
Production Networks as Communities of

Autonomous Units and Their Stability

Sergey Dashkovskiy, Hans-Jörg Kreowski, Sabine Kuske, Andrii Mironchenko,
Lars Naujok, Caroline von Totth �

University of Bremen
{kreo,kuske,caro}@informatik.uni-bremen.de
{dsn,andmir,larsnaujok}@math.uni-bremen.de

Abstract. In this paper, discrete variants of production networks are
considered as they can be encountered in the literature. On one hand,
they are modeled as communities of autonomous units in the framework
of graph transformation. On the other hand, a sufficient criterion for
the stability of a production network is given where stability means that
there exist suitable storage capacities at the production sites that never
flow over.

1 Introduction

In this paper, we consider discrete variants of production networks (see, e.g. [1])
inspired by the work in [2–4] on continuous production networks and their sta-
bility. For a certain scenario it has been shown that the application of local
autonomous control methods on integrated production and transport processes
improves the handling of internal and external dynamics. A production network
in this scenario consists of production sites, which are represented as nodes,
and of links between sites, which are represented as directed edges. There is
a particular input site with a continuous inflow. The production at each site
runs continuously at some rates that are bounded by the maximum production
rates and subject to suitable constraints. The processed product of each site is
continuously distributed to the direct neighbors for further processing according
to fixed distribution rates. Moreover, there is an output site with a continuous
output which is computed in some suitable way. A production network is called
stable if the quantity of products at each site is bounded all the time. In [4] con-
ditions were derived by mathematical systems theory, which guarantee stability
of the network. The calculation of these conditions is based on the work [5–7].

In the present paper, the continuity is replaced by stepwise input, production,
transportation, and output. To enhance the flexibility of the model, the input

� The authors would like to acknowledge that their research is partially supported
by the Collaborative Research Centre 637 (Autonomous Cooperating Logistic Pro-
cesses: A Paradigm Shift and Its Limitations) funded by the German Research Foun-
dation (DFG).



flow is not assumed to be constant. Moreover, the production rates are not de-
termined uniquely, but may vary within certain bounds (Section 3). The discrete
production networks are modeled in a graph-transformational way as commu-
nities of autonomous units [8–11] in Section 4. Each production site becomes a
unit that can act independently of the other sites within certain bounds. This
allows one to use decentralized decision criteria for the choice of the production
and distribution rates; however, this aspect will not be further addressed in the
paper.

If the input rate is constant and the production rates are chosen exhaus-
tively, meaning that the current quantities are processed completely up to the
maximum production rates in each step, then the production network becomes
deterministic with a unique production process. In this case, the distribution
rates and the input rate induce a system of linear equations. If this linear sys-
tem is solvable, then the production system turns out to be stable, as shown in
Section 5.

As this result applies to the graph-transformational model of production
systems, the investigation introduces a new kind of analytical problems to the
area of graph transformation that may be of interest beyond the topic of this
paper.

2 Preliminaries

Let Σ be a set of labels. An edge-labelled directed graph over Σ is a system
G = (V,E, s, t, l), where V is a set of nodes, E is a set of edges, s, t : E → V are
the source and target mappings which assign to each edge its source and target
node, respectively, and l : E → Σ is a mapping assigning a label to each edge in
E.

The set of all graphs over Σ is denoted by GΣ . Loops are allowed, as are
parallel edges. Moreover, a special symbol ∗ is reserved to mimic unlabelled
edges and therefore ommitted in drawings of graphs.

Let G,H ∈ GΣ be graphs. A graph morphism g : G → H is a pair of structure-
preserving mappings gV : VG → VH and gE : EG → EH , i.e. gV (sG(e)) =
sH(gE(e)), gV (tG(e)) = tH(gE(e)), and lH(gE(e)) = lG(E) for all e ∈ EG.
The image g(G) ⊆ H is called a match of G in H .

Given a graph morphism g : G → H with inclusions gV and gE , G is called
a subgraph of H , denoted by G ⊆ H .

