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1. INTRODUCTION

Impulsive systems combine continuous and discontinuous
behaviors of a dynamical system. The continuous dynam-
ics is typically described by ordinary differential equations
and the discontinuous behavior are instantaneous state
jumps that occur at given time instants, also referred
to as impulses. Impulsive systems are closely connected
to hybrid systems and switched systems and have wide
applications in network control, engineering, biological or
economical systems, see van der Schaft and Schumacher
[2000], Haddad et al. [2006], Shorten et al. [2007].
In this paper we study the input-to-state stability (ISS)
property of impulsive systems with external inputs. ISS
was first introduced for continuous systems in Sontag
[1989]. A useful tool to verify the ISS property for
continuous systems are Lyapunov functions (see Sontag
and Wang [1995]) as well as for other variants of ISS,
namely input-to-state dynamical stability (ISDS) (Grüne
[2002]), local ISS (LISS) (Sontag and Wang [1996]) and
integral-ISS (iISS) (Sontag [1998]). Investigations of ISS
for hybrid systems can be found in Cai and Teel [2009].
For time-delay systems the ISS property can be veri-
fied by Lyapunov-Razumikhin functions (Teel [1998]) or
Lyapunov-Krasovskii functionals (Pepe and Jiang [2006]).

For impulsive systems the ISS and iISS properties were
studied in Hespanha et al. [2008] for the delay-free case and
in Chen and Zheng [2009] for time-delay systems. By the
help of exponential ISS Lyapunov(-Razumikhin) functions
and an (reverse) average dwell-time (ADT) condition
the ISS property for impulsive (time-delay) systems was
proved.
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We are interested in the ISS property for interconnections
of impulsive systems with and without time-delays. The
first results on the ISS property for the delay-free case
were given for two coupled continuous systems in Jiang
et al. [1994] and for an arbitrarily large number (n ∈ N) of
coupled systems in Dashkovskiy et al. [2007], using a small-
gain condition. Lyapunov versions of the ISS small-gain
theorems were proved in Jiang et al. [1996] (two systems)
and Dashkovskiy et al. [2009] (n systems), for the ISDS
property in Dashkovskiy and Naujok [2010], for LISS in
Dashkovskiy and Rüffer [2010] and for iISS in Ito [2006]
(two systems) and Ito et al. [2009] (n systems), where
Lyapunov functions for the overall system are constructed.
ISS for interconnected hybrid systems was investigated in
Nesic and Teel [2008] (two systems) and Dashkovskiy and
Kosmykov [2009] (n systems). A general approach of the
verification of the ISS property for interconnected systems
can be found in Karafyllis and Jiang [2009].
In this paper we prove that under a small-gain condition
and the (reverse) ADT condition for interconnected impul-
sive systems according to Hespanha et al. [2008] the overall
system is again ISS and construct the exponential ISS
Lyapunov(-Razumikhin) function and the corresponding
gain of the whole system.
The paper is organized as follows: In Section 2 we note
some basic definitions. The first main result, the ISS small-
gain theorem for interconnected delay-free impulsive sys-
tems can be found in Section 3. Section 4 contains the
second main result, the ISS small-gain theorem for in-
terconnected impulsive systems with time-delays. Finally
Section 5 concludes this paper with a short summary.

2. PRELIMINARIES

By xT we denote the transposition of a vector x ∈ RN ,
N ∈ N, furthermore R+ := [0,∞) and RN+ denotes
the positive orthant

{
x ∈ RN : x ≥ 0

}
where we use the

partial order for x, y ∈ RN given by



x ≥ y ⇔ xi ≥ yi, i = 1, . . . , N and x 6≥ y ⇔ ∃i : xi < yi,

x > y ⇔ xi > yi, i = 1, . . . , N.

