EG → EH , i.e.,
gV (sG(e)) = sH(gE(e)), gV (tG(e)) = tH(gE(e)), and lH(gE(e)) = lG(e) for
all e ∈ EG. The image g(G) ⊆ H is called a match of G in H .

Given a graph morphism g : G → H with inclusions gV and gE , G is
called a subgraph of H , denoted by G ⊆ H .

1 2

3

b

a

c

→ 1 2

3

b

c

c

Figure 2. A graph transformation rule

2.2. Graph transformation rules. A graph transformation rule r is
defined as (L ⊇ K ⊆ R) where L,K,R ∈ GΣ. The graphs L, K and R
are called left-hand side, gluing graph and right-hand side respectively.
Rules are depicted in the form L → R where the nodes and edges of the
gluing graph K are indicated by identical positions or by small numbers
beneath the nodes.

An example of a graph transformation rule is given in Figure 2. The
gluing graph consists of the numbered nodes 1, 2 and 3.

2.3. Rule application. An application of a rule r to a host graph G
consists of the following steps:

(1) A graph morphism g : L → G is selected subject to the following
two application conditions :
(a) the dangling condition: the removal of g(L)− g(K) from G

yields no dangling edges, and
(b) the identification condition: if two nodes or two edges of L

are identified (i.e., mapped to the same graph element) in
the match of L, they must be in K.

(2) g(L)− g(K) is removed from G, yielding the graph Z.
(3) R is added to Z yielding H by merging K with g(K).

The dangling condition guarantees that removing g(L)− g(K) from G
yields a subgraph. For example, the rule in Figure 2 can be applied to the
graph G0 in Figure 1 by choosing g such that node 1 is mapped to v1, and
nodes 2 and 3 are mapped to v2, with the consequence that the c-edge is
mapped to the c-loop (because its source and target are identified by g).
The a-edge and its source are mapped to the a-edge and its source in G0,
respectively. Obviously, g satisfies the dangling condition because the
removal of the three edges from G0 does not produce any dangling edges.
The identification condition is also satisfied, because the identified nodes
2 and 3 belong to the gluing graph.

An application of a rule r to G resulting in H is also called direct
derivation and denoted as G=⇒

r
H . Figure 3 shows a derivation where

the rule of Figure 2 is applied to G0. This way of transforming graphs

a

b

c

a =⇒
b

c

c

a

Figure 3. A derivation using the rule in Figure 2

1 2

3

b

a

c

4 5

6

b

a

c

↓

1 2

3

b

c

c

4 5

6

b

c

c

Figure 4. A parallel graph transformation rule

is based on the double pushout approach (see Corradini et al. [12] and
Ehrig et al. [13], where a more detailed definition of rule application can
be found).

Let Gi ∈ GΣ, i ∈ N. The iteration G0=⇒
r1

G1=⇒
r2

· · ·=⇒
rn

Gn of di-

rect derivations is called a derivation from G0 to Gn and may also be

denoted as G0
ri=⇒
P

Gn where ri ∈ P , or as G0
∗

=⇒
P

Gn if the number

of direct derivations is of no consequence. The application sequence of
this derivation is given by the string r1 · · · rn. For rules r1, . . . , rn with
ri = (Li ⊇ Ki ⊆ Ri), their parallel composition r1 + · · · + rn yields the
rule (L1 + · · ·+ Ln ⊇ K1 + · · ·+Kn ⊆ R1 + · · ·+Rn) where + denotes
the disjoint union of graphs and the inclusions are the natural extensions
of the inclusions in the rules r1, . . . , rn.

For example, the parallel rule r + r, where r is the rule of Figure 2,
corresponds to the rule in Figure 4. This rule cannot be applied to
the graph G0 because the only morphism from the left-hand side to G0

violates the identification condition (for example, the a-edges would have
to be identified by the morphism, but are not part of the gluing graph).

A graph class expression is a syntactic entityX, the semantics SEM (X)
⊆ GΣ of which is a set of graphs. An example for a graph class expression
would be

noloops = forbidden(
*
)

where SEM (noloops) describes the subset of GΣ which contains only
graphs without unlabeled loops.

A control condition C is a syntactic entity that specifies a set of graph
sequences. Control conditions cut down the nondeterminism of rule ap-
plication, which would otherwise often deliver unwanted results.