A graph transformation rule r is defined as (L ⊇ K ⊆ R) where L,K,R ∈ GΣ .
The graphs L, K and R are called left-hand-side, gluing graph and right-hand-
side respectively. An application of r to a host graph G consists of the following
steps:

1. An injective graph morphism g : L → G is selected subject to the contact
condition: the removal of g(L)− g(K) from G yields no dangling edges.

2. g(L)− g(K) is removed from G, yielding the graph Z.
3. R is added to Z yielding H by merging K with g(K).



The contact condition guarantees that removing g(L)−g(K) from G yields a
subgraph. An application of r to G resulting in H is also called direct derivation
and denoted as G=⇒

r
H . This way of transforming graphs is based on the double

pushout approach (see [12,13] where a more formal definition of rule application
can be found). Let Gi ∈ GΣ , i ∈ N. The iteration G0 =⇒

r1
G1 =⇒

r2
· · ·=⇒

rn
Gn of

direct derivations is called a derivation fromG0 toGn and may also be denoted as
G0

n
=⇒
P

Gn where ri ∈ P , or as G0
∗

=⇒
P

Gn if the number of direct derivations is of

no consequence. The application sequence of this derivation is given by the string
r1 · · · rn. For rules r1, . . . , rn with ri = (Li ⊇ Ki ⊆ Ri), their parallel composition
r1 + · · ·+ rn yields the rule (L1 + · · ·+ Ln ⊇ K1 + · · · +Kn ⊆ R1 + · · · + Rn)
where + denotes the disjoint union of graphs and the inclusions are the natural
extensions of the inclusions in the rules r1, . . . , rn.

A graph class expression is a syntactic entityX , the semantics SEM (X) ⊆ GΣ

of which is a set of graphs. An example for a graph class expression would be

noloops = forbidden(

*

)

where SEM (noloops) describes the subset of GΣ which contains only graphs
without unlabeled loops.

A control condition C is a syntactic entity that specifies a set of graph se-
quences. Control conditions cut down the nondeterminism of rule application,
which would otherwise often deliver unwanted results.

A community of autonomous units consists of a set of autonomous units,
a control condition and, in our case, a single initial environment graph. An
autonomous unit provides a set of rules and a control condition. In the general
case of autonomous units, the units and the community may have goals, which
are not needed in this paper. Every transformation process of a community
starts with the initial environment graph, on which units then act and interact
according to the control condition of the community (see [11]).

The set of natural numbers is denoted by N, N\{0} is denoted by N>0 and
[k] denotes the subset {1, . . . , k} of N. The set of real numbers is denoted R; we
use R+ to describe the set of non-negative real numbers with 0. Moreover, the
set of mappings from a set X to a set Y is denoted by 〈X,Y 〉.

3 Production Networks and Production Processes

In this section, the notion of production networks and their processes is intro-
duced where the input, processing, flow and output of material are not continu-
ous, but happen step-by-step. A production network consists of production sites,
which are represented as nodes, and of transportation channels between sites,
which are represented as directed edges. There is one input site and one output
site. In each state, the present material at each site is given as a quantity. A
production step changes these quantities by distributing the production rate of
each site to its direct neighbors. Moreover, the input site gets some input in each



step and a part of the production rate of the output site is put out. There may
be a maximum input rate, which can be chosen as ∞ if no bound is assumed.
The same applies to the production rates. The distribution at a site is done
according to a distribution vector the entries of which specify which fraction of
the production rate is moved to which neighbor site. The distribution vectors of
all sites form a distribution matrix. A production process starts with the initial
site quantities and records the changes of site quantities depending on the input,
the production rates and the distribution matrix in each step.

3.1 Production Network

A production network PN consists of

– a simple directed graph G = ([n + 1], E) with E ⊆ [n + 1] × [n + 1], the
input site 1 and the output site n+ 1,

– an initial site quantity q(0) : [n+ 1] → R+,
– a maximum input rate maxin ∈ R+ ∪ {∞},
– a maximum production rate max : [n+ 1] → R+ ∪ {∞}, and
– a distribution matrix d : [n+ 1]× [n+ 1] → R+ with

∑
j∈[n+1]

d(i, j) = 1 for

i ∈ [n],
∑

j∈[n+1]

d(n+1, j) ≤ 1 and d(i, j) = 0 for all (i, j) ∈ [n+1]×[n+1]−E.