We denote the Euclidean norm by |·|. For x = (x1, . . . , xN )T

defined on an interval I ⊂ R, we define ‖x‖I :=
maxi maxt∈I{|xi(t)|}.
∇V denotes the gradient of a function V . The upper
right-hand side derivative of a locally Lipschitz continuous
function V : RN → R+ along x(t) ∈ RN is defined by

D+V (x(t)) = lim sup
h→0+

V (x(t+ h))− V (x(t))
h

.

Let θ ∈ R+ be the maximum involved delay. The function
xt : [−θ, 0]→ RN is given by xt(τ) := x(t+ τ), τ ∈ [−θ, 0]
and we define ||xt|| := maxt−θ≤s≤t |x(s)|. For a, b ∈ R,
a < b, let C

(
[a, b] ; RN

)
denote the Banach space of piece-

wise right-continuous functions defined on [a, b] equipped
with the norm ‖·‖[a,b] and take values in RN .

Definition 2.1. Classes of comparison functions are:
K := {γ : R+ → R+ | γ is continuous, γ(0) = 0

and strictly increasing} ,
K∞ := {γ ∈ K | γ is unbounded} ,
L := {γ : R+ → R+ | γ is continuous and decreasing

with lim
t→∞

γ(t) = 0},
KL := {β : R+ × R+ → R+ | β is continuous,

β(·, t) ∈ K, β(r, ·) ∈ L, ∀t, r ≥ 0} .

Note that for γ ∈ K∞ the inverse function γ−1 always
exists and γ−1 ∈ K∞.

3. DELAY-FREE INTERCONNECTED IMPULSIVE
SYSTEMS

We consider an interconnection of n impulsive subsystems
with inputs

ẋi(t) = fi(x1(t), . . . , xn(t), ui(t)), t 6= tik̃,

xi(t) = gi(x−1 (t), . . . , x−n (t), u−i (t)), t = tik̃,
(1)

xi ∈ RNi , ui ∈ RMi , where {ti1, ti2, ti3, . . .} is a strictly
increasing sequence of impulsive times in (t0,∞) for some
initial time t0 of the ith subsystem. We assume further
t0 = 0. The set of impulsive times is assumed to be either
finite or infinite and unbounded. Given a sequence {tik̃}
and a pair of times s, t satisfying t0 ≤ s < t, Ni(t, s)
denotes the number of impulsive times tik̃ in the semi-
open interval (s, t] of the ith subsystem.
The state xi(t) ∈ RNi of the ith subsystem is absolutely
continuous between impulses; ui(t) ∈ RMi is a locally
bounded, Lebesgue-measurable input. We assume that
functions fi : RNi×RMi → RNi and gi : RNi×RMi → RNi

are locally Lipschitz continuous. All signals (states xi and
inputs ui) are assumed to be right-continuous and to have
left limits at all times and we denote x−i (t) := lims↗t xi(s),
u−i (t) := lims↗t ui(s).

If we define N := N1 + . . . + Nn, M := M1 + . . . +
Mn, x := (xT1 , . . . , x

T
n )T , u := (uT1 , . . . , u

T
n )T and f :=

(fT1 , . . . , f
T
n )T and the impulsive time sequence of the

whole system {tk} by {tk} :=
{
t|t = tik̃, k̃ ∈ N

}
. Further-

more we define Ik := {i|tk = tik̃}, Ik := {i|tk 6= tik̃} |Ik

and N(t, s) denotes the number of impulsive times in the
semi-open interval (s, t] of the whole system. Then x |Ik

:=

(0, . . . , gi1 , . . . , . . . , gip , . . . , 0)T , where ij ∈ Ik, j = 1, . . . , p

and x
∣∣∣Ik

:= (0, . . . , x−i1 , . . . , . . . , x
−
il
, . . . , 0)T , where ij ∈

Ik, j = 1, . . . , l.