A community of autonomous units consists of a set of autonomous
units, a control condition and, in our case, a single initial environment
graph. An autonomous unit provides a set of rules and a control condi-
tion. In the general case of autonomous units, the units and the commu-
nity may have goals, which are not needed in this paper. Every transfor-
mation process of a community starts with the initial environment graph,
on which units then act and interact according to the control condition
of the community (see Kreowski et al. [11]).

2.4. Further notions and notations. The set of natural numbers
is denoted by N, N\{0} is denoted by N>0 and [k] denotes the subset
{1, . . . , k} of N. The set of real numbers is denoted by R; we use R+ to
describe the set of non-negative real numbers with 0. Moreover, the set
of mappings from a set X to a set Y is denoted by 〈X, Y 〉.

3. Production Networks and Production Processes

In this section, the notion of production networks and their processes is
introduced where the input, processing, flow and output of material are
not continuous, but happen step-by-step. A production network consists
of production sites, which are represented as nodes, and of transportation
channels between sites, which are represented as directed edges. There
is one input site and one output site. In each state, the present material
at each site is given as a quantity. A production step changes these
quantities by distributing the production rate of each site to its direct
neighbors. Moreover, the input site gets some input in each step and
a part of the production rate of the output site is put out. There may
be a maximum input rate, which can be chosen as ∞ if no bound is
assumed. The same applies to the production rates. The distribution
at a site is done according to a distribution vector, the entries of which
specify which fraction of the production rate is moved to which neighbor
site. The distribution vectors of all sites form a distribution matrix. A

production process starts with the initial site quantities and records the
changes of site quantities depending on the input, the production rates
and the distribution matrix in each step.

Definition 1 (Production Network). A production network PN con-
sists of

• a simple directed graph G = ([n+1], E) with E ⊆ [n+1]×[n+1],
the input site 1 and the output site n + 1,

• an initial site quantity q(0) : [n+ 1] → R+,
• a maximum input rate maxin ∈ R+ ∪ {∞},
• a maximum production rate max : [n + 1] → R+ ∪ {∞}, and
• a distribution matrix d : [n+1]×[n+1] → R+ with

∑
j∈[n+1]

d(i, j) =

1 for i ∈ [n],
∑

j∈[n+1]

d(n + 1, j) ≤ 1 and d(i, j) = 0 for all

(i, j) ∈ [n + 1]× [n + 1]−E.

3.1. Example. A sample production network is given by the compo-
nents of Figure 5.

A production network specifies stepwise production processes which
go on forever. If one assumes that the input rates and the production
rates can be randomly chosen (within certain limits) and that the output
is always the part of the production rate of the output site which is
not distributed to other sites, then one gets the following production
processes.

Definition 2 (Production Process). A production process pp (in PN)
consists of

• an infinite sequence of input rates in : N>0 → R+,
• an infinite sequence of production rates p : N>0 → 〈[n+ 1],R+〉,
• an infinite sequence of output rates out : N>0 → R+, and
• an infinite sequence of site quantities q : N>0 → 〈[n+ 1],R+〉

subject to the following production process conditions for all k ∈ N>0 :

in(k) ≤ maxin,(1)

p(k) ≤ min(q(k),max),(2)

q(k)(j) =

{
in(k) + y if j = 1

y otherwise
(3)

where y =

(∑
i∈[n+1]

d(i, j) · p(k)(i)
)

SAMPLE

Graph:

G = 1

2

3

4

Distribution matrix:

d =

⎛
⎜⎜⎝

0 .5 .5 0
.25 0 .5 .25
.75 0 0 .25
0 0 0 0

⎞
⎟⎟⎠

Maximum production rate max
and initial quantity q(0):

max =

⎛
⎜⎜⎝
3.2
1.6
2.4
1

⎞
⎟⎟⎠ q(0) =

⎛
⎜⎜⎝
0
0
0
0

⎞
⎟⎟⎠

Maximum input rate maxin:

maxin = 1

Figure 5. An example of a production network

+ q(k − 1)(j)− p(k)(j),

out(k) =

(
1−

∑
j∈[n+1]

d(n+ 1, j)

)
· p(k)(n+ 1).(4)

The first condition makes sure that no input rate exceeds the maximum
input rate. The second condition requires that the processed quantity in
every step is a part of the present quantity. The third condition describes
the present site quantity after every step as the site quantity before the
step diminished by the production rate and expanded by the quantities
moved from other sites. The latter quantities are given by the fractions
of the production rates due to the distribution factors. The input site
gains the input rate in addition. The last condition fixes the output in
each step as the part of the production rate of the output site that is not
distributed to other sites.

