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1. INTRODUCTION

Teleoperation over communication networks has recently
attracted significant attention due to its high flexibility,
accessibility, and relatively low cost (Goldberg and Sieg-
wart (2002)). The primary purpose of teleoperator systems
is to make it possible for a human operator to execute
a manipulation task remotely. A typical networked tele-
operator system consists of two (or more) manipulators,
called master(s) and slave(s), that are connected through a
communication network. The master manipulator is man-
ually controlled by the human operator, while the slave
executes the task by following the motion of the master.
In order to let the human operator feel the interaction
with the task, the haptic data (slave positions/velocities
as well as the interaction forces between the slave and the
environment) may be transmitted back to the master site
and displayed to the human operator through some sort
of haptic interface. In cooperative teleoperator systems,
multiple teleoperators perform tasks on the same environ-
ment (Sirouspour (2005); Wang et al. (2003)). Coopera-
tive teleoperation enables collaboration between human
operators that are geographically separated, and may lead
to drastic improvement in handling capabilities, dexter-
ity, as well as task completion time. Typical examples of
applications include different assembly tasks, handling of
toxic/radioactive materials and collaborative telesurgery.
A structure of cooperative network-based teleoperator sys-
tem is shown in figure 1. Specific features that makes such
a system difficult for stability analysis include multiple
communication constraints imposed by networks between
the masters and the corresponding slaves, as well as possi-
bility of slave-slave interactions through the common envi-
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Fig. 1. Cooperative network-based teleoperator system

ronment. In particular, popular passivity/scatering/wave
variable based approaches (Anderson and Spong (1989);
Niemeyer and Slotine (2004)) are generally not applicable
to cooperative teleoperation due to nonpassive slave-slave
interactions.

One possible alternative to the passivity-based approaches
is a design based on the small-gain arguments. Small-gain
theorems are among the most powerful tools in analysis
and control of interconnected nonlinear systems (Jiang
(2004)). Direct application of the small-gain arguments
to stability of cooperative network-based teleoperator sys-
tems, however, encounters significant difficulties. First,
a cooperative teleoperator system consists of multiple
master-slave pairs that interact through environment,
which generally results in an interconnection structure
more complex than a simple feedback interconnection.
Second, communication over networks imposes communi-
cation constraints that include time-varying discontinuous
possibly unbounded communication delays and possible
packet losses. Also, in teleoperator systems, stability with
required gain usually cannot be achieved globally, which
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implies that an appropriate version of the small-gain the-
orem must admit stability properties of subsystems to
be satisfied within a compact subset of state space and
a compact range of inputs rather than globally (which
corresponds to stability with finite restrictions as well as
bounded domain of small-gain conditions). Although a
number of nonlinear small-gain theorems presented in the
literature addressed some of the above described issues
(see, for example, (Dashkovskiy et al. (2007); Karafyllis
and Jiang (2009); Tiwari et al. (2009); Dashkovskiy et al.
(2010)) for small gain conditions for interconnection of
multiple subsystems, (Tiwari et al. (2009)) for the case of
bounded communication delays, (Polushin et al. (2009))
for the case of discontinuous time-varying unbounded
communication delays, and (Teel (1996); Polushin et al.
(2009)) for the case of finite restrictions), no small-gain re-
sults exist that would directly fit the specific restrictions of
the networked cooperative bilateral teleoperator systems.

In this paper, we present a small-gain framework for stabil-
ity analysis of cooperative network-based force reflecting
teleoperator systems. First, we formulate and prove a new
version of input-to-output stability (IOS) small gain the-
orem that is applicable to stability analysis of large-scale
network-based interconnections where the subsystems are
assumed to be IOS with finite restrictions. As an applica-
tion of this result, we consider a cooperative network-based
teleoperator system with a typical interconnection struc-
ture. Using the small-gain theorem presented, we show
that stability of the cooperative teleoperator system can
always be achieved by choosing some of the system’ gains
appropriately. The structure of the paper is as follows. In
Section 2, we formulate and prove a new version of the
IOS small gain theorem. In Section 3, the IOS small-gain
theorem is applied to stability analysis of the network-
based cooperative teleoperator system.

