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Abstract 

Autonomous control intends to improve production 
systems’ performance by a distributed and decentralised 
decision-making of logistic objects. This paper presents a 
bio-inspired approach for autonomous decision-making 
on the basis of the basic principles of bacterial 
chemotaxis movement. Similar to bacteria that orientate 
themselves according to a gradient of chemical 
attractants, intelligent logistic objects, e.g. (semi-finished) 
parts, are enabled to detect logistic targets offered by 
different alternative resources and to choose one of 
these. The relevance and impact of single decisions will 
be investigated for varying input parameters. Additionally, 
this method will be tested with the help of a computer 
simulation model of a shop floor scenario in order to 
investigate its performance in a complex production 
environment. 
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1 INTRODUCTION 

During the recent years, customers have increasingly demanded highly 
customised products and the adherence to delivery dates has become 
critical. Present production planning and control systems cannot cope with 
this type of dynamics in an appropriate manner [1]. The implementation of 
new decentralised approaches, e.g. autonomous control, opens up new 
perspectives on coping with increasing dynamics. Autonomous control 
aims at the improvement of the logistic performance and a more flexible 
handling of dynamic complexity by enabling decentralised decision-making 
of intelligent logistical objects [2]. While centralized approaches are more 
advantageous in well defined and less dynamic situations, autonomous 
control performs better in complex and dynamic situations [3]. In the 
context of production logistics several bio-inspired autonomous control 
methods were developed [4-5]. This paper introduces a new bio-inspired 
approach, based on the concept of chemotaxis. The phenomenon of 
chemotaxis can be observed by bodily cells, bacteria, single cells or 
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multicellular organisms [6]. Chemotactic organisms direct their movement 
according to the concentration of chemicals in their environment. These 
chemicals are either attractants, like food substances, or repellents, e.g. 
toxic substances. In presence of an attractant the organisms start to move 
towards it. Depending on the chemical concentrations, this straight 
movement interrupts suddenly and the bacterium changes its direction 
randomly. Afterwards it starts swimming again. Due to this random 
movement it is able to find areas of high attractant concentrations [7]. 
These principles of chemotaxis were used in the past to generate heuristic 
optimisation algorithms, also called bacterial colony optimisation (BCO) or 
chemotaxis algorithm (CA) [8]. These approaches are often coupled with 
genetic algorithms [9]. Contrary, this paper presents an approach to 
transfer the process of chemotaxis to autonomous decision-making.  

This paper is structured as follows: the concept of autonomous control is 
presented in section 2. Subsequently, section 3 gives an overview about 
of chemotaxis. These principles are transferred to an autonomous 
decision-making algorithm in section 4. The logistic performance of this 
method is evaluated in two steps in section 5. Within the first step, in 
section 5.1, decisions of single parts are analysed. An abstract model of a 
production system is introduced in section 5.2 for the purpose of analysing 
the new method. Finally, section 6 gives a summary and an outlook. 

 

2 AUTONOMOUS CONTROL IN MANUFACTURING 

Autonomous controlled logistic processes are characterised by a shift of 
qualified capabilities from the total system to its elements. In the context of 
production logistics for example, the decision-making process is 
transferred to single logistic objects, e.g. production orders, allowing these 
objects to route themselves through a logistic network according to their 
own objectives [2]. By interacting with other intelligent objects, these 
objects are able to gather information about current local system states 
and to use this information for decision-making [10]. Due to the interaction 
and decentralised decision-making, autonomous control may affect the 
logistic target achievement in a positive manner. The potential of 
autonomous control methods in production logistics was already shown in 
previous works [3-4]. Several autonomous control methods are inspired by 
biological processes, e.g. ant’s or bee’s foraging behaviour. Bio-inspired 
methods are characterised by a set of simple rules for autonomous 
decision-making and indirect communication of logistic objects [4-5]. 
These methods may improve the performance and the ability to cope with 
unforeseen events, e.g. machine breakdowns. Due to their differences, 
these methods affect the systems behaviour in different ways. Thus, the 
performance of autonomous control methods depends on the scenario. In 
this context new autonomous control methods may expand the portfolio of 
methods and help to cover a wider scope of scenarios. 