To get shorter formulas, we use the following notational conventions
for k ∈ N, l ∈ N>0 and i, j ∈ [n+ 1].

(1) inl = in(l); pil = p(l)(i); dij = d(i, j); outl = out(l); qil = q(l)(i);
maxi = max(i),

(2) Ink =
∑
j∈[k]

inj ,Outk =
∑
j∈[k]

outj, Qk =
∑

i∈[n+1]

qik where the con-

vention [0] = ∅ and
∑
j∈∅

= 0 for k = 0 is used.

The definition of production processes has some immediate conse-
quences:

(1) If in and p are given in some way, then q and out are uniquely
determined and can be computed due to the required equations.

(2) As a particular case, one may consider constant input rates, e.g.,
ink = maxin for all k ∈ N>0.

(3) As a particular case, one may consider exhaustive production
rates, e.g., pik = min(qi(k−1), maxi) for all i ∈ [n+1] and k ∈ N>0.

(4) Production networks with constant input rate and exhaustive pro-
duction rates have a unique production process. They are further
discussed in Section 7.

3.2. Example. The production network SAMPLE in Figure 5 may
run with constant maximum input rate and exhaustive production rates.
Then there is a unique production process with output rates computed
due to the respective constraints. It is not difficult to show that the
site quantities of this production process never exceed the maximum
production rates, so that the production rates always coincide with the
site quantities.

3.3. Lossfreeness. The production process conditions (see Definition 2)
guarantee that no input material gets lost, because the whole processed
material is moved to other sites and put out in every step. This is for-
mally stated in the following result.

Theorem 1. Qk = Q0 + Ink −Outk for all k ∈ N.

Proof. The result is proved by induction over k.

Induction base:

Q0 = Q0 + 0− 0 = Q0 +
∑
j∈[0]

inj −
∑
j∈[0]

outj = Q0 + In0 − Out0.

Induction step:

Qk+1 =
∑

j∈[n+1]

qj(k+1)

= ink+1 + (
∑

j∈[n+1]

((
∑

i∈[n+1]

dij · pi(k+1)) + qjk − pj(k+1))

= ink+1 +
∑

j∈[n+1]

qjk +
∑

i,j∈[n+1]

dij · pi(k+1) −
∑

j∈[n+1]

pj(k+1)

=

Ind.
ink+1 +Q0 + Ink −Outk +

∑
i∈[n+1]

(
∑

j∈[n+1]

dij) · pi(k+1)

C(PN)
aut: input, j-prod, for j ∈ [n+ 1]

init: env(PN)

control: (input || 1-prod || . . . || n+1-prod)∞

Figure 6. The community C(PN) models the production network
PN

−
∑

j∈[n+1]

pj(k+1)

= Q0 + Ink+1 −Outk +
∑
i∈[n]

1 · pi(k+1) −
∑

j∈[n+1]

pj(k+1)

+ (
∑

j∈[n+1]

d(n+1)j) · p(n+1)(k+1)

= Q0 + Ink+1 −Outk − (1−
∑

j∈[n+1]

d[n+1]j) · p(n+1)(k+1)

= Q0 + Ink+1 −Outk − outk+1 = Q0 + Ink+1 − Outk+1.

�

4. Production Networks as Communities of
Autonomous Units

In this section, production networks are modeled as communities of au-
tonomous units in such a way that the production processes of a network
correspond to the runs of the respective community. At first sight, the
production community may look more complicated than the mathemati-
cal model. But it is worth noting that the rule applications in a running
step correspond directly to the multiplications and additions that define a
process step in the mathematical model. Moreover, the rule-based model
provides an explicit description of parallel computations. The main dif-
ference between both models is that the rule-based version provides a
visual level.

4.1. The community C(PN). A production network PN is trans-
formed into the community of autonomous units in Figure 6. There is
an autonomous unit j-prod for each production site j ∈ [n + 1] and an
extra input unit.

4.2. Initial environment. The initial environment graph env(PN) in-
tegrates all the information of PN . The graph env(PN) consists of the
subgraphs

Gd, 1 mir maxin , and j

quantmax

q(0)jmaxj

for j ∈ [n + 1]

where Gd is obtained from G by replacing each (j, i) ∈ E by

j idji

and the subgraphs share the nodes in [n+ 1]. Moreover, we assume that
each node j ∈ [n + 1] is attached with a loop labeled by j. In drawings,
the loop is omitted and its label is placed inside the node. This ensures
that the node j can only be mapped to itself by a graph morphism.