Example

A sample production network is given by the following components.

SAMPLE

Graph:

G = 1

2

3

4

Distribution matrix:

d =

⎛
⎜⎜⎝

0 .5 .5 0
.25 0 .5 .25
.75 0 0 .25
0 0 0 0

⎞
⎟⎟⎠

Maximum production rate max
and initial quantity q(0):

max =

⎛
⎜⎜⎝
3.2
1.6
2.4
1

⎞
⎟⎟⎠q(0) =

⎛
⎜⎜⎝
0
0
0
0

⎞
⎟⎟⎠

Maximum input rate maxin:

maxin = 1

A production network specifies stepwise production processes which go on
forever. If one assumes that the input rates and the production rates can be



randomly chosen (within certain limits) and that the output is always the part
of the production rate of the output site which is not distributed to other sites,
then one gets the following production processes.

3.2 Production Process

A production process pp (in PN ) consists of

– an infinite sequence of input rates in : N>0 → R+,
– an infinite sequence of production rates p : N>0 → 〈[n+ 1],R+〉,
– an infinite sequence of output rates out : N>0 → R+, and
– an infinite sequence of site quantities q : N>0 → 〈[n+ 1],R+〉

subject to the following production process conditions for all k ∈ N>0 :

in(k) ≤ maxin (1)

p(k) ≤ min(q(k),max ) (2)

q(k)(j) =

{
in(k) + y if j = 1

y otherwise
(3)

where y =

( ∑
i∈[n+1]

d(i, j) · p(k)(i)
)
+ q(k − 1)(j)− p(k)(j)

out(k) =

(
1−

∑
j∈[n+1]

d(n+ 1, j)

)
· p(k)(n+ 1) (4)

The first condition makes sure that no input rate exceeds the maximum input
rate. The second condition requires that the processed quantity in every step is
a part of the present quantity. The third condition describes the present site
quantity after every step as the site quantity before the step diminished by the
production rate and expanded by the quantities moved from other sites. The
latter quantities are given by the fractions of the production rates due to the
distribution factors. The input site gains the input rate in addition. The last
condition fixes the output in each step as the part of the production rate of the
output site that is not distributed to other sites.

To get shorter formulas, we use the following notational conventions for k ∈
N, l ∈ N>0 and i, j ∈ [n+ 1].

1. inl = in(l); pil = p(l)(i); dij = d(i, j); outl = out(l); qil = q(l)(i);maxi =
max(i),

2. Ink =
∑

j∈[k]

inj,Outk =
∑

j∈[k]

outj , Qk =
∑

i∈[n+1]

qik where the convention

[0] = ∅ and
∑
j∈∅

= 0 for k = 0 is used.

The definition of production processes has some immediate consequences:



(1) If in and p are given in some way, then q and out are uniquely determined
and can be computed due to the required equations.

(2) As a particular case, one may consider constant input rates, i.e. ink = maxin
for all k ∈ N>0.

(3) As a particular case, one may consider exhaustive production rates, i.e. pik =
min(qi(k−1),maxi) for all i ∈ [n+ 1] and k ∈ N>0.

(4) Production networks with constant input rate and exhaustive production
rates have a unique production process. They are further discussed in Sec-
tion 5.

Example

The production network SAMPLE in Section 3.1 may run with constant max-
imum input rate and exhaustive production rates. Then there is a unique pro-
duction process with output rates computed due to the respective constraints.
It is not difficult to show that the site quantities of this production process
never exceed the maximum production rates so that the production rates always
coincide with the site quantities.

3.3 Lossfreeness

The production process conditions guarantee that no input material gets lost
because the whole processed material is moved to other sites and put out in
every step. This is formally stated in the following result.

Theorem 1. Qk = Q0 + Ink −Outk for all k ∈ N

Proof. The result is proved by induction on k.

Induction base:

Q0 = Q0 + 0− 0 = Q0 +
∑
j∈[0]

inj −
∑
j∈[0]

outj = Q0 + In0 −Out0.

