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Abstract: We prove the global controllability for a class of nonlinear MIMO Volterra systems
of the triangular form as well as for their bounded perturbations. In contrast to the related
preceeding work [12], we replace the condition of C1 smoothness, which was essentially
used before, with that of local Lipschitzness. Furthermore, we remove the assumption of the
invertibility of the input-output interconnections, which was also essential in these preceeding
results. In order to solve the problem, we revise the backstepping procedure proposed in these
works, and combine it with another method of constructing discontinuous feedbacks proposed
for the so-called “generalized triangular form” in the case of ODE [17, 13, 19].

1. INTRODUCTION

During the last two decades such recursive procedures
as backstepping-like designs became very popular when
solving various problems of adaptive and robust nonlinear
control - [5, 6, 16, 9, 14, 15, 21]. It worth mentioning
that, despite of the fruitfulness of the backstepping-like
algorithms, the most works devoted to them address the
triangular or pure-feedback form systems [10]{

ẋi = fi(x1, ..., xi+1), i = 1, . . . , n− 1;
ẋn = fn(x1, ..., xn, u) (1)

that are feedback linearizable, i.e. to those which satisfy
the condition | ∂fi∂xi+1

| 6= 0, i=1, ..., n; or even have the
strict-feedback form ẋi = bixi+1 + θiϕi(x1, ..., xi), i =
1, . . . , n − 1; ẋn = bnu + θnϕn(x1, ..., xn) (with bi 6= 0).
Indeed, whatever the problem is (Lyapunov stabilization,
adaptive stabilization etc.), the classical version of the
backstepping requires system (1) to satisfy the following
two properties:

(A) The virtual control xi+1 = αi(t, x1, ..., xi) obtained at
the i-th step (i = 1, . . . , n) should be well-defined as an
implicit function obtained from some nonlinear equation
of the form fi(x1, ..., xi+1) = Fi(t, x1, ..., xi) to be resolved
w.r.t. xi+1 where Fi(t, x1, ..., xi) is some function of the
previous coordinates x1, ..., xi (and maybe of t).

(B) Each virtual control xi+1 = αi(t, x1, ..., xi) obtained
at the i - th step should be smooth enough because one
needs to take its derivatives at the next steps i = 1, ..., n.
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This necessarily leads to the conditions like | ∂fi∂xi+1
|6=0,

i=1, ..., n, (to comply with (A)) and like fi∈Cn or
fi∈Cn−i+1 (to comply with (B)).

Works [3, 4, 23, 24, 15, 20] were devoted to the issue of
how to obviate the first restriction | ∂fi∂xi+1

|6=0, at least for
some special cases: when fi(x1, ..., xi+1) are polynomials
w.r.t. xi+1 of odd degree (see work [20]); when fi = xpi+1 +
ϕi(x1, ..., xi) (see works [24, 15] devoted to the problem of
global stabilization of such systems into the origin as well
as futher works by some of these authors devoted to var-
ious adaptive and robust control probelms for this class);
partial-state stabilization under the assumption that the
”controllable part” satisfies some additional “growth con-
ditions” (see work [23] and conditions (A3),(i),(ii),(iii));
the problem of feedback triangulation under the assump-
tion that the set of regular points is open and dense in the
state space - see work [3].

A natural generalization of these cases is the so-called
“generalized triangular form” (GTF), when the only as-
sumption is that fi(t, x1, ..., xi, ·) is a surjection whereas
xi and u are vectors not necessarily of the same dimension
(and the dynamics is of class C1 or Cn depending of the
problem to be explored). In works [13, 19] it was proved
that, first, the systems of this class are globally robustly
controllable, in particular, their bounded perturbations
are globally controllable as well - [13] and, second, they
are globally asymptotically stabilizable into every regular
point [19]. Note that, although the methods proposed
in [11, 12, 13, 19] are called “backstepping”, their only
common feature with the classical backstepping designs
is the induction over the dimension of the system and
treatment xi+1 as the virtual control at the i-th step; as to
the construction, the approach proposed in [11, 12, 13, 19]
is absolutely different. This is especially applied to [13]
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and to the preceeding related works [11, 12] devoted to
the problem of global robust controllability.