1.1 Preliminaries

Throughout the paper, the following standard notations
are used. Let R+ be the set of nonnegative real numbers,
R+ := [0,+∞). A continuous function γ : R+ → R+ is
said to belong to class G (γ ∈ G) if it is strictly increasing;
a function γ ∈ G belongs to class K (γ ∈ K) if it satisfies
γ (0) = 0; also, a function γ ∈ K belongs to class K∞ if
γ (s)→∞ as s→∞.

When analyzing stability of cooperative teleoperator sys-
tems, one deals with multiple inputs - multiple outputs
(MIMO) systems where each input-output pair has a
specific gain function associated with it. For simplicity
of notations in MIMO case, it is convenient to use mul-
tivariable extensions of the classes G, K, K∞, defined
as follows. Let Rn+ be the positive orthant in Rn, i.e.,
Rn+ := {x ∈ Rn, xi ≥ 0 for all i = 1, . . . , n}. Given a set
Γij : R+ → R+, i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}, consider
an associated map Γ: Rm+ → Rn+ defined according to the
formula Γ(s) = [(Γ(s))1, . . . , (Γ(s))n], where

(Γ(s))i := max
j∈{1,...,m}

Γij(sj).

A map Γ: Rm+ → Rn+ is said to belong to class Gn×m if and
only if it can be associated with a set {Γij}, i ∈ {1, . . . , n},
j ∈ {1, . . . ,m}, where all Γij ∈ G. Classes Kn×m and
Kn×m∞ are defined analogously.

Some other notations used in the paper are as follows.
Given two maps Γ1, Γ2 of appropriate dimensions, their
composition is denoted by Γ1 ◦ Γ2 (i.e., Γ1 ◦ Γ2(s) :=
Γ1 (Γ2(s)). Given a map Γ ∈ Gn×n and a number i ∈
N := {0, 1, . . .}, denote

Γi := Γ ◦ Γ ◦ . . . ◦ Γ︸ ︷︷ ︸
i times

.

In particular, Γi for i = 0 is the identity map, Γ0(s) := s.
Further, given x, y ∈ Rn+, we write x ≥ y iff xi ≥ yi
for all i ∈ {1, . . . , n}, and x 6≥ y otherwise. Relations >
and 6> are defined analogously. The maximum of two or
more vectors is calculated componentwise. For a finite set
X, the number of its elements is denoted by #X. Given
I ⊂ {1, . . . , n}, I 6= ∅, and y ∈ Rn+, denote yI := {yi}i∈I .
Thus, yI ∈ R#I is the projection of y ∈ Rn onto the
subspace of Rn spanned by the basis vectors {ei}, i ∈ I.
The projection operator y → yI is denoted by PI ; thus,
yI := PI(y).

2. SMALL GAIN THEOREM FOR
NETWORK-BASED INTERCONNECTIONS

Below, we use the following notation borrowed from (Teel
(1998)). Given functions f : R→ Rn, td : R→ R+, by fd(t)
we denote the restriction of f on the interval [t− td(t); t],
i.e., fd(t) = {f(s), s ∈ [t − td(t); t]. Consider a system
described by functional differential equations (FDEs) of
the form

ẋ = f (xd, u1d, . . . , umd, w1d, . . . , wqd) ,
y1 = g1 (xd, u1d, . . . , umd, w1d, . . . , wqd) ,

...
...

...
yp = gp (xd, u1d, . . . , umd, w1d, . . . , wqd) .

(1)

Here, xd is a state, x ∈ Rn, u1, . . .um are finite-
dimensional control inputs, y1,. . . yp are finite-dimensional
outputs, and w1, . . .wq are finite-dimensional disturbance
inputs. According to the notation introduced above, the
right-hand side of (1) depends on state and input tra-
jectories restricted on the interval [t − td(t); t] for some
td : R → R+. For regularity purposes, it is assumed that
f , g1, . . . , gp are Lipschitz continuous operators; also, td(t)
does not grow faster than time t; more precisely, the
inequality td(t2)− td(t1) ≤ t2 − t1 holds for all t1, t2 ∈ R,
t2 ≥ t1; also, t − td(t) → +∞ as t → +∞. Denotey := (|y1| , . . . , |yp|)T ∈ Rp+; u ∈ Rm+ , w ∈ Rq+
are defined analogously. It is assumed that system (1)
satisfies the following local version of the input-to-output
stability property (Sontag (2006)).