Induction step:

Qk+1 =
∑

j∈[n+1]

qj(k+1)

= ink+1 + (
∑

j∈[n+1]

((
∑

i∈[n+1]

dij · pi(k+1)) + qjk − pj(k+1))

= ink+1 +
∑

j∈[n+1]

qjk +
∑

i,j∈[n+1]

dij · pi(k+1) −
∑

j∈[n+1]

pj(k+1)

=

Ind.
ink+1 +Q0 + Ink −Outk +

∑
i∈[n+1]

(
∑

j∈[n+1]

dij) · pi(k+1)

−
∑

j∈[n+1]

pj(k+1)



= Q0 + Ink+1 −Outk +
∑
i∈[n]

1 · pi(k+1) −
∑

j∈[n+1]

pj(k+1)

+ (
∑

j∈[n+1]

d(n+1)j) · p(n+1)(k+1)

= Q0 + Ink+1 −Outk − (1−
∑

j∈[n+1]

d[n+1]j) · p(n+1)(k+1)

= Q0 + Ink+1 −Outk − outk+1 = Q0 + Ink+1 −Outk+1.

4 Production Networks as Communities of Autonomous
Units

In this section, production networks are modeled as communities of autonomous
units in such a way that the production processes of a network correspond to
the runs of the respective community.

4.1 The Community C(PN )

A production network PN is transformed into the community of autonomous
units in Figure 1. There is an autonomous unit j-prod for each production site
j ∈ [n+ 1] and an extra input unit.

C(PN )

aut: input, j-prod, for j ∈ [n+ 1]

init: env(PN )

control: (input || 1-prod || . . . || n+1-prod )∞

Fig. 1. The community C(PN ) models the production network PN

Initial environment

The initial environment graph env(PN ) integrates all the information of PN .
The graph env(PN ) consists of the subgraphs

Gd, 1 mir maxin , and j

quantmax

q(0)jmaxj

for j ∈ [n+ 1]

where Gd is obtained from G by replacing each (j, i) ∈ E by



j idji

and the subgraphs share the nodes in [n + 1]. Moreover, we assume that each
node j ∈ [n + 1] is attached with a loop labeled by j. In drawings, the loop is
ommitted and its label is placed inside the node. This makes sure that the node
j can only be mapped to itself by a graph morphism.

In summary, the node representing the input site is labeled with the number
1; the output site is labeled with n+1. Each site j has an initial quantity qj0
of material, indicated by a pointer edge with the label quant, and a maximum
production rate, denoted by a pointer with the label max.

The maximum input rate maxin is attached to the input site by a special
pointer labeled mir. The connecting edges between sites are labeled with the
distribution rates.

Additionally, if the initial quantities qj0 are replaced by some quantities qj
for j ∈ [n+ 1], then the environment graph is denoted by env(PN )(q).

Autonomous unit input

The unit input in Figure 2 has only one rule which is applied exactly once in
every execution step of the community. An input value in is chosen by some
mechanism (e.g. this may be some input function like sine or some stochastic
function or even a constant), and a gain pointer is added to the site, with the
value of in attached to it by a loop edge. The choice of in is restricted only
insofar that its value may not exceed maxin .

input
rule:

1

quantmir

qmaxin

1

quantmir

gain

qmaxin

in−→
in ≤ maxin

control: once

Fig. 2. The unit input

Autonomous units j-prod

The parallel execution of the j-prod units (Figure 3) together with input model
one production step of the network.



The tasks of the j-prod units are twofold: On one hand, they manage for each
site the production and the distribution of material to neighbor sites. On the
other hand, the fact that the distribution runs in parallel for all sites at once
makes some cleanup actions necessary in preparation for the next step.

Production and distribution. The first rule of a j-prod unit, produce,
chooses a production rate for site j much in the same manner as the input unit,
by some mechanism. A prod pointer is added to j with the new production rate
attached to it. Here, too, the choice of p is restricted by whichever is the smaller
of two upper bounds: the quantity q of material present at the site and the
maximal production rate maxj .

The second rule in j-prod, transport(i), is a parametric one and it is applied
in one parallel step to each neighbor i of the site j. This rule moves the fraction
dji ·p of the current production rate of material at the site j to a neighboring site
i, where dji is the distribution value inscribed on the edge from j to i. Instead
of adding this value directly to the quantity of material already present at i, the
transported value is instead attached to a gain pointer for the following reasons.