It worth mentioning that, despite of the importance of
the Volterra equations in applications, the controllability
problem for the Volterra systems was investigated in
few works. Works [1, 2] were devoted to the complete
controllability of perturbations of linear Volterra systems.
In these papers, some natural analogs of the integral
criterion of the controllability for linear ODE systems were
obtained.

In works [11, 12] the problem of global robust controlla-
bility was successively solved for the nonlinear Volterra
systems of the triangular form

ẋi=fi(t, x1, ..., xi+1)+

t∫
t0

gi(t, s, x1(s), ..., xi+1(s))ds,

i = 1, . . . , n,

(where xn+1 = u is the control, and (x1, ..., xn) is the
state) including the global controllability of their bounded
perturbations. Although, as we highlighted above, the in-
ductive construction proposed in these works differs totally
from the classical backstepping designs, the following two
assumptions, which are similar to (A) and (B), are essen-
tial in this construction:

(A’) For every x1(·), ..., xi(·) of class C1 the integral
equation

ẋi=fi(t, x1(t), ..., xi+1(t))+

t∫
t0

gi(t, s, x1(s), ..., xi+1(s))ds,

should be resolvable w.r.t. xi+1(·) on the whole time
interval [t0, T ].

(B’) The properties of the linearized control systems (and
those of the Frechet derivative of the input-output map)
were essential, which is why fi and gi should be of class
C1 at least.

The goal of the current paper is to remove these restric-
tions (A’) and (B’) and to show how a modification of the
methods proposed in [13, 19] can be applied to the problem
of global controllability of the Volterra systems.

2. PRELIMINARIES

The results of the current paper are concerned with
the control systems of the Volterra integro-differential
equations

ẋ(t)=f(t, x(t), u(t))+

t∫
t0

g(t, s, x(s))ds, t∈I=[t0, T ] (2)

where u∈Rm=Rmν+1 is the control, x=(x1, ..., xν)T∈Rn

is the state with xi∈Rmi , mi≤mi+1 and n=m1+...+mν ,
functions f and g have the form

f(t, x, u) =

 f1(t, x1, x2)
f2(t, x1, x2, x3)

. . .
fν(t, x1, ..., xν , u)

 and

g(t, s, x) =

 g1(t, s, x1)
g2(t, s, x1, x2)

. . .
gν(t, s, x1, ..., xν)

 (3)

with fi∈Rmi , gi∈Rmi and satisfy the conditions:

(i) f ∈ C(I ×Rn ×Rm; Rn), g ∈ C(I2 ×Rn ×Rm; Rn),

(ii) f and g satisfy the local Lipschitz condition w.r.t.
(x, u), i.e., for every compact set K ⊂ Rn × Rm there
is LK > 0 such that, for every (x1, u1) ∈ K and every
(x2, u2) ∈ K we obtain

|f(t, x1, u1)−f(t, x2, u2)|≤LK(|x1−x2|+|u1−u2|) and

|g(t, s, x1)−g(t, s, x2)| ≤ LK |x1−x2| for all t∈I, s∈I

(iii) For each i=1, ..., ν, each t ∈ I and each (x1, ..., xi)T
in Rm1+...+mi , we have fi(t, x1, ..., xi,Rmi+1) = Rmi .

Given x0∈Rn, and u(·)∈L∞(I; Rm), let t7→x(t, x0, u(·))
denote the trajectory, of (2), defined by this control u(·)
and by the initial condition x(t0)=x0 on the maximal
interval J⊂I of the existence of the solution. As in [12],
we say that a system of the Volterra integro-differential
equations is globally controllable in time I=[t0, T ] in class
Cµ(I; Rm) (µ≥0), iff for each initial state x0∈Rn and
each terminal state xT∈Rn, there is a control u(·) in
Cµ(I; Rm) which “steers x0 into xT w.r.t. the system”,
i.e., the trajectory x(·) of the system with this control
u(·) such that x(t0) = x0 is well-defined on I and satisfies
x(T ) = xT .