In summary, the node representing the input site is labeled with the
number 1; the output site is labeled with n+1. Each site j has an initial
quantity qj0 of material, indicated by a pointer edge with the label quant,
and a maximum production rate, denoted by a pointer with the label
max.

The maximum input rate maxin is attached to the input site by a spe-
cial pointer labeled mir. The connecting edges between sites are labeled
with the distribution rates.

Additionally, if the initial quantities qj0 are replaced by some quantities
qj for j ∈ [n+1], then the environment graph is denoted by env(PN)(q).

A sample of such a community is discussed in Section 5, with the initial
environment displayed in Figure 9.

4.3. Autonomous unit input . The unit input in Figure 7 has only
one rule, which is applied exactly once in every execution step of the
community. An input value in is chosen by some mechanism (e.g., this
may be some input function like sine or some stochastic function or even
a constant), and a gain pointer is added to the site, with the value of in
attached to it by a loop edge. The choice of in is restricted only insofar
that its value may not exceed maxin.

4.4. Autonomous units j-prod . The parallel execution of the j-prod
units (Figure 8) together with the unit input model one production step
of the network.

The tasks of the j-prod units are twofold: On one hand, they manage
for each site the production and the distribution of material to neighbor

input
rule:

1

quantmir

qmaxin

1

quantmir

gain

qmaxin

in−→
in ≤ maxin

control: once

Figure 7. The unit input

sites. On the other hand, the fact that the distribution runs in parallel
for all sites at once makes some cleanup actions necessary in preparation
for the next step.

Production and distribution. The first rule of a j-prod unit, produce,
chooses a production rate for site j much in the same manner as the input
unit, by some mechanism. A prod pointer is added to j with the new
production rate attached to it. Here, too, the choice of p is restricted by
whichever is the smaller of two upper bounds: the quantity q of material
present at the site and the maximal production rate maxj .

The second rule in j-prod, transport(i), is a parametric one and it is
applied in one parallel step to each neighbor i of the site j. This rule
moves the fraction dji ·p of the current production rate of material at the
site j to a neighboring site i, where dji is the distribution value inscribed
on the edge from j to i. Rather than adding this value directly to the
quantity of material already present at i, the transported value is instead
attached to a gain pointer for the following reasons.

Cleanup and update. Depending on the configuration of the network,
one production site j may receive input from many neighbor sites. To
avoid conflicts generated by concurrent access to the quantity value q of
j, each source generates a gain edge at the target site, labeled with the
appropriate value. Now in order to make a next step in the production
process possible, a cleanup of sorts needs to take place; this is the task of
the rules subtract and add, which restore the original pointer configura-
tion and update all values to reflect the changes that have taken place in
the current production step. First, the subtract rule removes the amount
pj of material which is distributed by j in the current production step

j-prod

rules:

produce: j

max quant

maxj q

j

max quant

prod

maxj q

p−→
p ≤ min(q,maxj)

transport(i): j i

prod

dji

p

j i

prod

dji

gain

p djip

−→

subtract: j

quant prod

q p

j

quant

q − p

−→

add: j

quant gain

q x

j

quant

q + x

−→

control: produce;
∑
i

transport(i); subtract ; add !

Figure 8. The unit j-prod

from the quantity qj of material present at j, resulting in an intermedi-
ate quantity value q̄j . Implicitly, this behavior also models the output of
material from the network: the difference between pn+1 and the amount
of material the site n+1 sends to other sites simply disappears from the
network. If, in particular, the output site has no outgoing edges, then
its whole production rate leaves the network in every running step. Ad-
ditionally, subtract also removes the prod pointer at each site, so that a
new value for pj can be entered into the network in the next production
step. The rule subtract is applied exactly once, after the transport has
been completed and before the application of add. Now, the values in the

gain edges at each site plus the remaining quantity q̄j at the site have to
be consolidated into one single quantity value q′j =

∑
dijpi + q̄j . This is

done in the add rule by picking a random gain edge and adding its value
to the existing quantity: the exclamation mark in the control expression
add ! requires that add must be applied as long as possible, i.e., until no
gain edge remains.

4.5. Control condition. The control condition of C(PN) prescribes to
execute the input and all of the j-prod units in parallel (denoted by ‖)
and to iterate this ad infinitum (denoted by ∞).

Summarizing, the following observation relates a running step in the
community with a process step in the mathematical model.