Assumption 1. The system (1) is input-to-output stable
(IOS) with restrictions ∆x ∈ R+, ∆u ∈ Rm+ , ∆w ∈ Rq+,
i.e., there exist β ∈ Kp×1

∞ , Γu ∈ Gp×m, Γw ∈ Gp×q, such
that the conditions

xd(0)
 ≤ ∆x, sup

t≥0

ud(t) ≤ ∆u,

sup
t≥0

wd(t) ≤ ∆w imply that the solutions of (1) are

well defined for t ∈ [0,+∞), and the following inequalities
hold

sup
t≥0

y(t)
 ≤ max


β(|xd(0)|),

Γu(sup
t≥0

ud(t)),

Γw(sup
t≥0

wd(t))

 , (2)
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lim sup
t→+∞

y(t)
 ≤ max


Γu(lim sup

t→+∞

ud(t)),

Γw(lim sup
t→+∞

wd(t))

 . • (3)

In this work, we address the situation where different
input and output channels of the system (1) are pairwise
interconnected through communication network. The exis-
tence of a communication network may impose significant
communication constraints such as time-varying discon-
tinuous possibly unbounded communication delays as well
as perturbations due to transmission errors, information
losses and quantization. The communication constraints
imposed on j-th input, where j ∈ {1, . . . ,m}, are described
according to the formula

|uj(t)| ≤ max
i∈{1,...,p}

{
Mj

i

(∣∣∣y∗i (t− τ ji (t))
∣∣∣)} , (4)

where y∗i (t) = yi(t) for t ≥ 0 and y∗i (t) = 0 for t < 0
(which implies that the connection is initiated at t = 0),
τ ji (t) is the communication delay induced by the network
between i-th output and j-th input, and Mj

i ∈ G is the
corresponding “gain” function which, in particular, gives
a room for possible amplification and/or distortion of the
signal transmitted; it also provides an upper bound for
errors due to quantization and information losses. All the
communication delays satisfy the following assumption.

Assumption 2. The communication delays τ ji : R+ → R+,
i ∈ {1, . . . , p}, j ∈ {1, . . . ,m} are Lebesgue measurable
functions with the following properties:

i) there exists a piecewise continuous function τ∗ : R+ →
R+ satisfying τ∗ (t2) − τ∗ (t1) ≤ t2 − t1, such that the
following inequalities hold for all t ≥ 0

max
i∈{1,...,p}
j∈{1,...,m}

τ ji (t) ≤ τ∗ (t) ; (5)

ii)
t− max

i∈{1,...,p}
j∈{1,...,m}

τ ji (t)→ +∞ as t→ +∞. • (6)

Assumption 2 is a relaxed version of similar assumptions
used in Polushin et al. (2009). As shown in Polushin et al.
(2009), it does not impose any restrictions on character-
istics of the communication channel, and can always be
satisfied in real-life networks unless the communication is
totally lost on a semi-infinite time interval.

Now, let us denote Γ := Γu ◦M ∈ Gp×p, where

M :=

M
1
1 . . . M1

p
...

. . .
...

Mm
1 . . . Mm

p

 ∈ Gm×p.
The following theorem gives small-gain conditions for IOS
of system (1), (4).
Theorem 1. Consider an interconnected system (1), (4).
Suppose Assumptions 1, 2 hold. Suppose also there exist
δ,∆ ∈ Rp+, satisfying Γi−1(δ) < ∆ for all i ∈ {1, . . . , p},
and M(∆) ≤ ∆u, such that the following conditions hold

Γ(s) 6≥ s for all s ∈ Rp+, s ≤ ∆, s 6< δ. (7)

Then the interconnection (1), (4) is IOS with restrictions
∆∗x, ∆∗w, where

∆∗x := max

{
s ∈ R+ : s ≤ ∆x,

max
i∈{1,...,p}

Γi−1 ◦ β(s) ≤ ∆

}
, (8)