With these definitions the interconnected system (1) can
be described as a system of the form

ẋ(t) = f(x(t), u(t)), t 6= tk,

x(t) = x|Ik
+ x|Ik

=: g(x−(t), u−(t)), t = tk,
(2)

k ∈ N. The ISS property of impulsive systems is defined
as follows, see Hespanha et al. [2008].
Definition 3.1. Assume that a sequence {tk} is given.
We call system (2) input-to-state stable (ISS) if there
exist functions β ∈ KL, γ ∈ K∞, such that for every
initial condition x(0) and every input u the corresponding
solution to (2) exists globally and satisfies
|x(t)| ≤ max{β(|x(0)|, t), γ(‖u‖[0,t])}, ∀t ≥ 0. (3)

The supremum norm of an input u on the interval [t0, t] is
redefined by

‖u‖[t0,t] := max

{
ess sup
s∈[t0,t]

|u(s)|, sup
tk∈[t0,t]

|u(tk)|

}
.

The impulsive system (2) is uniformly ISS over a given
class S of admissible sequences of impulsive times if (3)
holds for every sequence in S, with functions β and γ that
are independent of the choice of the sequence.

For a system with several inputs we use the following
Definition 3.2. Assume that a sequence {tik̃} is given.
The ith subsystem of (2) is ISS if there exist βi ∈ KL,
γij , γi ∈ K∞ ∪ {0} such that for every initial condition
xi(0) and every input ui the corresponding solution to (1)
exists globally and satisfies for all t ≥ 0
|xi(t)| ≤ max{βi(|xi(0)|, t),max

j,j 6=i
γij(‖xj‖[0,t]), γi(‖u‖[0,t])}

(4)

Functions γij are called gains. The impulsive system (1) is
uniformly ISS over a given class S of admissible sequences
of impulsive times if (4) holds for every sequence in S, with
functions βi and γi, γij that are independent of the choice
of the sequence.

For stability analysis of impulsive systems we use expo-
nential Lyapunov functions, see Hespanha et al. [2008].
Definition 3.3. We say that a function V : RN → R is
an exponential ISS-Lyapunov function for (2) with rate
coefficients c, d ∈ R if V is locally Lipschitz, positive
definite, radially unbounded, and satisfies

V (x) ≥ γ(|u|)⇒ ∇V (x) · f(x, u) ≤ −cV (x) (5)
for almost all x, all u and

V (x) ≥ γ(|u|)⇒ V (g(x, u)) ≤ e−dV (x) (6)
for all x, u, where γ is some function from K∞.

Condition (5) states, that if c is positive then the function
V decreases. On the other hand, if c < 0 then the function
V may increase. Condition (6) states, that if d is positive
then the jump (impulse) decreases the magnitude of V .
On the other hand, if d < 0 then the jump (impulse) may
increase the magnitude of V .
Remark 3.4. Note that in Hespanha et al. [2008] the condi-
tions (5) and (6) are in dissipative form. By Proposition 2.6



in Cai and Teel [2009] the conditions in dissipative form
are equivalent to the conditions in implication form, used
in Definition 3.3, but coefficients c, d may be different.

Similarly we define Lyapunov functions for subsystems.
Definition 3.5. Function Vi : RNi → R is an exponen-
tial ISS-Lyapunov function for the ith subsystem of (1)
with rate coefficients ci, di ∈ R if there exist functions
Vj , j = 1, . . . , n, which are continuous, proper and positive
definite and locally Lipschitz continuous on RNj\{0} and
Vi satisfies

Vi(xi) ≥ max{max
j,j 6=i

γij(Vj(xj)), γi(|ui|)} ⇒
∇Vi(xi) · fi(x, ui) ≤ −ciVi(xi)

(7)

for almost all x, all ui and
Vi(xi) ≥ max{max

j,j 6=i
γij(Vj(xj)), γi(|ui|)} ⇒

Vi(gi(x, ui)) ≤ e−diVi(xi)
(8)

for all x, ui, where γij , γi are some functions from K∞ .

The rate coefficients ci, di are not required to be non-
negative and therefore Vi may not decrease even if u = 0.
Note that in general γ, γij , γi in the definitions of ISS and
ISS-Lyapunov functions are different.