Cleanup und update. Depending on the configuration of the network,
one production site j may receive input from many neighbor sites. To avoid
conflicts generated by concurrent access to the quantity value q of j, each source
generates a gain edge at the target site, labeled with the appropriate value. Now
in order to make a next step in the production process possible, a cleanup of
sorts needs to take place; this is the task of the rules subtract and add, which
restore the original pointer configuration and update all values to reflect the
changes that have taken place in the current production step. First, the subtract
rule removes the amount pj of material which is distributed by j in the current
production step from the quantity qj of material present at j, resulting in an
intermediate quantity value q̄j . Implicitly, this behaviour also models the output
of material from the network: the difference between pn+1 and the amount of
material the site n+ 1 sends to other sites simply disappears from the network.
If, in particular, the output site has no outgoing edges, then its whole production
rate leaves the network in every running step. Additionally, subtract also removes
the prod pointer at each site, so that a new value for pj can be entered into the
network in the next production step. The rule subtract is applied exactly once,
after the transport has been completed and before the application of add. Now,
the values in the gain edges at each site plus the remaining quantity q̄j at the
site have to be consolidated into one single quantity value q′j =

∑
dijpi + q̄j .

This is done in the add rule by picking a random gain edge and adding its value
to the existing quantity: the exclamation mark in the control expression add !
requires that add must be applied as long as possible, i.e. until no gain edge
remains.

Control condition

The control condition of C(PN ) prescribes to execute the input and all of the
j-prod units in parallel (denoted by ‖) and to iterate this ad infinitum (denoted
by ∞).



j-prod
rules:

produce: j

max quant

maxj q

j

max quant

prod

maxj q

p−→
p ≤ min(q,maxj)

transport(i): j i

prod

dji

p

j i

prod

dji

gain

p djip

−→

subtract: j

quant prod

q p

j

quant

q − p

−→

add: j

quant gain

q x

j

quant

q + x

−→

control: produce;
∑

i

transport(i); subtract ; add !

Fig. 3. The unit j-prod

Summarizing, a running step of the community C(PN ) has the form env(PN )(q)
=⇒ env(PN )(q′) where q′ is obtained from q by

q′j = in · δ1j +
∑

dijpi + qj − pj

with δ11 = 1 and δ1j = 0 for j > 1.

As a consequence of this observation, we get the following result.



Theorem 2. Each production process pp in PN with the sequence of site quanti-
ties q : N → 〈[n+1],R+〉 corresponds to an infinite run of the community C(PN )
with the steps env(PN )(qk)=⇒ env(PN )(qk+1) for all k ∈ N and conversely.

This shows that C(PN ) models PN correctly.

Example

C(SAMPLE)

aut: input, j-prod, for j ∈ 1, · · · , 4
init: env(SAMPLE)=

1

2

3

4

.5

.25

.5

.75

.5

.25

.25

mir

max

quant

1

3.2

0

max quant

1.6 0

max quant

2.4 0

max

quant
0

1

control: (input || 1-prod || . . . || 4-prod)∞

Fig. 4. The community C(SAMPLE) models the production network SAMPLE from
Section 3.1

The community C(SAMPLE) in Figure 4 is the graph-transformational
counterpart of the production network SAMPLE from Section 3.1. The initial
environment graph starts out with zero material at all sites and a maximum
input rate of 1. The distribution values are displayed on the edges connecting
the sites, and there are backflow edges leading from sites 2 and 3 to the input
site. The input site has an upper bound of of 3.2 on the production rate, while at
sites 2, 3 and 4 the production rates are bounded by 1.6, 2.4 and 1 respectively.
A sample run of this community can be found in the appendix.



5 Deterministic Production Networks and Stability

In practice, a site in a production network has only a bounded storage capacity
so that the question of stability becomes important. A production network is
stable if the site quantities of each production process do not exceed a fixed
bound. It can be shown that deterministic production processes, which have
a constant input rate and exhaustive production rates, are stable if a certain
system of linear equations is solvable.