∆∗w := max

{
s ∈ Rq+ : s ≤ ∆w,

max
i∈{1,...,p}

Γi−1 ◦ Γw(s) ≤ ∆

}
. (9)

More precisely, the conditions
xd(0)

 ≤ ∆∗x,
sup
t≥0

wd(t) ≤ ∆∗w imply that the following inequalities

sup
t≥0

y(t)


≤ max
i∈{1,...,p}

Γi−1

(
max

{
β(|xd(0)|),

Γw(sup
t≥0

wd(t)), δ

})
,

(10)

lim sup
t→+∞

y(t)


≤ max
i∈{1,...,p}

Γi−1

(
max

{
Γw(lim sup

t→+∞

wd(t)), δ
})

.

(11)
hold along the trajectories of (1), (4).

2.1 Proof of Theorem 1

The proof makes use of the following two lemmas.
Lemma 2. Suppose Γ ∈ Gp×p satisfies (7) for some δ,∆ ∈
Rp+ such that Γi−1(δ) < ∆ for all i ∈ {1, . . . , p}. Let
I ⊂ {1, . . . , p} be an arbitrary nonempty index set, and
Ic := {1, . . . , p} \ I. Then

ΓII(s) 6≥ s for all s ∈ R#I
+ , s ≤ ∆I , s 6< δI . (12)

Proof. Pick an arbitrary s0 ∈ R#I
+ such that s0 ≤ ∆I

and s0 6< δI . Let s ∈ Rp+ be such that sI = s0 and sIc = 0.
Clearly, s ≤ ∆, and s 6< δ. Condition (7) then implies that[

sI
0Ic

]
6≤
[

ΓII ΓIIc

ΓIcI ΓIcIc

] [
sI
0Ic

]
.

Clearly, 0 ≤ max{ΓIcI(sI),ΓIcIc(0Ic)}, therefore
sI 6≤ max{ΓII(sI),ΓIcIc(0Ic)} ≥ ΓII(sI).

The statement follows due to arbitrary choice of s0 = sI .
Lemma 3. Suppose (7) holds. Then for any y ∈ Rp+,
y ≤ ∆, and any v ∈ Rp+ satisfying Γi−1(v) < ∆ for all
i ∈ {1, . . . , p}, the condition

y ≤ max {Γ(y), v} (13)
implies

y ≤ φ := max
i∈{1,...,p}

{
Γi−1(max{v, δ})

}
. (14)

Proof. Let y ≤ ∆. First, we claim that under the
assumptions of Lemma 3,

y 6> max{δ, v}. (15)
Indeed, assume the converse, i.e.,

y > max{δ, v}. (16)
Taking into account (13), this implies y ≤ Γ(y). On the
other hand, (16) also implies that y ∈ (δ,∆], where (δ,∆]
denotes the set of all vectors y ∈ Rp+ with δ < y ≤ ∆, and
therefore (7) implies y 6≤ Γ(y). This contradiction proves
(15).

Now, inequality (15) implies that there exists a (possi-
bly empty) index set I1 ⊂ {1, . . . , p} such that Ic1 :=
{1, . . . , p} \ I1 6= ∅, and yIc

1
≤ max

{
δIc

1
, vIc

1

}
≤ φIc

1
. If
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I1 = ∅, then (14) is proven. Otherwise, taking into account
the last inequality, it follows from (13) that
yI1 ≤ max

{
ΓI1I1 (yI1) ,ΓI1Ic

1

(
δIc

1

)
,ΓI1Ic

1

(
vIc

1

)
, vI1

}
.

Now, taking into account Lemma 2, and using exactly the
same line of reasoning as above, one can show that

yI1 6> max{δI1 ,ΓI1Ic
1

(
δIc

1

)
,ΓI1Ic

1

(
vIc

1

)
, vI1}.

The last inequality precisely means that there exists a
(possibly empty) index set I2 ⊂ I1, I2 6= I1, such that
yIc

2
≤ φIc

2
. Continuing this line of reasoning, after at

most p − 1 steps, we get (14). This completes the proof
of Lemma 3.