Observation. A running step of the community C(PN) has the form
env(PN)(q) =⇒ env(PN)(q′) where q′ is obtained from q by

q′j = in · δ1j +
∑

dijpi + qj − pj

with δ11 = 1 and δ1j = 0 for j > 1.
As a consequence of this observation, we get the following result.

Theorem 2. Each production process pp in PN with the sequence
of site quantities q : N → 〈[n + 1],R+〉 corresponds to an infinite run of
the community C(PN) with the steps env(PN)(qk) =⇒ env(PN)(qk+1)
for all k ∈ N and conversely.

This shows that C(PN) models PN correctly.

5. Sample Run of a Production Community

The community C(SAMPLE) in Figure 9 is the graph-transformational
counterpart of the production network SAMPLE from Section 3.2. The
initial environment graph starts out with zero material at all sites and
a maximum input rate of 1. The distribution values are displayed on
the edges connecting the sites, and there are backflow edges leading from
sites 2 and 3 to the input site. The input site has an upper bound of of
3.2 on the production rate, while at sites 2, 3 and 4 the production rates
are bounded by 1.6, 2.4 and 1 respectively.

For the following example run, we assume that exhaustive rates are
always chosen, and that the input rate coincides with the maximum
input rate.

Step 1. Since all sites have zero material stored, in the very first step
only the units input and 1-prod can do anything of note: input selects

C(SAMPLE)
aut: input, j-prod, for j ∈ 1, · · · , 4
init: env(SAMPLE)=

1

2

3

4

.5

.25

.5

.75

.5

.25

.25

mir
max

quant

1

3.2

0

max quant

1.6 0

max quant

2.4 0

max

quant
0

1

control: (input || 1-prod || . . . || 4-prod)∞

Figure 9. The community C(SAMPLE) models the production
network SAMPLE from Section 3.2

the input rate in such that it does not exceed the maximum input rate
of 1 and adds in amount of material to the input site as a gain pointer.
None of the other sites have anything to distribute, since they started
out with a load of zero material. Therefore, in this step the unit j-prod
chooses the only possible production rate of 0 for all sites, distributes zero
material to all neighbors, and then cleans up by removing all production
edges and, at site 1, 1-prod adds the gained material of 1 to the existing
quantity of 0 and removes the gain edge.

In the next few steps, material flows gradually through the network,
while new material also flows into the network from outside in every step.
Steps 2 and 3 are not shown explicitly. We will now have a detailed look
at a more advanced step in the production process.

Step 4. The network in step 4, after the application of input in parallel
with the choice of new production rates for every site (the first rule of
j-prod), can be seen in Figure 10.

The next action, which also happens in parallel for all sites, is the
distribution of material (displayed by way of example for site 3 in Fig-
ure 11). For example, site 3 has two outgoing and two incoming edges,

1

2

3

4

.5

.25

.5

.75

.5

.25

.25

prod

gain

mir
max

quant

1.5

1

1

3.2

1.5

prod
max quant

.5

1.6 .5

prod
max quant

.75

2.4 .75

prod

max

quant

.25

.25

1

Figure 10. The community C(SAMPLE) in process step 4, after
the application of input

therefore it sends 75 percent of its material to the input site 1, and the
remaining 25 percent to the output site 4. At the same time, it receives
half of the production rate of site 1, which amounts to a quantity of .75,
and also half of the production rate of site 2, which is a quantity of .25
(nodes and edges unrelated to the distribution action are omitted from
the picture).

Then the subtract rule is applied once, removing the distributed ma-
terial from the quantity present at each site, and deleting the production
rate pointer, so that a new one can be chosen in the next step. In this
example, the production rate of site 4 is exactly the output rate, mean-
ing that all material at 4 leaves the network in every step. The effect of
subtract on site 3 can be seen in Figure 12.

Afterwards the add rule is applied as long as possible at every site until
it has cleaned up all the gain edges. As can be seen in Figure 13, the
mechanism is again illustrated for site 3 only, since it works the same at
every site, and unrelated pointer edges are once again omitted from the
illustration.

Together, these intermediate steps result in env(PN)(q4) (see Fig-
ure 14).

The following steps follow a similar pattern.