A production network PN is stable if an upper bound vectorm : [n+1] → R+

exists such that the following holds for each production process pp with the site
quantity sequence q : N → 〈 [n+ 1],R+〉: qik ≤ mi for all i ∈ [n+ 1] and k ∈ N.

A production network PN is deterministic if the input rate is constant, i.e.
ink = in for all k ∈ N>0 and for some in ∈ R+, and if the production rates are
exhaustive, i.e. pik = min(qi(k−1),maxi) for all k ∈ N>0 and i ∈ [n+ 1].

Let PN be a deterministic production network, and let its unique production
process have – in addition – a constant site quantity, meaning that there is a
quantity vector m : [n + 1] → R+ with qk = m for all k ∈ N. Let moreover
the vector m be smaller than or equal to the maximum production rate, i.e.
m ≤ max. Consequently, the production rates are also equal to m :

pik = min(qi(k−1),maxi) = min(mi,maxi) = mi.

And with a constant production rate, the outputs become constant:

outk = (1−
∑

i∈[n+1]

d(n+1)i)p(n+1)k = (1−
∑

i∈[n+1]

d(n+1)i)mn+1.

Such a network is obviously stable with an upper bound being the site quan-
tities (or more). Moreover, the product process condition 3 holds, yielding the
following equality for the quantities of m:

mj = qjk = in · δ1j +
∑

i∈[n+1]

dijpik + qj(k−1) − pjk

= in · δ1j +
∑

i∈[n+1]

dijmi +mj −mj = in · δ1j +
∑

i∈[n+1]

dijmi

for all j ∈ [n+ 1] where δ11 = 1 and δ1j = 0 for j ≥ 2.
If one subtracts the latter sum and denotes the transposed distribution ma-

trix by dt, then one gets
(E − dt)m = in · e1

where E is the identity matrix and e1 the first unit vector.
In other words, a deterministic production network with a constant site quan-

tity m implies that the system of linear equations

(E − dt)x = in · e1



has m as a solution.
Interestingly enough, the considerations work also the other way round mean-

ing that each solution of the system of linear equations given by the constant
input quantity and the constant distribution matrix gives rise to stable produc-
tion networks, provided that the initial quantity is bounded by the solution and
the maximum production rate equals the solution or is greater.

Example

Solving the linear system (E − dtSAMPLE)m = in · e1 for the deterministic pro-
duction network SAMPLE from Section 3.1 results in the maximal production

rate vector m = max =

⎛
⎜⎜⎝
3.2
1.6
2.4
1

⎞
⎟⎟⎠.

Theorem 3. Let PN be a deterministic production network and m : [n + 1] →
R+ be a solution of the system of linear equations

(E − dt)x = in · e1
with m ≤ max and q0 ≤ m. Then PN is stable.

Proof. We show by induction that the sequence of site quantities of the unique
production process of PN is bounded by m, i.e. qk ≤ m for all k ∈ N.

Base: q0 ≤ m by assumption.

Step:

qj(k+1) = in · δ1j +
∑

i∈[n+1]

dijpi(k+1) + qjk − pj(k+1) (1)

= in · δ1j +
∑

i∈[n+1]

dij min(qik,maxi) + qjk −min(qjk,maxj) (2)

= in · δ1j +
∑

i∈[n+1]

dijqik + qjk − qjk (3)

≤ in · δ1j +
∑

i∈[n+1]

dijmi (4)

= mj (5)

where equality 1 is the site quantity condition, equality 2 uses the exhaustiveness,
equality 3 follows from the induction hypothesis qk ≤ m and the assumption
m ≤ max, the inequality 4 is again the induction hypothesis, and equality 5
uses that m solves (E − dt)x = in · e1.

With the boundedness of all site quantities, the sum of them over all sites is
also bounded.



6 Conclusion

In this paper, we have introduced and investigated a variant of production net-
works with step-by-step production processes. The first main result shows that
production networks can be transformed into communities of autonomous units
such that production processes correspond to infinite runs of the modeling com-
munities. The second main result yields a sufficient criterion for the stability
of deterministic production networks. As this is the very first attempt to relate
production networks and autonomous units, future research should shed more
light on the significance of this approach including the following topics:

1. The stability results may be improved by enlarging the class of production
networks for which sufficient conditions yield stability.