In Hespanha et al. [2008] the following theorem was proved
which establishes stability of a single impulsive system
even if one of rate coefficients is not positive.
Theorem 3.6. Let V be an exponential ISS-Lyapunov
function for (2) with rate coefficients c, d ∈ R with d 6= 0.
For arbitrary constants µ, λ > 0, let S[µ, λ] denote the
class of impulsive time sequences {tk} satisfying

−dN(t, s)− (c− λ)(t− s) ≤ µ, ∀t ≥ s ≥ 0. (9)

Then the system (2) is uniformly ISS over S[µ, λ].

When d = 0 the theorem can be applied, because (9)
holds for every d < 0. This case and the case c = 0
were investigated in more detail in Hespanha et al. [2008],
Section 6.

Condition (9) guarantees stability of the impulsive system
even if the continuous or discontinuous behavior is unsta-
ble. For example, if the continuous behavior is unstable,
which means c < 0, then this condition assumes that the
discontinuous behavior has to stabilize the system (d > 0)
and the jumps have to occur often enough. Opposite if
the discontinuous behavior is unstable (d < 0) and the
continuous behavior is stable (c > 0) then the jumps have
to occur rarely, which stabilizes the system.

In general even if all subsystems of (1) are ISS, the whole
system (2) may be not ISS. Thus we are looking for the
conditions that guarantee ISS of (2). We collect the nonlin-
ear gains γij of the subsystems in a matrix Γ = (γij)n×n,
i, j = 1, . . . , n denoting γii ≡ 0, i = 1, . . . , n for com-
pleteness, see Dashkovskiy et al. [2007], Rüffer [2007]. Note
that this matrix describes in particular the interconnection
topology of the whole network, moreover it contains the
information about the mutual influence between the sub-
systems. We also introduce the gain operator Γ : Rn+ → Rn+
defined by

Γ(s) :=
(

n
max
j=1

γ1j(sj), . . . ,
n

max
j=1

γnj(sj)
)
, s ∈ Rn+. (10)

To show one of the main results we need the notion of a so
called Ω-path, see Dashkovskiy et al. [2009], Rüffer [2009].
A function σ = (σ1, . . . , σn)T : Rn+ → Rn+, where σi ∈ K∞
is called an Ω-path, if it possesses the following properties:

(i) σ−1
i is locally Lipschitz continuous on (0,∞);

(ii) for every compact set P ⊂ (0,∞) there are finite
constants 0 < K1 < K2 such that for all points of
differentiability of σ−1

i we have

0 < K1 ≤ (σ−1
i )′(r) ≤ K2, ∀r ∈ P

(iii)
Γ(σ(r)) < σ(r),∀r > 0. (11)

The next theorem provides a condition for the existence
of an Ω-path.
Theorem 3.7. Let Γ ∈ (K∞ ∪{0})n×n be a gain matrix. If
Γ satisfies the small-gain condition

Γ(s) 6≥ s, ∀ s ∈ Rn+\ {0} , (12)
then there exists an Ω-path σ with respect to Γ. This path
can be chosen piecewise linear.

The proof can be found in Dashkovskiy et al. [2009],
Theorem 5.2, see also Rüffer [2009], however only the
existence is proved in these works.

Now we can formulate one of the main results that is an ISS
small-gain theorem for impulsive systems without time-
delays. This theorem allows to construct an ISS Lyapunov
function for the whole interconnection.

3.1 Main result

Theorem 3.8. Assume that each subsystem of (1) has an
exponential ISS-Lyapunov function Vi with corresponding
ISS-Lyapunov gains γij and rate coefficients ci, di, di 6=
0. Define c := min

i
ci and d := mini di. For arbitrary

constants µ, λ > 0, let S[µ, λ] denote the class of impulsive
time sequences {tk} of the whole system. If the following
holds

i) S[µ, λ] satisfies condition (9),

ii) Γ = (γij)n×n satisfies the small-gain condition (12),

then the impulsive system (2) is uniformly ISS over S[µ, λ]
and the exponential ISS-Lyapunov function is given by

V (x) := max
i
{σ−1

i (Vi(xi))}, (13)

where σ = (σ1, . . . , σn)T is a piecewise linear Ω-path. The
gain is given by γ(r) := maxi σ−1

i (γi(r)).