Following [12] and [13], we also consider a perturbation of
system (2) of the form

ẋ(t)=f(t, x(t), u(t))+h(t, x(t), u(t))+

t∫
t0

g(t, s, x(s))ds+

+

t∫
t0

r(t, s, x(s), u(s))ds, t ∈ I = [t0, T ] (4)

where functions h and r satisfy the conditions:

(iv) h∈C(I×Rn×Rm; Rn), r∈C(I2×Rn×Rm; Rn), and
for each compact set Q⊂Rn×Rm, there exists LQ>0 such
that, for all (t, s)∈I2, (x1, u1)∈Q, (x2, u2)∈Q, we have:

|h(t, x1, u1)−h(t, x2, u2)|≤LQ(|x1−x2|+|u1−u2|),

|r(t, s, x1, u1)−r(t, s, x2, u2)|≤LQ(|x1−x2|+|u1−u2|),

(v) There exists H>0 such that h and r satisfy the
inequalities |h(t, x, u)|≤H and |r(t, s, x, u)|≤H for all
(t, s, x, u)∈I2×Rn×Rm.

3. MAIN RESULTS

Theorem 3.1 Suppose that system (2) has the form (3)
and satisfies conditions (i),(ii),(iii). Then system (2) is
globally controllable in class C∞(I; Rm).

Theorem 3.2 Suppose that functions f and g have the
form (3), satisfy (i), (iii), and satisfy the global Lipschitz
condition w.r.t. x and u, instead of (ii), i.e., there exists
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L>0 such that for each (t, s)∈I2, each (x1, u1)∈Rn×Rm

and each (x2, u2)∈Rn×Rm we have

|f(t, x1, u1)− f(t, x2, u2)| ≤ L(|x1 − x2|+ |u1 − u2|),

|g(t, s, x1)− g(t, s, x2)| ≤ L|x1 − x2|.

Suppose h and r satisfy (iv), (v). Then system (4) is
globally controllable in time I by means of controls of class
C∞(I; Rm).

Remark 3.1 Let us compare the results of [12] with our
Theorems 3.1 and 3.2. First, in [12], functions f and g
are required not only to be continuous but also to have all
their partial derivatives, w.r.t. x and u, which are required
to be continuous whereas we require (i) and (ii) only; the
latter being the standard condition needed to guarantee
the existence and the uniqueness of the solution of the
“Cauchy problem” for the Volterra systems. Second, our
system (2) is MIMO and furthermore xi and u are vectors
of different dimensions whereas, in [12], the system is SISO
(i.e., xi and u are scalar) or at least xi and u should
be of the same dimension (see Remark 3.1 from [12]).
Third (and this is essential), our current Assumption (iii)
is much more general than the corresponding Assumption
(ii) (or (II), p.247) from [12]. In this sense, our current
Theorem 3.1 and Theorem 3.2 generalize Theorem 3.3 and
Theorem 3.2 from [12] respectively. However: firstly, in our
case, function g has a bit more specific form than function
g from [12] (gi does not depend on xi+1 in the current
paper); secondly, since we replace the assumption of C1

smoothness with that of local Lipschitzness, we do not
obtain stronger results on robustness (Theorem 3.1 from
[12]).

Example 3.1. Consider the system given by
ẋ1(t)=(x2(t)+x1(t))| sinx2(t)|+

t∫
0

√
s2x2

1(s)+1ds

ẋ2(t)=u(t)| cosu(t)|+
t∫

0

√
ets(x2

1(s)+x2
2(s))+1ds,

(5)

t ∈ [0, T ]. It is clear that systems (5) satisfies our As-
sumptions (i)-(iii) and therefore is globally controllable
by Theorem 3.1. On the other hand, system (5) does not
satisfy the Assumptions from [12] and the results of [12]
are not applicable to system (5).

Remark 3.2 Note that, if g = 0 in (2), then (2) is reduced
to the class of the so-called “generalized triangular form”
of ODE control systems considered in [13, 19, 18]. How-
ever, in the case of ODE, stronger results were obtained
in these works: global robust controllability (Theorem
3.1 from [13]), global asymptotic stabilization by means
of smooth controls (Theorem 2.1 from [19]), and global
discontinuous stabilization in the sense of Clarke-Ledyaev-
Sontag-Subbotin (Theorem 3.4 from [13]).

4. BACKSTEPPING IN THE NON-SMOOTH CASE

Let us reduce Theorem 3.1 and Theorem 3.2 to a back-
stepping process which can be compared with that from
[13].