2. One may also look for necessary conditions or even proper characterizations.
3. So far, we have considered only two ways to choose the input rates and the

productions: randomly on one hand and deterministically on the other. An
interesting question is which other control conditions for the input unit and
the production units will do to make proper use of their autonomy.

4. To improve the behavior of a production network one may allow variable
distribution rates so that further circumstances like waiting time can be
considered.

5. To make the model more flexible, one may enhance the notion of production
networks by relaxing and modifying various assumptions like the following:
– There may be more than one input site and one output site.
– There may be an explicit control of the output rates.
– There may be different kinds of materials and information flows through

the network rather than a single homogeneous matter.
– There may be particular time conditions for production and transporta-

tion at each site rather than the homogeneous step assumption.
6. Another possible modification would be to assume that the produced and

distributed material consists of a number of atomic items such that only
integer division is possible. In this case, the graph-transformational model
may be particularly suitable as the atomic items could be represented by
atomic graph components explicitly.

References

1. Hans-Peter Wiendahl and Stefan Lutz. Production in Networks. Annals of the
CIRP- Manufacturing Technology, 51(2):1–14, 2002.

2. Bernd Scholz-Reiter, Michael Görges, Thomas Jagalski, and Afshin Mehrsai. Mod-
elling and Analysis of Autonomously Controlled Production Networks. In Proceed-
ings of the 13th IFAC Symposium on Information Control Problems in Manufac-
turing (INCOM 09). Moscow, Russia, pages 850–855, 2009.

3. Bernd Scholz-Reiter, Afshin Mehrsai, and Michael Görges. Handling the Dynamics
in Logistics - Adoption of Dynamic Behavior and Reduction of Dynamic Effects.
Asian International Journal of Science and Technology in Production and Manu-
facturing Engineering (AIJSTPME), 2(3):99–110, 2009.



4. Sergey Dashkovskiy, Michael Görges, and Lars Naujok. Local Input to State Sta-
bility of Production Networks. 2009. To appear in Proceedings of the Second
International Conference, LDIC 2009, Bremen, Germany, August 2009.

5. Sergey Dashkovskiy, Björn S. Rüffer, and Fabian R. Wirth. Small gain theorems
for large scale systems and construction of ISS Lyapunov functions, 2010. Ac-
cepted in SIAM Journal on Control and Optimization, available electronically:
http://arxiv.org/pdf/0901.1842.

6. Sergey Dashkovskiy, Björn S. Rüffer, and Fabian R. Wirth. Numerical verification
of local input-to-state stability for large networks. In Proceedings of the 46th IEEE
Conference on Decision and Control, New Orleans, LA, USA, Dec. 12-14, 2007,
pages 4471–4476, 2007.

7. Sergey Dashkovskiy and Björn S. Rüffer. Local ISS of large-scale interconnections
and estimates for stability regions. Systems and Control Letters, 2010. Accepted,
available electronically: http://dx.doi.org/10.1016/j.sysconle.2010.02.001.

8. Karsten Hölscher, Hans-Jörg Kreowski, and Sabine Kuske. Autonomous units and
their semantics — the sequential case. In A. Corradini, H. Ehrig, U. Montanari,
L. Ribeiro, and G. Rozenberg, editors, Proc. 3rd Intl. Conference on Graph Trans-
formations (ICGT 2006), volume 4178 of Lecture Notes in Computer Science, pages
245–259. Springer, 2006.

9. Hans-Jörg Kreowski and Sabine Kuske. Autonomous Units and Their Semantics
- The Parallel Case. In J.L. Fiadeiro and P.Y. Schobbens, editors, Recent Trends
in Algebraic Development Techniques, 18th International Workshop, WADT 2006,
volume 4409 of Lecture Notes in Computer Science, pages 56–73, 2007.

10. Karsten Hölscher, Renate Klempien-Hinrichs, Peter Knirsch, Hans-Jörg Kreowski,
and Sabine Kuske. Autonomous Units: Basic Concepts and Semantic Foundation.
In Michael Hülsmann and Katja Windt, editors, Understanding Autonomous Co-
operation and Control in Logistics – The Impact on Management, Information and
Communication and Material Flow, pages 103–120. Springer, 2007.