The small-gain condition ii) is used for example in
Dashkovskiy et al. [2007, 2009] to verify the ISS property
of interconnected systems. The condition i) is the aver-
age dwell-time condition for interconnections of impulsive
systems. For single impulsive systems, which means there
is only one c and one d this condition can be found in
Hespanha et al. [2008].

Proof. As the small gain condition (12) is satisfied it
follows from Theorem 3.7 that there exists an Ω-path σ
with respect to Γ. We can choose this path to be piecewise
linear. Let us define

V (x) = max
i
σ−1
i (Vi(xi)) (14)



and show that this function is an exponential ISS-
Lyapunov function for the system (2). It can be easily
checked that this function is locally Lipschitz, positive
definite and radially unbounded.

For any i ∈ {1, . . . , n} consider open domains

Mi ∈ RN \ {0} defined by

Mi :={
(
xT1 , . . . , x

T
n

)T ∈ RN\ {0} :

σ−1
i (Vi(xi)) > max

j 6=i

{
σ−1
j (Vj(xj))

}
}. (15)

Now for any x̂ = (x̂T1 , . . . , x̂
T
n )T ∈ RN\{0} there is at

least one i ∈ {1, . . . , n} such that x̂ ∈ Mi and it follows,
that there is a neighborhood U of x̂ such that V (x) =
σ−1
i (Vi(xi)) holds for all x ∈ U .

We define γ(r) := maxi σ−1
i (γi(r)), r > 0 and assume

V (x) ≥ γ(|u|). It follows from (11) that
Vi(xi) =σi(V (x)) ≥ max{max

j
(γij(σj(V (x)))), σi(γ(|u|))}

≥max{max
j
γij(Vj(x)), γi(|ui|)}.

Let [sl, sl+1], sl < sl+1, l = 0, 1, . . . be an interval where
σi is linear, i.e., σi(t) = ails, s ∈ [sl, sl+1]. Then for all
intervals with σi(s) = ails and from (7) we obtain for
almost all x and Vi(xi) ∈ [sl, sl+1]

V̇ (x) =(σ−1
i )′(Vi(xi))∇Vi(xi) · fi(x, ui)

≤− 1
ail
ciVi(xi) = −ciV (x).

By the definition of c := mini ci the function V satisfies
(5). As d := mini di it holds

V (g(x, u)) =
1
ail

(Vi(gi(x1, . . . , xn, ui)))

≤ 1
ail
e−diVi(xi) ≤ e−dV (x), Vi(xi) ∈ [sl, sl+1],

i.e., V satisfies condition (6).

All conditions of Definition 3.3 are satisfied and thus V is
the exponential ISS-Lyapunov function of system (2). By
assumption i) there exist µ, λ > 0 such that −dN(t, s)−
c(t−s) ≤ µ−λ(t−s), ∀t ≥ s ≥ 0 we can apply Theorem 3.6
and the overall system is uniformly ISS over S[µ, λ]. 2

Using c = mini ci, d = mini di in the average dwell-
time condition some kind of conservativeness may occur,
which means we cannot verify the ISS property for an
interconnected impulsive system by the application of The-
orem 3.8, although the system possesses the ISS property.
Remark 3.9. If both dynamics, the continuous and the
discontinuous, are stable, which means that c, d > 0,
then the condition (9) in Theorem 3.8 is not necessary,
according to Theorem 2 in Hespanha et al. [2008].

The following section provides a similar small-gain result,
but for impulsive systems with time-delays.