Let p be in {1, . . . , ν}. Define k:=m1+...+mp and consider
the following k - dimensional control system

ẏ(t)=ϕ(t, y(t), v(t))+

t∫
t0

ψ(t, s, y(s))ds, t∈I=[t0, T ] (6)

where y:=(x1, ..., xp)
T ∈ Rk = Rm1+...+mp is the state,

v ∈ Rmp+1 is the control and

ϕ(t, y, v) =

 f1(t, x1, x2)
f2(t, x1, x2, x3)

. . .
fp(t, x1, ..., xp, v)

 (7)

ψ(t, s, y) =

 g1(t, s, x1)
g2(t, s, x1, x2)

. . .
gp(t, s, x1, ..., xp)

 (8)

for all (t, y, v) in I×Rk×Rmp+1 . Given y0∈Rk, and
v(·)∈L∞(I; Rmp+1), let t7→y(t, y0, v(·)) denote the trajec-
tory, of (6), defined by the control v(·) and by the initial
condition y(t0, y0, v(·))=y0 on the maximal interval J⊂I
of the existence of the solution. We reduce the proofs of
Theorems 3.1 and 3.2 to the following Theorem.

Theorem 4.1 Let p be in {1, ..., ν}. Suppose for each
y0 ∈ Rk and each δ > 0, there is a family of functions
{y(ξ, ·) = (x1(ξ, ·), ..., xp(ξ, ·))}ξ∈Rk such that:

1) The map ξ 7→ y(ξ, ·) is of class C(Rk;C1(I; Rk))

2) For each ξ ∈ Rk we have:
ẋi(ξ, t) = fi(t, x1(ξ, t), . . . , xi+1(ξ, t))+

+

t∫
t0

gi(t, s, x1(ξ, s), . . . , xi(ξ, s))ds, t∈I, 1≤i≤p−1;

(if p = 1, then, by definition, the set of equalities is empty
and, by definition, Condition 2) holds true)

3) y(ξ, t0) = y0 and |y(ξ, T )− ξ| < δ for all ξ ∈ Rk

Then, for each (y0, y0
p+1) ∈ Rk ×Rmp+1 , and each ε > 0,

there exists a family of controls {v̂(ξ,β)(·)}(ξ,β)∈Rk×Rmp+1

such that

4) The map (ξ, β) 7→ v̂(ξ,β)(·) is of class C(Rk ×
Rmp+1 ;C∞(I; Rmp+1))

5) For each (ξ, β) ∈ Rk ×Rmp+1 , we have v̂(ξ,β)(T ) = β

and v̂(ξ,β)(t0) = y0
p+1.

6) |y(T, y0, v̂(ξ,β)(·))− ξ| < ε for all (ξ, β) ∈ Rk×Rmp+1 .

Let us prove that Theorem 3.1 and Theorem 3.2 follow
from Theorem 4.1. Indeed, suppose Theorem 4.1 holds
true.

Suppose p = 1 and k = m1, and take an arbitrary
y0
1∈Rm1 . Given an arbitrary δ > 0, find any family
{y(η, ·)}η∈Rm1 = {x1(η, ·)}ξ∈Rm1 such that Conditions 1)-
3) of Theorem 4.1 hold. Then, for p=1, we have: for every
ε>0 and every (y0

1 , y
0
2)∈Rm1+m2 , there exists a family of

controls {v̂(η,β)(·)}(η,β)∈Rm1×Rm2 such that Conditions 4),
5), 6) of Theorem 4.1 hold with p=1.
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Suppose p=2. Given any y0=(y0
1 , y

0
2)∈Rm1+m2 , and any

δ>0, define ε:=δ, and for this ε>0 find the family
{v̂(η,β)(·)}(η,β)∈Rm1×Rm2 obtained at the previous step
(with p = 1). From Conditions 4)-6) applied to p = 1 it
follows that the family {y(ξ, ·)}ξ=(η,β)∈Rm1×Rm2 defined
by

y(η, β, t) := (y(t, y0
1 , v̂(η,β)(·)), v̂(η,β)(t)),

for all t ∈ I, ξ = (η, β) ∈ Rm1 ×Rm2

satisfies the Conditions 1), 2), 3) of Theorem 4.1 with
p = 2. Then we can apply Theorem 4.1 to p = 2, etc.
Arguing by induction over p = 1, . . . , ν, we obtain for p =
ν: for each ε>0, each x0∈Rn, and each α=y0