1

2

3

4

.5

.25

.5

.75

.5

.25

.25

prod

gain

gain

1.5

1

.75*.75

prod

.5

prod
gaingain

.75

.5∗1.5 .5∗.5

prod

gain

.25

.25∗.75

Figure 11. The community C(SAMPLE) in process step 4, after
distribution of material from and to site 3

=⇒
subtract

3

quant
prod

.75

.75

3

quant

.75−.75

Figure 12. The community C(SAMPLE) in process step 4: the
effect of the subtract rule on site 3

3

quant
gaingain

0

.75 .25

3

quant
gain

.25+0

.75

3

quant

.75+.25

=⇒
add

=⇒
add

Figure 13. The community C(SAMPLE) in process step 4: the
effect of the add rule on site 3

1

2

3

4

.5

.25

.5

.75

.5

.25

.25

mir
max

quant

1

3.2

1.5625

max quant

1.6 .75

max quant

2.4 1

max

quant
.3125

1

Figure 14. The community C(SAMPLE) after the completion of
step 4

Figure 15. Community C(SAMPLE) in GrGen.NET: all sites have
reached the saturation point (i.e., the maximal production rate) after
217 steps

6. Visual Simulation

In order to simulate runs on our sample production network as well as
larger production networks, we have implemented the general produc-
tion community from Section 4 using the graph transformation engine
GrGen.NET (see [14]).

The GrGen.NET graph model is based on typed, attributed, directed
multigraphs with inheritance. The base types at the core of this model
are Node and Edge, and the primitive attribute data types int, float,
double, string, boolean and object, the latter denoting a .NET object.

We made use of the subpattern matching capability of GrGen.NET,
using the iterated subpattern in order to simulate parallel rule application.
GrGen.NET also does not provide autonomous units; however, it allows
to structure rule application by embedding imperative calls to other rules
into the declarative right-hand-side of a rule. Furthermore, such calls
may be controlled using, for example, regular expressions. We made use
of this feature to emulate autonomous units very closely to our original
specification.

The simulation runs very fast, with our example network SAMPLE
completing 217 steps and reaching the maximal production rate at all
four sites in less than 1 millisecond (GrGen gives the time as 0 ms) on
an Intel Core i5 M520 CPU with 2.40 GHz and 6 GB of RAM, having
found 4340 matches and performed 4340 graph rule applications in that
time.

In order to test run times on larger networks (Figure 16), we have
written an additional graph grammar which creates random production
networks for simulation purposes. A graph with 402 nodes is generated
in 655 ms; 3000 production steps are completed after another 21840 ms
(i.e., some 21 seconds), with over 4 million matches found and rewrite
steps executed in that time.

The simulation is valuable because it is visual, it allows to model and
debug production networks, or detect flaws in existing ones, altering
them until they are stable. Additionally, the declarative nature of graph
transformation rules makes the modeling less error-prone, and the pro-
duction process model easily scalable, e.g., by introducing different ma-
terial types, variable inflow and other extensions.

7. Deterministic Production Networks and Stability

In practice, a site in a production network has only a bounded storage ca-
pacity so that the question of stability becomes important. A production
network is stable if the site quantities of each production process do not
exceed a fixed bound. It will be shown in this section that deterministic
production processes, which have a constant input rate and exhaustive
production rates, are stable if a certain system of linear equations is
solvable.

Figure 16. A network with 400 nodes in GrGen.NET after 3000
production steps

A production network PN is stable if an upper bound vector m :
[n + 1] → R+ exists such that the following holds for each production
process pp with the site quantity sequence q : N → 〈 [n+1],R+〉: qik ≤ mi

for all i ∈ [n + 1] and k ∈ N.
A production network PN is deterministic if the input rate is constant,

i.e., ink = in for all k ∈ N>0 and for some in ∈ R+, and if the production
rates are exhaustive, i.e., pik = min(qi(k−1), maxi) for all k ∈ N>0 and
i ∈ [n+ 1].

Let PN be a deterministic production network, and let its unique
production process have – in addition – a constant site quantity, meaning
that there is a quantity vectorm : [n+1] → R+ with qk = m for all k ∈ N.
Let moreover the vector m be smaller than or equal to the maximum
production rate, i.e. m ≤ max. Consequently, the production rates are
also equal to m :

pik = min(qi(k−1), maxi) = min(mi, maxi) = mi.

And with a constant production rate, the outputs become constant:

outk = (1−
∑

i∈[n+1]

d(n+1)i)p(n+1)k = (1−
∑

i∈[n+1]

d(n+1)i)mn+1.