4. INTERCONNECTED IMPULSIVE SYSTEMS
WITH TIME-DELAYS

Consider n interconnected impulsive systems with time-
delays of the form

ẋi(t) = fi(xt1, . . . , x
t
n, ui(t)), t 6= tik̃,

xi(t) = gi((xt1)−, . . . , (xtn)−, u−i (t)), t = tik̃,
(16)

k̃ ∈ N, i = 1, . . . , n, where the same assumptions on
the system as in the delay-free case are considered with
the following differences: We denote xti(τ) := xi(t +
τ), τ ∈ [−θ, 0], where θ is the maximum involved delay
and (xti)

−(τ) := x−i (t+ τ) := lims↗t xi(s+ τ), τ ∈ [−θ, 0].
We assume that the functionals fi : C([−θ, 0],RN1)× . . .×
C([−θ, 0],RNn) × RMi → RNi and gi : C([−θ, 0],RN1) ×
. . . × C([−θ, 0],RNn) × RMi → RNi are locally Lipschitz
continuous.

If we define tk, N, M, x, u, f and g as in the delay-free
case, then (16) becomes the system of the form

ẋ(t) = f(xt, u(t)), t 6= tk, k ∈ N,
x(t) = g(x−t , u

−(t)), t = tk, k ∈ N.
(17)

We assume that the regularity conditions in Ballinger and
Liu [1999] for the existence and uniqueness of solutions
of systems (16) and (17) are satisfied. For any ξi ∈
C([−θ, 0],RNi) the solution of the ith subsystem of (16)
is denoted by xi(t, t0, ξi) or xi(t) for short, satisfying the
initial condition xt0i (τ) = ξi(τ), τ ∈ [−θ, 0]. In a similar
way we denote the solution of the system (17) by x(t, t0, ξ)
or x(t) for short for any ξ ∈ C([−θ, 0],RN ) that exists in
a maximal interval [−θ, b), 0 < b ≤ +∞, satisfying the
initial condition xt0(τ) = ξ(τ), τ ∈ [−θ, 0].

The definition of ISS is then similar to the delay-free case:
Definition 4.1. Suppose that a sequence {tk} is given. We
call system (17) ISS if there exist functions β ∈ KL,
γ ∈ K∞, such that for every initial condition x0 = ξ ∈
C([−θ, 0]) and every input u the corresponding solution
to (17) exists globally and satisfies
|x(t)| ≤ max{β(||ξ||[−θ,0], t), γ(‖u‖[0,t])}, ∀t ≥ 0. (18)

The impulsive system (17) is uniformly ISS over a given
class S of admissible sequences of impulsive times if (18)
holds for every sequence in S, with functions β and γ that
are independent of the choice of the sequence.

For the stability analysis of systems of the form (17)
Razumikhin-type theorems were proved in Chen and
Zheng [2009]. In our second main result we use the defini-
tion of an exponential ISS-Lyapunov-Razumikhin function
in implication form and the (reverse) average dwell-time
condition from Hespanha et al. [2008].
Definition 4.2. A locally Lipschitz continuous function
V : RN → R+ is called an exponential ISS-Lyapunov-
Razumikhin function for system (17), if there exist
ψ1, ψ2 ∈ K∞, γu ∈ K, γd ∈ K∞ and scalars c, d ∈ R
such that

ψ1(|x|) ≤ V (x) ≤ ψ2(|x|), (19)
V (x) ≥ max{γd(||Vd(x)||), γu(|u(t)|)}
⇒ D+V (x) ≤ −cV (x),

(20)

V (x) ≥ max{γd(||Vd(x)||), γu(|u(t)|)}
⇒ V (g(x, u)) ≤ e−dV (x),

(21)

hold for all x(t) ∈ RN and u(t) ∈ RM , where Vd(x(t)) :=
V (x(t+ τ)), τ ∈ [−θ, 0].
Remark 4.3. Note that in Chen and Zheng [2009] the
conditions (20) and (21) are in dissipative form. By Propo-
sition 2.6 in Cai and Teel [2009] the conditions in dissipa-



tive form are equivalent to the conditions in implication
form, used in Definition 4.2, where the coefficients c, d are
different in general.