11. Karsten Hölscher, Hans-Jörg Kreowski, and Sabine Kuske. Autonomous Units to
Model Interacting Sequential and Parallel Processes. Fundamenta Informaticae,
92(3):233–257, 2009.

12. Andrea Corradini, Hartmut Ehrig, Reiko Heckel, Michael Löwe, Ugo Montanari,
and Francesca Rossi. Algebraic Approaches to Graph Transformation Part I: Basic
Concepts and Double Pushout Approach. In Grzegorz Rozenberg, editor, Hand-
book of Graph Grammars and Computing by Graph Transformation, Vol. 1: Foun-
dations, pages 163–245. World Scientific, Singapore, 1997.

13. Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Funda-
mentals of Algebraic Graph Transformation (Monographs in Theoretical Computer
Science. An EATCS Series). Springer, 2006.



Appendix

To illustrate how the community of autonomous units that corresponds to a
production network works, a sample run of the network SAMPLE is discussed
where we assume that exhaustive rates are always chosen, and that the input
rate coincides with the maximum input rate.

Step 1. Since all sites have zero material stored, in the very first step only
the units input and 1-prod can do anything of note: input selects the input
rate in such that it does not exceed the maximum input rate of 1 and adds in
amount of material to the input site as a gain pointer. None of the other sites
have anything to distribute, since they started out with a load of zero material.
Therefore, in this step the unit j-prod chooses the only possible production rate
of 0 for all sites, distributes zero material to all neighbours, and then cleans up
by removing all production edges and, at site 1, 1-prod adds the gained material
of 1 to the existing quantity of 0 and removes the gain edge.

In the next few steps, material flows gradually through the network, while
new material also flows into the network from outside in every step. We will now
have a detailed look at a more advanced step in the production process.

Step 4. The network in step 4, after the application of input in parallel with
the choice of new production rates for every site (the first rule of j-prod), looks
like this:

1

2

3

4

.5

.25

.5

.75

.5

.25

.25

prod

gain

mir
max

quant

1.5

1

1

3.2

1.5

prod
max quant

.5

1.6 .5

prod
max quant

.75

2.4 .75

prod

max

quant

.25

.25

1

The next action, which also happens in parallel for all sites, is the distribu-
tion of material. For example, site 3 has two outgoing and two incoming edges,
therefore it sends 75 percent of its material to the input site 1, and the remaining
25 percent to the output site 4. At the same time, it receives half of the pro-
duction rate of site 1, which amounts to a quantity of .75, and also half of the



production rate of site 2, which is a quantity of .25 (nodes and edges unrelated
to the distribution action are ommitted from the picture):

1

2

3

4

.5

.25

.5

.75

.5

.25

.25

prod

gain

gain

1.5

1

.75*.75

prod

.5

prod
gaingain

.75

.5∗1.5 .5∗.5

prod

gain

.25

.25∗.75

Then the subtract rule is applied once, removing the distributed material
from the quantity present at each site, and deleting the production rate pointer,
so that a new one can be chosen in the next step. In this example, the production
rate of site 4 is exactly the output rate, meaning that all material at 4 leaves
the network in every step. The effect of subtract on site 3 can be seen in the
following picture:

=⇒
subtract

3

quant
prod

.75

.75

3

quant

.75−.75

Afterwards the add rule is applied as long as possible at every site until it
has cleaned up all the gain edges. Again, the mechanism is illustrated for site 3
only, since it works the same at every site, and unrelated pointer edges are again
ommitted from the illustration:



3

quant
gaingain

0

.75 .25

3

quant
gain

.25+0

.75

3

quant

.75+.25

=⇒
add

=⇒
add

Together, these intermediate steps result in env(PN )(q4):

1

2

3

4

.5

.25

.5

.75

.5

.25

.25

mir
max

quant

1

3.2

1.5625

max quant

1.6 .75

max quant

2.4 1

max

quant
.3125

1

The following steps follow a similar pattern.