 

3 NATURAL CHEMOTAXIS 

This paper does not focus on reproducing the chemotaxis process exactly, 
but on adapting the basic principles. Thus the following will give a brief 
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description of a chemotaxis model with focus on the elementary 
mechanisms, which will be transferred to an autonomous control method. 
The movement mechanisms of the bacterium E. Coli are well-investigated. 
Its movement is caused by a set of flagella, which function as a motor. 
While turning all flagella in a clockwise direction, the bacterium performs a 
straight movement. This movement is interrupted by sudden phases of 
tumbling and reorientation. In these phases the flagella spin in reverse 
direction [7]. The probability of tumbling phases depends on the chemical 
gradient of attractants in the medium: In a neutral medium tumbling occurs 
in uniform intervals. In a medium with a higher attractant concentration 
tumbling occurs less and swimming phases last longer [6]. The detection 
of chemical substances and the internal cellular signal processing is done 
by a complex protein cascade. A simple model of this process describes 
this cascade as follows: An attractant activates a chemical receptor of the 
bacterium and starts the cascade: The activated receptor decreases in 
several steps the autophosphorylation of a protein named CheY. The 
motor complex, which causes the rotation of the flagella, is sensitive to the 
concentration of this phosporsiated form of CheY (CheYp) [7]. A change of 
CheYp concentration influences the probability of a sudden change of the 
flagella’s rotation direction. This sensitiveness of the motor complex can 
be described by a sigmoid function [11]. A high concentration of CheYp 
causes a high probability of tumbling and vice versa. Due to this 
mechanism the bacterium detects changes of the attractant gradient. A 
detailed description of this adaptation process can be found in [6]. 

 

4 TRANSFER OF CHEMOTAXIS TO AUTONOMOUS CONTROL  

Similar to bacteria, which can detect chemical gradients, an approach for 
autonomous decision-making can be designed. According to this idea 
objects are able to detect logistic targets offered by possible alternatives 
and chose one alternative based on the principles of chemotaxis. For 
example parts navigating through a production system have to decide for 
proper routes to achieve their targets (e.g., reduction of throughput time or 
the adherence to due dates). Each part decides about its route by using 
an iterative method shown in Figure 1, which emulates an imaginary 
chemotaxis process in a two dimensional space: 

1) set start position y0 randomly

8) determine new yn

7) determine new xn

6) if (random number < tumbling probability) then

5) generate random number

4) determine tumbling probability Pk from CheYp(yn)

3) calculate actual concentration of CheYp(yn) from gradient g

generate new angle randomly keep current moving angle
true false

do while xn < X

2) determine actual gradient g on the basis of A(Yn)

 

Figure 1: Pseudocode of the chemotaxis algorithm 
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The relevant logistic target value of each possible alternative is assigned 
to a relative y position. These target values are the equivalent of the 
concentration of food substances in the natural process. The X dimension 
denotes a certain predefined distance, which has to be passed during the 
iteration. The current position in the n

th
 iteration step is described by yn and 

xn. These positions are modified during the iteration, while the xn position 
is smaller as the predefined distance (xn < X).The result of this decision 
process is the alternative, which is assigned to the final yn. Figure 2 (a) 
depicts exemplarily this process.  

 

Figure 2: a) exemplary iteration process, b) corresponding A(yn) 

Figure 2a) shows this process for a decision between three different 
machines. The gradient between these machines is represented by the 
processing time or the estimated throughput time (TPT) of the machines. 
Figure 2b) depicts the corresponding gradient of target values. In this 
example the part chooses the machine 3 with the lowest TPT. The 
following describes the eight steps of the algorithm (in Figure 1) in detail:  

In the first step a start position will be generated randomly and the 
gradient (step 2) is calculated. This gradient g depends on the current yn, 
on the corresponding attractant concentration A(yn) and on the attractant 
concentration of the previous step A(yn-1), respectively: 

n

n 1( )
n

A y
g y

A y
  (1) 

Therefore attractant concentration at a certain yn position is modelled as 
linear function, which represents the differences in the target values 
(Figure 2 b). Based on this gradient the concentration of CheYp will be 
calculated in step 3 according to: 

1 1

1( )

n

n n n
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As mentioned above, the concentration of CheYp affects in the natural 
process the activity of the motorcomplex. In the production logistic context 
it determines directly the probability of tumbling. Therefore CheYp is set 
into a sigmoid function in step 4. Here a logistic function is used, due to its 
sigmoid properties: 
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In order to achieve a tumbling probability of 50% in case of a non 
changing gradient, the parameter P0 is kept constant (P0=0.5). Figure 3 
depicts curves of Pk for different k. It shows that the probability for tumbling 
is less for smaller values of CheYp. On the other hand, the parameter k 
influences the slope of this function. Bigger values of k lead to smaller 
area of sensitiveness. The impact of k and the gradient g on the decision 

quality will be discussed later in section 5.1. 
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Figure 3: tumbling probability Pk for different k values 

According to the calculated Pk the steps 5)-6) determine the direction for 
the next iteration step. If the random number is below Pk a new angle for 
movement will be generated randomly, else the current direction is kept. 
Finally new xn and yn positions are calculated. Steps 2)-8) will be repeated, 
until the predefined distance X is passed. After the iteration process the 
alternative of the final yn will be chosen.  

