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a b s t r a c t

We consider networks of input-to-state dynamically stable (ISDS) systems and use a small-gain condition
to assure the ISDS property for their interconnection. Under this small-gain condition we provide a
construction of an ISDS Lyapunov function including explicit derivation of corresponding rates and gains
for the whole interconnection.
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1. Introduction

Consider a large scale nonlinear system of the form

ẋ(t) = f (x(t), u(t)), (1)

where t ∈ R is the time, ẋ(t) denotes the derivative of the state
x(t) ∈ RN with initial value x0, the input u(t) ∈ Rm is an essentially
bounded measurable function and f : RN+m → RN , N,m ∈ N. To
have existence and uniqueness of a solution of (1) let the function f
be continuous and locally Lipschitz in x uniformly in u. The solution
is denoted by x(t; x0, u) or x(t) in short.
Stability of such systems is a crucial property for applications

and it is not always an easy task to check stability of a given
nonlinear system or to design it in a way that it becomes stable
and robust. To solve such problems conditions of the small-gain
type turn out to be helpful in many situations. An important tool
to investigate stability is a Lyapunov function. However, there is no
general method to find a Lyapunov function for arbitrary nonlinear
system.
Stability analysis of such systems can be performed in different

frameworks such as passivity, dissipativity [1], input-to-state
stability (ISS) [2] and its variations [3–6]. We will use the notion
of input-to-state dynamical stability (ISDS) introduced in [7]. This
property is equivalent to ISS, however the advantage of ISDS over
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ISS is that the bound for the trajectories takes essentially only the
recent values of the input u into account and in many cases it gives
a better bound for trajectories due to the memory fading effect of
the disturbance input u. Moreover, the gains in the trajectory based
definition of ISDS are the same as in the definition of the ISDS
Lyapunov function, which is in general not true for the ISS systems.
In many applications a large scale system of the form (1) can be

considered as an interconnection of several subsystems of lower
dimensions such that stability properties, for example Lyapunov
functions, are known for each of the subsystems. A small-gain
condition canhelp us to check stability and to construct a Lyapunov
function for the whole system.
In this paperwe use a small-gain condition for interconnections

of an arbitrary number of ISDS subsystems and show how an ISDS
Lyapunov function can be constructed for the whole system if this
small-gain condition is satisfied. To this end, consider n ≥ 2
interconnected subsystems

ẋi(t) = fi(x1(t), . . . , xn(t), u(t)), i = 1, . . . , n, (2)

where n ∈ N, xi(t) ∈ RNi , Ni ∈ N, u(t) ∈ Rm, fi :
R
∑n
j=1 Nj+m → RNi and assume that each subsystem is ISDS. We

consider this interconnection as one large scale system (1) with
x = (xT1, . . . , x

T
n)
T , f (x, u) = (f1(x, u)T , . . . , fn(x, u)T )T and look

for a condition that assures that the whole system is ISDS with
respect to the state x and the input u.
Recall that stability conditions for an interconnection of two

ISS systems were developed in [8,9]. In [10] a small-gain theorem
for n ∈ N interconnected ISS systems was proved. Since ISS
Lyapunov functions are an important tool to verify the ISS property,
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a Lyapunov formulation of the small-gain theorem was given for
two interconnected systems in [9]. There, an explicit construction
of the ISS Lyapunov function of the whole system was shown. In
[11,5,12] an explicit construction of an ISS Lyapunov function for
the overall system of n interconnected subsystems was derived
under a sufficient small-gain condition.
Similar to ISS systems the ISDS property of system (1) is

equivalent to the existence of an ISDS Lyapunov function for
system (1), see [4]. Also a 0-GAS small-gain theorem for two
interconnected systems with the input u = 0 can be found in [4].
The purpose of this paper is to extend thementioned results for

ISS systems to the case of ISDS systems. In particular we present
a small-gain theorem for n ∈ N interconnected ISDS systems
of the form (2) and provide a construction of an ISDS Lyapunov
function as well as the rates and gains of the ISDS estimation for
the entire system consisting of n ∈ N interconnected ISDS systems
under a small-gain condition. Moreover, we derive decay rates of
the trajectories of n ∈ N interconnected ISDS systems and the
trajectory of the entire system with the external input u = 0.
The organisation of this paper is the following: The next section

introduces necessary notions. Section 3 contains themain result of
the paper. Examples are given in Section 4 and the conclusions are
collected in Section 5.