ν+1∈Rmν+1

there exists a family of controls {v̂(ξ,β)(·)}(ξ,β)∈Rn×Rmν+1

such that Conditions 4), 5), 6) of Theorem 4.1 hold for
p = ν. Fix an arbitrary β ∈ Rmν+1 and define the family
of controls {uξ(·)}ξ∈Rn as follows: uξ(t) := v̂(ξ,β)(t) for all
t∈I, ξ∈Rn. Then {uη(·)}η∈Rn satisfies the conditions:

(a) ξ 7→ uξ(·) is of class C(Rn;C∞(I; Rmν+1))

(b) For each ξ ∈ Rn, the trajectory t 7→ x(t, x0, uξ(·)) is
well-defined and |x(T, x0, uξ(·))− ξ| < ε.

Given any ε>0, an arbitrary x0∈Rn, and an arbitrary
xT∈Rn, let {uξ(·)}ξ∈Rn be a family of controls such that
(a), (b) hold. By conditions (a),(b) the map ξ 7→ ξ −
x(T, x0, uξ(·))+xT is well-defined and of class C(Rn; Rn).
From condition (b), it follows that this continuous function
maps the compact convex set Bε(xT ) into Bε(xT ). Then,
by the Brouwer fixed-point theorem, there exists ξ∗ ∈
Bε(xT ) ⊂ Rn such that ξ∗=ξ∗−x(T, x0, uξ∗(·))+xT , i.e.,
x(T, x0, uξ∗(·)) = xT . Thus, for every x0∈Rn, and every
xT∈Rn, there is a control uξ∗(·) ∈ C∞(I; Rmν+1) such
that xT = x(T, x0, uξ∗(·)), i.e., Theorem 3.1 follows from
Theorem 4.1.

The proof of Theorem 3.2 is similar to this argument:
having constructed the familty {uξ(·)}ξ∈Rn such that
conditions (a),(b) hold for each ξ ∈ Rn, by x(ξ, ·)
denote the trajectory, of (4), defined by the control
uξ(·) and by the initial condition x(ξ, t0)=x0. Using
the Gronwall-Bellmann lemma, we easily obtain that
t 7→x(ξ, t) is well-defined for all t∈I, ξ∈Rn and there exists
D > 0 such that |x(ξ, t)−x(t, x0, uξ(·))|≤D for all t∈I
and ξ∈Rn, and therefore, by condition (b), we obtain:
|x(ξ, T ) − ξ| ≤ D + ε for all ξ∈Rn. Taking an arbitrary
xT∈Rn and applying the Brouwer fixed-point theorem to
the map ξ 7→ξ−x(ξ, T )+xT , which maps the closed ball
BD+ε(xT ) into BD+ε(xT ), we obtain the existence of
ξ∗ ∈ BD+ε(xT ) ⊂ Rn such that xT = x(ξ∗, T ), which
means that the control uξ∗(·)∈C∞(I; Rm) steers x0 into
xT in time I w.r.t. system (4). Since x0 and xT are chosen
arbitrarely, the proof of Theorem 3.2 is complete.

5. PROOF OF THEOREM 4.1

Fix an arbitrary p in {1, . . . , ν} an arbitrary (y0, y0
p+1) ∈

Rk ×Rmp+1 , and an arbitrary ε > 0. Define δ := ε
4 and

assume that {y(ξ, ·)}ξ∈Rk satisfies Assumptions 1)-3) of
Theorem 4.1

To prove Theorem 4.1, we change the approach from [12]
and [13] as follows. Along with system (6), we consider the
following k - dimensional control system of the Volterra
equations

ẋi(t) = fi(t, x1(t), ..., xi+1(t))+

+

t∫
t0

gi(t, s, x1(s), ..., xi(s))ds, i=1, ..., p−1;

ẋp(t) = ω(t) +

t∫
t0

gp(t, s, x1(s), ..., xp(s))ds;

t∈I (9)

with states y=(x1, ..., xp)
T ∈ Rk and controls ω∈Rmp .

Given y∈Rk, and ω(·)∈L∞(I; Rmp), let t 7→ z(t, y, ω(·))
denote the trajectory, of (9), defined by the control ω(·)
and by the initial condition z(t0, y, ω(·)) = y on some
maximal interval J ⊂ I of the existence of the solution.