Such a network is obviously stable with an upper bound being the site
quantities (or more). Moreover, the production process condition 3 in
Definition 2 holds, yielding the following equality for the quantities of m:

mj = qjk = in · δ1j +
∑

i∈[n+1]

dijpik + qj(k−1) − pjk

= in · δ1j +
∑

i∈[n+1]

dijmi +mj −mj = in · δ1j +
∑

i∈[n+1]

dijmi

for all j ∈ [n + 1] where δ11 = 1 and δ1j = 0 for j ≥ 2.
If one subtracts the latter sum and denotes the transposed distribution

matrix by dt, then one gets

(E − dt)m = in · e1
where E is the identity matrix and e1 the first unit vector.

In other words, a deterministic production network with a constant
site quantity m implies that the system of linear equations

(E − dt)x = in · e1
has m as a solution.

Interestingly enough, the considerations work also the other way round
meaning that each solution of the system of linear equations given by the
constant input quantity and the constant distribution matrix gives rise to
stable production networks, provided that the initial quantity is bounded
by the solution and the maximum production rate equals the solution or
is greater.

7.1. Example. Solving the linear system (E−dtSAMPLE)m = in ·e1 for
the deterministic production network SAMPLE from Section 3.2 results

in the maximal production rate vector m = max =

⎛
⎜⎜⎝
3.2
1.6
2.4
1

⎞
⎟⎟⎠.

Now we state our second main result, which guarantees stability of
production networks under a sufficient condition.

Theorem 3. Let PN be a deterministic production network and m :
[n+ 1] → R+ be a solution of the system of linear equations

(E − dt)x = in · e1
with m ≤ max and q0 ≤ m. Then PN is stable.

Proof. We show by induction that the sequence of site quantities of
the unique production process of PN is bounded by m, i.e. qk ≤ m for
all k ∈ N.

Base: q0 ≤ m by assumption.

Step:

qj(k+1) = in · δ1j +
∑

i∈[n+1]

dijpi(k+1) + qjk − pj(k+1)(1)

= in · δ1j +
∑

i∈[n+1]

dij min(qik, maxi) + qjk −min(qjk, maxj)(2)

= in · δ1j +
∑

i∈[n+1]

dijqik + qjk − qjk(3)

≤ in · δ1j +
∑

i∈[n+1]

dijmi(4)

= mj(5)

where equality 1 is the site quantity condition, equality 2 uses the ex-
haustiveness, equality 3 follows from the induction hypothesis qk ≤ m
and the assumption m ≤ max, the inequality 4 is again the induction
hypothesis, and equality 5 uses that m solves (E − dt)x = in · e1.

With the boundedness of all site quantities, the sum of them over all
sites is also bounded.

�

8. Conclusion

In this paper, we have introduced and investigated a variant of produc-
tion networks with step-by-step production processes. The first main
result shows that production networks can be transformed into commu-
nities of autonomous units such that production processes correspond
to infinite runs of the modeling communities. The second main result
yields a sufficient criterion for the stability of deterministic production
networks. As this is the very first attempt to relate production networks

and autonomous units, future research should shed more light on the
significance of this approach including the following topics:

(1) The stability results may be improved by enlarging the class of pro-
duction networks for which sufficient conditions yield stability.

(2) One may also look for necessary conditions or even proper character-
izations.

(3) So far, we have considered only two ways to choose the input rates
and the productions: randomly on one hand and deterministically on
the other. An interesting question is which other control conditions
for the input unit and the production units will do to make proper
use of their autonomy.

(4) To improve the behavior of a production network one may allow vari-
able distribution rates so that further circumstances like waiting time
can be considered.

(5) To make the model more flexible, one may enhance the notion of
production networks by relaxing and modifying various assumptions
like the following:

• There may be more than one input site and one output site.
• There may be an explicit control of the output rates.
• There may be different kinds of materials and information flows
through the network rather than a single homogeneous matter.

• There may be particular time conditions for production and trans-
portation at each site rather than the homogeneous step assump-
tion.

We expect that modifications like these will not be difficult to get.

(6) Another possible modification would be to assume that the produced
and distributed material consists of a number of atomic items such
that only integer division is possible. In this case, the graph-trans-
formational model may be particularly suitable as the atomic items
could be represented by atomic graph components explicitly.

(7) In some applications, it may not be realistic to assume that the under-
lying network is invariant, but it may grow or shrink due to economic
circumstances. Again, the graph-transformational model may help to
dynamize the structure of the production networks because the local
insertion and removal of nodes and edges is just what happens if rules
are applied.

Acknowledgments. The authors would like to acknowledge that their
research is partially supported by the Collaborative Research Centre 637
(Autonomous Cooperating Logistic Processes: A Paradigm Shift and Its
Limitations) funded by the German Research Foundation (DFG).