Now, consider the system (1), (4). Suppose
|xd(0)| ≤ ∆∗x, sup

t≥0

wd(t) ≤ ∆∗w. (17)

Denote ∆∗ := max{β (∆∗x) ,Γw (∆∗w) , δ}. First, let us
prove that

sup
t≥0

y(t)
 ≤ ∆ := max

i∈{1,...,p}
Γi−1 (∆∗) . (18)

Note that, due to finite restriction ∆u as well as bounded
domain of the small-gain condition, the above inequality
cannot be proven by applying small-gain arguments di-
rectly. Instead, let us consider the system (1) where the
following interconnection constraints are imposed on each
input uj , j ∈ {1, . . . ,m},

|uj(t)| ≤ ε · max
i∈{1,...,p}

{
Mj

i

(∣∣∣y∗i (t− τ ji (t))
∣∣∣)} , (19)

where ε ∈ [0, 1]. Using homotopy-like arguments similar
to the ones used in Appendix of Teel (1996), we will
show that (18) holds for all ε ∈ [0, 1]. First, for ε = 0,
inequality (18) follows directly from Assumption 1. Fix an
arbitrary T ∈ (0,+∞), and let ν ∈ Rp+, ν > 0 be a vector
with sufficiently small norm. Due to regularity (Lipschitz
continuity) of the right-hand sides of system (1), the upper
bound on trajectories of (1), (4) for t ∈ [0, T ] depends
continuously on parameter ε; more precisely, there exists
ε∗ > 0 such that the inequality

sup
t∈[0,T ]

y(t)
 ≤ ∆ + ν, (20)

holds as long as ε in (19) satisfies ε ∈ [0, ε∗]. Since ε∗ < 1,
for sufficiently small ν > 0 one has ε∗ · M (∆ + ν) ≤
M (∆) ≤ ∆u. Combining this with (19), (20), we see that

sup
t∈[−td(0),T ]

u(t)
 ≤ ∆u, (21)

i.e., the restriction on u is met for all t ∈ [0, T ]. Now, using
(2), one gets

sup
t∈[0,T ]

y(t)


≤ max

{
∆∗,Γu ◦ (ε∗ · M)

(
sup
t∈[0,T ]

y(t)
)} , (22)

as long as ε in (19) satisfies ε ∈ [0, ε∗]. Furthermore, since
0 < ε∗ < 1 and Γu(·) is strictly increasing, it is easy to
see that, for sufficiently small ν > 0, condition (7) implies
that Γu ◦ (ε∗ · M)(s) 6≥ s holds for all s ∈ Rp+, such that
s ≤ ∆ + ν and s 6< δ. Applying Lemma 3, we see that

sup
t∈[0,T ]

y(t)
 ≤ ∆ (23)

holds as long as ε ∈ [0, ε∗]. Now, let εmax ∈ (0, 1] be the
maximal number such that (23) holds for all ε ∈ [0, εmax].

We claim that εmax = 1. Indeed, assume the converse, i.e.,
εmax < 1. Then, for sufficiently small ν > 0, it follows by
continuity of trajectories that there exists ε∗∗ ∈ (εmax, 1)
such that (20) holds for all ε ∈ [0, ε∗∗]. Using exactly the
same line of reasoning as above, one can see that in this
case (23) holds for all ε ∈ [0, ε∗∗], which contradicts the
definition of εmax. Thus, εmax = 1. Due to arbitrary choice
of T ∈ (0,+∞), this implies (18); also, (21) holds for all
T > 0, which means that the restriction on u is met. Thus,
(2) holds along the trajectories of (1), (4).

Now, combining (2), (4), we get

sup
t≥0

y(t)
 ≤ max


β(|xd(0)|),Γ(sup

t≥0

y(t)
),

Γw(sup
t≥0

wd(t))

 .

Taking into account (7), (18), and applying Lemma 3,
we see that (10) holds. To prove (11), note that due to
Assumption 2, part ii), we have

lim sup
t→+∞

|y∗i (t− τ ji (t))| = lim sup
t→+∞

|y∗i (t)|

holds for each i ∈ {1, . . . , p}, j ∈ {1, . . . ,m}. Taking into
account (4) as well as definition of y∗(·), we see that

lim sup
t→+∞

ud(t) ≤M(
lim sup
t→+∞

y(t)
) .