For all ξ∈Rk, define

ω(ξ, t)=ẋp(ξ, t)−
t∫

t0

gp(t, s, x1(ξ, s), ..., xp(ξ, s))ds, t∈I.(10)

Then

y(ξ, t) = z(t, y0, ω(ξ, ·)) for all t∈I, ξ∈Rk. (11)

Then, using the Gronwall-Bellmann lemma, we get the
existence of δ(·) in C(Rk; ]0,+∞[) such that, for each
ξ∈Rk and each ω(·) ∈ L∞(I; Rmp), we have:

∀ t ∈ I |z(t, y0, ω(·))− y(ξ, t)| < δ,

whenever ‖ ω(·)− ω(ξ, ·)‖L∞(I;Rmp ) < δ(ξ). (12)

In order to complete the proof of Theorem 4.1, it suffices
to prove the following Statement, which is similar to
Lemma 5.1 from [13].

Statement 5.1. Assume that {y(ξ, ·)}ξ∈Rk is a family
such that Conditions 1)-3) of Theorem 4.1 hold. Then,
for system (6), there exist functions M(·)∈C(Rk; ]0,+∞[)
and a family {u(ξ, ·)}ξ∈Rk of controls defined on I such
that:

1) For each ξ∈Rk, the control u(ξ, ·) is a piecewise con-
stant function on I and the map ξ 7→u(ξ, ·) is of class
C(Rk;L1(I; Rmp+1)).

2) For each ξ∈Rk, the trajectory t 7→y(t, y0, u(ξ, ·)) is
defined for all t∈I, and for each ξ∈Rk we have

|ω(ξ, t)− fp(t, y(t, y0, u(ξ, ·)), u(ξ, t))| < δ(ξ), t ∈ I

3) For each ξ∈Rk, we have: ‖ u(ξ, ·)‖L∞(I;Rmp+1 )≤M(ξ).

Indeed, if Statement 5.1 is proved, then, combining (10),
(11), (12) with the form of the dynamics of (6),(9), we get

|y(t, y0, u(ξ, ·))− y(ξ, t)| < δ for all t∈I, ξ∈Rk. (13)

Using partitions of unity and arguing as in [12], [13], we
get the existence of a family {v̂(ξ,β)(·)}(ξ,β)∈Rk×Rmp+1 of
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controls such that Conditions 4) and 5) of Theorem 4.1
hold and such that for each (ξ, β) ∈ Rk×Rmp+1 we have

|y(t, y0, v̂(ξ,β)(·))−y(t, y0, u(ξ, ·))|<δ for all t∈I, (14)

(t 7→ y(t, y0, v̂(ξ,β)(·)) being defined on I for all (ξ, β)
in Rk×Rmp+1). Since δ= ε

4 , from (13), (14) and from
Assumption 3) of Theorem 4.1 it follows that the family
{v̂(ξ,β)(·)}(ξ,β)∈Rk×Rmp+1 also satisfies Condition 6) of
Theorem 4.1. This completes the proof of Theorem 4.1.

Due to space limits, we must omit the proof of Statement
5.1, which is similar to Lemma 5.1 from [13] modulo to the
following distinctions:

(?) In the current paper, we deal with the Volterra systems
whereas [13] is devoted to the case of ODE.

(??) In the current work, the parameter ξ characterizes the
terminal state the system should be steered to starting
from the initial point y0∈Rk. In [13], the construction
starts with the initial condition z(ξ, T )=ξ given at the ter-
minal instant T, and then the control strategy is adjusted
inductively ([13], Lemma 6.1) while time is decreasing
(from t = T until the initial instant t = t1) in order to
reach a certain small neighborhood of the initial state.
However, for the Volterra systems, such an invertion of
time is not possible in general (and one cannot consider the
Cauchy initial condition at terminal instant T ). Therefore
the direct repetition of the argument from [13], Section 6
would not suit.

(? ? ?) In the current work, we consider the non-smooth
case (the right-hand side of (2) satisfies the local Lipschitz
condition only).

It appears however that the proof of Lemma 5.1 from [13]
can be changed: (? ? ?) is not essential as the construction
from [13], Section 6 does not refer to any C1 - smoothness
and local Lipschitzness does suffice; as to (?), (??) all the
Section 6 from [13] can be revised with the correspoding
changes. Thus, the proofs of Theorem 4.1, Theorem 3.1
and Theorem 3.2 are complete.
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