The following proposition is similar to Theorem 1 in
Hespanha et al. [2008]. Here we adopt the approach used
in this paper to time-delay systems. In Chen and Zheng
[2009] a different approach for the characterization of the
condition on the time intervals of the impulses is used, but
the statement is the same. By combining the results in the
two previous mentioned papers we can state the following:
Proposition 4.4. Let V be an exponential ISS-Lyapunov-
Razumikhin function for (17) with c, d ∈ R. For arbitrary
constants µ, λ ∈ R+, let S[µ, λ] denote the class of impulse
time sequences {tk} satisfying (9). If γd < Id, then the
system (17) is uniformly ISS over S[µ, λ].

The proof is skipped, because it is a combination of the
proofs of Theorem 1 in Hespanha et al. [2008] and Theo-
rems 1 and 2 in Chen and Zheng [2009] with an exponential
ISS-Lyapunov-Razumikhin function as in Definition 4.2.

Now we consider interconnected impulsive time-delay sys-
tems and define the ISS property and Lyapunov functions
of the subsystems as follows:
Definition 4.5. Suppose that a sequence {tik̃} is given.
The ith subsystem of (16) is ISS if there exist βi ∈ KL,
γij , γ

u
i ∈ K∞ ∪ {0} such that for every initial condition

x0
i = ξi and every input ui the corresponding solution to

the ith subsystem of (16) exists globally and satisfies
|xi(t)| ≤ max{βi(||ξi||[−θ,0], t),

max
j,j 6=i

γij(||xj ||[−θ,t]), γui (‖u‖[0,t])} (22)

for all t ≥ 0. The ith subsystem of (16) is uniformly ISS
over a given class S of admissible sequences of impulsive
times if (22) holds for every sequence in S, with functions
βi, γij and γui that are independent of the choice of the
sequence.
Definition 4.6. A locally Lipschitz continuous function
Vi : RNi → R+ is called an exponential ISS-Lyapunov-
Razumikhin function of the ith subsystem of (16), if there
exist functions Vj , j = 1, . . . , n, which are continuous,
proper and positive definite and locally Lipschitz continu-
ous on RNj\{0} and there exist γui ∈ K∪{0}, γij ∈ K∞ ∪
{0}, j = 1, . . . , n and scalars ci, di ∈ R, such that

Vi(xi) ≥ max{max
j
γij(||V dj (xj(t))||), γui (|ui(t)|)}

⇒ D+Vi(xi) ≤ −ciVi(xi), (23)

Vi(xi) ≥ max{max
j
γij(||V dj (xj(t))||), γui (|ui(t)|)}

⇒ Vi(gi(x1, . . . , xn, ui)) ≤ e−diVi(xi), (24)

hold for all x = (xT1 , . . . , x
T
n )T ∈ RN and ui ∈ RMi , where

V dj (xj(t)) := Vj(xj(t+τ)), τ ∈ [−θ, 0]. Furthermore we de-
fine the gain-matrix Γ := (γij)n×n and the map Γ : Rn+ →
Rn+ by Γ(s) := (maxj γ1j(sj), . . . ,maxj γnj(sj))T , s ∈ Rn+.

Now we state our second main result: the ISS small-gain
theorem for interconnected impulsive systems with time-
delays. We construct the Lyapunov-Razumikhin function
and the gain of the overall system under a small-gain
condition. The necessary ADT condition on the size of

the time intervals between impulses is the same as in the
delay-free case.