Combining the above inequality with (3), taking into
account small-gain condition (7) as well as (18), and
applying Lemma 3, we get (11). The proof of Theorem 1
is now complete. •
It is worth mentioning that, for sufficiently large p, small
gain condition (7) may be hard to check. In this case, one
can use sufficient conditions for (7) provided by Lemma 4
below. Let I1, . . . , Ik ⊂ {1, . . . , q}, k ∈ {1, q}, be nonempty
index sets such that (I1, . . . , Ik) = (1, . . . , q). Consider the
following patrition of Γ,

Γ =

ΓI1I1 . . . ΓI1Ik

...
. . .

...
ΓIkI1 . . . ΓIkIk

 . (24)

A function of the form
ΓIk1Ik2

◦ . . . ◦ ΓIkpIk1
∈ G#Ik1×#Ik1 (25)

where k1, . . . , kp ∈ {1, . . . , k}, k1 6= . . . 6= kp, is said to be a
minimal cycle of (partitioned) matrix-function Γ ∈ Gp×p.
The following lemma provides sufficient conditions for (7).
Lemma 4. The small gain condition (7) holds if there
exists a partition of Γ ∈ Gp×p of the form (24) such that for
each k1 ∈ {1, . . . , k}, each minimal cycle of (24) satisfies
ΓIk1Ik2

◦ . . . ◦ ΓIkpIk1
(s) < s for all s ∈

[
δk1 , ∆̄k1

]
, (26)

where δk1 := PIk1
(δ), ∆̄k1 := PIk1

(∆̄), and ∆̄ :=
max

i∈{1,...,p}
Γi−1(∆). •

Proof. Assume the converse, i.e., there exists s ∈ Rp+, s ≤
∆, s 6< δ such that Γ(s) ≥ s. The last inequality can be
rewritten as follows

sIj
≤ max
r∈{1,...,k}\j

{
ΓIjIr

(sIr
)
}
, j ∈ {1, . . . , k}. (27)

Substituting inequalities (27) into each other and using
(26), we arrive at contradiction.

Theorem 1 and Lemma 4 are applicable to stability anal-
ysis of a very general class of large scale network-based
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interconnections where the communication between sub-
systems are subject to constraints typical for communica-
tion networks such as the Internet. Below, these results are
utilized to derive conditions for stability of a cooperative
networked force-reflecting teleoperator system.

3. SMALL-GAIN ANALYSIS OF THE COOPERATIVE
TELEOPERATION SYSTEM

In this section, Theorem 1 and Lemma 4 are applied to
stability analysis of a networked cooperative teleopera-
tor system shown schematically in Figure 1. The coop-
erative teleoperator system under consideration consists
of 2N manipulators, N masters and N slaves. For each
i ∈ {1, . . . , N}, i-th master is connected with i-th slave
over a networked communication channel. All the slave
manipulators interact with the same environment. For
each i ∈ {1, . . . , N}, i-th master subsystem is described
as follows

ẋmi = fmi

(
xmi, u

{h}
mi , u

{s}
mi

)
,

ymi = gmi

(
xmi, u

{h}
mi , u

{s}
mi

)
,

where u{h}mi is the force/torque input applied by the human
operator, and u{s}mi is the force reflection signal that arrives
from the remote slave. It is assumed that each master
subsystem is IOS; the corresponding gain matrix Γmi has
a form Γmi =

[
γ
{h}
mi (·), γ{s}mi (·)

]
∈ G1×2. It is assumed that

gain γ{h}mi (·) is given and generally cannot be changed, but
γ
{s}
mi > 0 can be assigned arbitrarily small. Also, for each
i ∈ {1, . . . , N}, i-th slave subsystem is described as follows,

ẋsi = fsi

(
xsi, u

{m}
si , u

{e}
si

)
,

y
{e}
si = g

{1}
si

(
xsi, u

{m}
si , u

{e}
si

)
,

y
{f}
si = g

{2}
si

(
xsi, u

{m}
si , u

{e}
si

)
.