 

5 APPLICATION AND SIMULATION 

The logistic performance of the chemotaxis method (CHE) will be analysed 
in two steps. In the first step the influence of the parameter k and the 
gradient g will be analysed in a simple production system with 3 different 
machines. Subsequently this method is implemented into a complex and 
dynamic shop floor model with 3x3 machines.  

 

5.1 Performance of the CHE method on three different machines 

A test environment with 3 machines is modeled. These machines offer 
different waiting times for a part, which has to choose one of these 
machines. The difference of waiting times is increased stepwise, so that 
the gradient g between the alternatives rises. The parameter k is also 
varied, which causes different sensitiveness of the probability function in 
equation (3). Each grid point of Figure 4 represents a single decision-
making process of a part for different combinations of g and k. In order to 
reduce statistical effects, this is repeated 10

4 
times and the percentage of 

decisions for the machine with the lowest waiting time is recorded as the 
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precision of the decision. Figure 4 depicts that a small gradient can be 
detected, by a sharp tumbling function, which is determined by a big k 
value. On the other hand for k=0.005 and g=2% only 30 % detected the 
machine with the lowest workload. Even if the gradient is bigger (g=100%) 
only 84% choose the machine with the lowest workload for k=0.005. 

Furthermore it can be noticed, that the ability to detect smaller gradients 
(g=2-10%) rises with the value of k. Hence bigger values of k lead to more 
precise decisions of autonomous parts. 

 

Figure 4: decision precision against gradient g and parameter k 

Figure 4 shows that the precision of single decisions are influenced by the 
parameter k and the gradient g. In the next section the impact of both 
parameters on a more complex scenario will be discussed. 

 

5.2 Performance of the CHE method in a shop floor scenario 

In order to analyse the performance of the CHE method a dynamic 
simulation model (similar to [4]) is used. This scenario comprises a shop 
floor with 3×3 machines and 3 different job types. Every job enters the 
system at a source and has to pass 3 production stages on its route to the 
sink. These production stages comprise 3 parallel lines of machines, which 
are able to process every job type with different processing times (Table 
1).  

Type /Line Line 1 Line 2 Line 3 

Type A 2:00 3:00 2:30 

Type B 2:30 2:00 3:00 

Type C 3:00 2:30 2:00 

Table 1: Processing times of different lines [h:mm] 
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The arrival rate of the jobs is set to sine function (4) to model demand 
fluctuation during the simulation period of 30 days with a mean arrival rate 
of λm=0.4 1/h. 

sin( )mt t   (4) 

The amplitude α determines the intensity of demand fluctuations. It is set 
to 0.2 1/h. Before processing, each part has to be assigned to a 
production line. Therefore the CHE is used for autonomous decision-
making. To pursue a reduction of TPT, the attractant is modelled as the 
workload of each machine and its corresponding buffer. 

The simulation results presented in Figure 5 show the performance of this 
method concerning different values of k. Again to reduce statistical effects 
each simulation runs is conducted 10

3
 times. Figure 5 presents the mean 

TPT of simulation runs for certain k values. It can be noticed, that the 
parameter k influences the dynamic behaviour of this system. Interestingly 
the lowest mean TPT can be found for k=0.03 which apparently contrasts 
Figure 4. According to Figure 4 one can expect that more parts choose the 
machine with the lowest workload for bigger k values.  
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Figure 5: Mean TPT of 3x3 machines scenario for varying k 

In contrast to this expectation Figure 5 shows that a certain amount of 
suboptimal decisions, which is implied by a smaller k value, improves the 
performance of the total system. On the other hand too small values of k 
lead to a sudden increase of the mean TPT. This indicates that the 
decisions of single parts are not adequate below this point (k=0.03).  

 

6 SUMMARY AND OUTLOOK 

This paper presented a bio-inspired autonomous control method, based 
on bacterial chemotaxis and its implementation to an algorithm. It was 
shown, that autonomous decisions made by this method are mainly 
influenced by the parameter of the tumbling probability k and the 
corresponding gradient g. Variations of the parameter k change the 
decision quality of single objects, as well as the dynamic behaviour of the 
total system. Interestingly the total system performs better in case of a soft 
tumbling probability (k<0.09), which contrasts the targets of single parts. 
Thus parameter k can be used to adjust of the systems performance. 
Dynamic adaptations of this parameter may also be promising and will be 
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investigated in the future. Furthermore exploration of different system 
variables, e.g. set up times, disturbances or a bigger machine 
environment, is necessary to provide a profound evaluation of this novel 
method. 
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