4.1 Main result

Theorem 4.7. Assume each subsystem of (16) has an expo-
nential ISS-Lyapunov-Razumikhin function with ci, di ∈
R, di 6= 0 and gains γij . Define c := min

i
ci and d :=

mini di. For arbitrary constants µ, λ > 0, let S[µ, λ] denote
the class of impulsive time sequences {tk} of the whole
system. If the following holds

i) S[µ, λ] satisfies condition (9),

ii) Γ = (γij)n×n satisfies the small-gain condition (12),

then the whole system (17) is uniformly ISS over S[µ, λ]
and the exponential ISS-Lyapunov-Razumikhin function
is given by V (x) := maxi{σ−1

i (Vi(xi))}, where σ =
(σ1, . . . , σn)T is a piecewise linear Ω-path. The gains are
given by γd(r) := maxk,j σ−1

k (γkj(σj(r))),
γu(r) := maxi σ−1

i (γui (r)).

The proof goes along the line of the proof of Theorem 3.8
with according changes to time-delay systems.

Proof. Let 0 6= x = (xT1 , . . . , x
T
n )T . We define

V (x) := max
i
{σ−1

i (Vi(xi))}

and show that V is the exponential ISS-Lyapunov-
Razumikhin function for the overall system. V satisfies
(19), which can be easily checked. Note that V is locally
Lipschitz continuous. For any i ∈ {1, . . . , n} consider
open domains Mi ∈ RN\{0} defined as in (15). Now for
any x̂ = (x̂T1 , . . . , x̂

T
n )T ∈ RN\{0} there is at least one

i ∈ {1, . . . , n} such that x̂ ∈ Mi and it follows, that there
is a neighborhood U of x̂ such that V (x) = σ−1

i (Vi(xi))
holds for all x ∈ U .

We define the gains γd(r) := maxk,j σ−1
k (γkj(σj(r))),

γu(r) := maxi σ−1
i (γui (r)), r > 0 and assume

V (x) ≥ max{γd(||Vd(x)||), γu(|u|)}.
Note that γd(r) < r, by (11). It follows

Vi(xi)≥ σi(max{max
kj

σ−1
k (γkj(σj(||Vd(x)||))),

max
i
σ−1
i (γui (|u|))})

≥max{max
j
γij(||V dj (x)||), γui (|ui|)}.

Let [sl, sl+1], sl < sl+1, l = 0, 1, . . . be an interval where
σi is linear, i.e., σi(s) = ails, s ∈ [sl, sl+1]. Then for all
intervals with σi(s) = ails and from (23) we obtain

D+V (x) = D+ 1
ail
Vi(xi) ≤ −

1
ail
ciVi(xi) = −ciV (x),

for almost all x and for all Vi(xi) ∈ [sl, sl+1]. By definition
of c := mini ci the function V satisfies (20). By definition
of d := mini di it holds

V (g(x, u)) ≤ 1
ail
e−diVi(xi) ≤ e−dV (x), Vi ∈ [sl, sl+1]

i.e., V satisfies condition (21).

All conditions of Definition 4.2 are satisfied and V is
the exponential ISS-Lyapunov-Razumikhin function of the



whole system of the form (17). Using that there exist
µ, λ > 0 such that −dN(t, s) − c(t − s) ≤ µ − λ(t −
s), ∀t ≥ s ≥ 0 we can apply Proposition 4.4 and the
whole system is uniformly ISS over S[µ, λ]. 2

Remark 4.8. The meaning of c, d ∈ R is the same as in
the delay-free case. If both dynamics, the continuous and
the discontinuous, are stable, which means that c, d > 0,
then the condition (9) in Theorem 4.7 is not necessary,
according to Theorem 2 in Hespanha et al. [2008].

5. CONCLUSIONS

We have established conditions that guarantee input-to-
state stability of a network of several impulsive systems
with and without time-delays. These conditions are based
on the interconnection structure of the network (small-
gain condition) and on the sizes of time intervals be-
tween the impulses (average dwell-time condition). Our
approach provides a method of construction of Lyapunov
and Lyapunov-Razumikhin functions for the overall sys-
tem.
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B. S. Rüffer. Monotone inequalities, dynamical systems,
and paths in the positive orthant of Euclidean n-space.
Positivity, 2009. To appear, DOI:10.1007/s11117-009-
0016-5.
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