In the above equations, xsi is state of i-th slave, and
u
{m}
si , u{e}si are input signals that come from the remote

master and the environment, respectively. Output y{e}si is
applied to the environment, and y

{f}
si represents a “force

reflection” signal transmitted back to the corresponding
master site. The exact choice of y{e}si depends on the model
of the slave-environment interaction, while the choice of
y
{f}
si is determined by the force reflection scheme used.

Each slave subsystem is assumed to be IOS. To be more
specific, let us assume that the environment is described in
terms of its impedance model, so y{e}si is actually the slave
state (position+velocity), the signal reflected back to the
master site is the environmental force, and the admittance
of each slave w.r.t. environmental force can be adjusted
arbitrarily. These assumptions result in IOS gain matrix
of the form

Γsi =
[
1 γ
{e}
si

0 1

]
,

where γ
{e}
si > 0 can be assigned arbitrarily small. Each

master-slave pair is interconnected through network com-
munication channel, and the communication in both di-
rection is subject to network-induced communication con-
straints, described for each i = 1, . . . , N as follows,

u
{s}
mi (t) := y

{f}
si (t− τbi(t)) + σbi(t),

u
{m}
si (t) := ymi(t− τfi(t)) + σfi(t).

(28)

In the above formulas, τfi, τbi : R+ → R+ are the com-
munication delays in i-th forward and backward channels,
respectively, and σfi, σbi are the corresponding measure-
ment/estimation/quantization/transmission errors. All τfi,
τbi, i = 1, . . . , N , are assumed to satisfy Assumption 2,
while all σfi, σbi, i = 1, . . . , N , are assumed to be Lebesgue
measurable uniformly essentially bounded signals.

The environment is described by the following equations

ẋe = fe

(
xe, u

{s}
e1 , . . . , u

{s}
eN , fext

)
,

fenv1 = ge1

(
xe, u

{s}
e1 , . . . , u

{s}
eN , fext

)
,

...
...

...
fenvN = geN

(
xe, u

{s}
e1 , . . . , u

{s}
eN , fext

)
.

Here, xe is a state of the environment, u{s}ei is the input
signal that comes from i-th slave subsystem, and fext is an
external force input which is considered as a disturbance
and assumed to be uniformly essentially bounded. The
environment has N + 1 inputs; for our purposes, it is con-
venient to decompose them into N “control” inputs u{s}e1 ,
. . ., u{s}eN , and one “external” input fext. The environment
is assumed to be IOS, and the corresponding IOS gain
matrices have a form

Γes=

γ
es
11 . . . γes1N
...

. . .
...

γesN1 . . . γ
es
NN

∈GN×N , Γef =

γ1ext

...
γNext

∈GN×1,

respectively. The elements of Γes depend on properties of
the environment (stiffness, geometry, etc), and generally
cannot be adjusted. Each fenvi, i = 1, . . . , N , represents
the interaction force between the environment and i-
th slave; it is applied to the corresponding slave input.
More precisely, the interconnection between the slave
manipulators and the environment is described as follows,

u
{s}
ei = y

{e}
si , u

{e}
si = fenvi, i = 1, . . . , N. (29)

In order to analyze the stability of the cooperative teleop-
erator system described above, we first rewrite the equa-
tions of the masters, slaves and environment in the form
(1), and consequently represent interconnections (28), (29)
in terms of interconnection matrix M. The cooperative
teleoperator system without interconnections has 4N out-
puts (i. e., p = 4N in (1)); for our purposes it is convenient
to reorder them as follows: y1 = ym1, . . ., yN = ymN ,
yN+1 = y

{e}
s1 , . . ., y2N = y

{e}
sN , y2N+1 = y

{f}
s1 , . . .,

y3N = y
{f}
sN , y3N+1 = fenv1, . . ., y4N = fenvN . Next,

the system has 4N control inputs (i. e., m = 4N in (1)),
they are reordered as follows: u1 = u

{s}
m1 , . . ., uN = u

{s}
mN ,

uN+1 = u
{m}
s1 , . . ., u2N = u

{m}
sN , u2N+1 = u

{e}
s1 , . . .,

u3N = u
{e}
sN , u3N+1 = u

{s}
e1 , . . ., u4N = u

{s}
eN . Also, the

system has 3N + 1 “disturbance” inputs (q = N + 1 in
(1), these are u{h}mi , i = 1, . . . , N , and fext; their particular
order is not essential for our purposes. Finally, since all
the subsystems are described by ODEs, we have td(t) ≡ 0
in (1). Thus defined system is IOS; moreover, for the
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above choice of inputs and outputs, the corresponding gain
matrix Γu ∈ G4N×4N has a form