References

[1] Hans-Peter Wiendahl and Stefan Lutz. Production in Networks. Annals of the
CIRP- Manufacturing Technology, 51(2):1–14, 2002.

[2] Bernd Scholz-Reiter, Michael Görges, Thomas Jagalski, and Afshin Mehrsai.
Modelling and Analysis of Autonomously Controlled Production Networks. In
Proceedings of the 13th IFAC Symposium on Information Control Problems in
Manufacturing (INCOM 09). Moscow, Russia, pages 850–855, 2009.

[3] Bernd Scholz-Reiter, Afshin Mehrsai, and Michael Görges. Handling the Dy-
namics in Logistics - Adoption of Dynamic Behavior and Reduction of Dynamic
Effects. Asian International Journal of Science and Technology in Production
and Manufacturing Engineering (AIJSTPME), 2(3):99–110, 2009.

[4] Sergey Dashkovskiy, Michael Görges, and Lars Naujok. Local Input to State
Stability of Production Networks. 2009. To appear in Proceedings of the Second
International Conference, LDIC 2009, Bremen, Germany, August 2009.

[5] Sergey Dashkovskiy, Björn S. Rüffer, and Fabian R. Wirth. Small gain theo-
rems for large scale systems and construction of ISS Lyapunov functions. SIAM
Journal on Control and Optimization, 48(6):4089–4118, 2010.

[6] Sergey Dashkovskiy, Björn S. Rüffer, and Fabian R. Wirth. Numerical verification
of local input-to-state stability for large networks. In Proceedings of the 46th
IEEE Conference on Decision and Control, New Orleans, LA, USA, Dec. 12-14,
2007, pages 4471–4476, 2007.

[7] Sergey Dashkovskiy and Björn S. Rüffer. Local ISS of large-scale interconnections
and estimates for stability regions. Systems and Control Letters, 59(3–4):241–247,
2010.

[8] Karsten Hölscher, Hans-Jörg Kreowski, and Sabine Kuske. Autonomous units
and their semantics — the sequential case. In A. Corradini, H. Ehrig, U. Monta-
nari, L. Ribeiro, and G. Rozenberg, editors, Proc. 3rd Intl. Conference on Graph
Transformations (ICGT 2006), volume 4178 of Lecture Notes in Computer Sci-
ence, pages 245–259. Springer, 2006.

[9] Karsten Hölscher, Renate Klempien-Hinrichs, Peter Knirsch, Hans-Jörg Kre-
owski, and Sabine Kuske. Autonomous Units: Basic Concepts and Semantic
Foundation. In Michael Hülsmann and Katja Windt, editors, Understanding Au-
tonomous Cooperation and Control in Logistics – The Impact on Management,
Information and Communication and Material Flow, pages 103–120. Springer,
2007.

[10] Hans-Jörg Kreowski and Sabine Kuske. Autonomous Units and Their Semantics -
The Parallel Case. In J.L. Fiadeiro and P.Y. Schobbens, editors, Recent Trends in
Algebraic Development Techniques, 18th International Workshop, WADT 2006,
volume 4409 of Lecture Notes in Computer Science, pages 56–73, 2007.

[11] Karsten Hölscher, Hans-Jörg Kreowski, and Sabine Kuske. Autonomous Units to
Model Interacting Sequential and Parallel Processes. Fundamenta Informaticae,
92(3):233–257, 2009.

[12] Andrea Corradini, Hartmut Ehrig, Reiko Heckel, Michael Löwe, Ugo Montanari,
and Francesca Rossi. Algebraic Approaches to Graph Transformation Part I:
Basic Concepts and Double Pushout Approach. In Grzegorz Rozenberg, editor,
Handbook of Graph Grammars and Computing by Graph Transformation, Vol. 1:
Foundations, pages 163–245. World Scientific, Singapore, 1997.

[13] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Funda-
mentals of Algebraic Graph Transformation (Monographs in Theoretical Com-
puter Science. An EATCS Series). Springer, 2006.

[14] Rubino Geiß and Moritz Kroll. GrGen.NET: A fast, expressive, and general
purpose graph rewrite tool. In A. Schürr, M. Nagl, and A. Zündorf, edi-
tors, Proc. 3rd Intl. Workshop on Applications of Graph Transformation with
Industrial Relevance (AGTIVE ’07), volume NN of LNCS. Springer, 2008.
http://www.springerlink.com/content/105633/.