Γu =

Γme O O O
O I Γse O
O O I O
O O O Γes

 ,
where Γme := diag{γ{s}m1 , . . . , γ

{s}
mN},

Γse := diag{γ{e}s1 , . . . , γ
{e}
sN }, and I is the identity function

of the corresponding dimension.

Now, consider interconnections (28), (29). Let σ∗ ∈ RN+ ,
σ∗ > 0 be the uniform upper bound for all mea-
surement/estimation/quantization/transmission errors in
(28), i.e.,

sup
t∈[0,+∞)

max {|σfi(t)| , |σbi(t)|} ≤ σ∗i , i ∈ {1, . . . , N}.

Let Iσ∗ ∈ GN×N be defined as follows Iσ∗(s) := s+ σ∗. In
this case, the interconnection matrix has a form

M =

 O O Iσ∗ O
Iσ∗ O O O
O O O I
O I O O

 .
Applying Theorem 1, one can see that the following small
gain condition

Γ(s) := Γu ◦M(s) 6≥ s ∀s ∈ R4N
+ , s ≤ ∆, s 6< δ, (30)

implies that the closed-loop cooperative teleoperator sys-
tem is stable with restrictions ∆∗x, ∆∗w defined by (8),
(9). Now, applying Lemma 4, one can derive that (30)
is satisfied if the following inequalities hold

Γme ◦ Iσ∗ ◦ Γes ◦ Iσ∗(s) < s

∀s ∈ RN+ , s ∈
[
P1(δ),P1( max

i∈{1,...,p}
Γi−1(∆))

]
,

(31)

Iσ∗ ◦ Γme ◦ Pσ∗ ◦ Γes(s) < s

∀s ∈ RN+ , s ∈
[
P2(δ),P2( max

i∈{1,...,p}
Γi−1(∆))

]
,

(32)

Γse ◦ Γes(s) < s

∀s ∈ RN+ , s ∈
[
P2(δ),P2( max

i∈{1,...,p}
Γi−1(∆))

]
,

(33)

Γes ◦ Iσ∗ ◦ Γme ◦ Iσ∗(s) < s

∀s ∈ RN+ , s ∈
[
P3(δ),P3( max

i∈{1,...,p}
Γi−1(∆))

]
,

(34)

Γes ◦ Γse(s) < s

∀s ∈ RN+ , s ∈
[
P4(δ),P4( max

i∈{1,...,p}
Γi−1(∆))

]
,

(35)

Γes ◦ Iσ∗ ◦ Γme ◦ Iσ∗(s) < s

∀s ∈ RN+ , s ∈
[
P4(δ),P4( max

i∈{1,...,p}
Γi−1(∆))

]
,

(36)

where Pi : R4N
+ → RN+ , i = 1, . . . , 4 are canonical pro-

jections defined by the formulas P1(δ) = [I O O O] δ,
P2(δ) = [O I O O] δ, etc., where I,O ∈ RN×N are unit
and zero matrices, respectively. It is easy to check that
conditions (31)-(36) can be met for any δ ∈ R4N

+ satisfying

δ >

 0
σ∗

Γes(σ∗)
Γes(σ∗)

 , (37)

and any sufficiently large ∆ ∈ R4N
+ , by an appropri-

ate choice of Γme = diag{γ{s}m1 , . . . , γ
{s}
mN}, and Γse =

diag{γ{e}s1 , . . . , γ
{e}
sN }. Thus, the closed-loop cooperative

teleoperator system can be made stable with arbitrary
large restrictions and an arbitrary “offset” δ satisfying
(37), by an appropriate choice of Γme, and Γse.
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Dashkovskiy, S., Rüffer, B., and Wirth, F.R. (2007). An
ISS small gain theorem for general networks. Mathemat-
ics of Control, Signals, and Systems, 19(2), 93–122.
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