2. Preliminaries

By xT we denote the transposition of a vector x ∈ Rn, n ∈ N,
furthermore R+ := [0,∞) and Rn

+
denotes the positive orthant

{x ∈ Rn : x ≥ 0}where we use the standard partial order for x, y ∈
Rn given by
x ≥ y⇔ xi ≥ yi, i = 1, . . . , n and x 6≥ y⇔ ∃ i : xi < yi.
| · | denotes the Euclidean norm in Rn and the essential

supremum norm of a function f is denoted by ‖f ‖. Furthermore
|x|∞ denotes the maximum norm of x ∈ Rn and ∇V the gradient
of a function V : Rn → R+. For a function v : R+ → Rm we define
its restriction to the interval [s1, s2] by

v[s1,s2](t) :=
{
v(t) if t ∈ [s1, s2],
0 otherwise, t, s1, s2 ∈ R+.

Definition 2.1. We define following classes of functions:

P :=
{
f : Rn → R+ | f (0) = 0, f (x) > 0, x 6= 0

}
K := {γ : R+ → R+ | γ is continuous, γ (0) = 0

and strictly increasing}
K∞ := {γ ∈ K | γ is unbounded}
L := {γ : R+ → R+ | γ is continuous and strictly decreasing

with lim
t→∞

γ (t) = 0}

KL := {β : R+ × R+ → R+ | β is continuous, β(·, t) ∈ K,
β(r, ·) ∈ L,∀ t, r ≥ 0}

KLD := {µ ∈ KL | µ(r, t + s) = µ(µ(r, t), s),∀ r, t, s ≥ 0}.

We will call functions of class P positive definite.

Remark 2.2. The condition µ(r, t + s) = µ(µ(r, t), s) implies
µ(r, 0) = r,∀ r ≥ 0. To show this suppose that there exists r ≥ 0
such that µ(r, 0) 6= r . Then

µ(r, 0) = µ(r, 0+ 0) = µ(µ(r, 0), 0) 6= µ(r, 0),

which is a contradiction. The last inequality follows from the strict
monotonicity of µ with respect to the first argument. This shows
the assertion.

Note that, if γ ∈ K∞, then there exists the inverse function
γ−1 : R+ → R+ with γ−1 ∈ K∞. The proof can be found in [5].

Definition 2.3. System (1) is called input-to-state stable (ISS), if
there exist β ∈ KL and γ ISS ∈ K∞ such that
|x(t; x0, u)| ≤ max
{
β(|x0| , t), γ ISS(‖u‖)

}
(3)

∀ x0 ∈ RN , t ∈ R+ and essentially bounded andmeasurable inputs
u ∈ Rm. γ ISS is called gain.

This concept has been first introduced in [2], where an equiva-
lent formulation with sum of the both terms instead of max in (3)
has beenused. It is known for ISS systems that if lim supt→∞ u(t) =
0 then also limt→∞ x(t) = 0 holds. However with t →∞ (3) pro-
vides only a constant positive bound for u 6≡ 0. Another stability
property equivalent to ISS is the following:

Definition 2.4. System (1) is called input-to-state dynamically
stable (ISDS), if there exist functions µ ∈ KLD , η, γ ISDS ∈ K∞
such that

|x(t; x0, u)| ≤ max{µ(η(|x0|), t),

ess sup
τ∈[0,t]

µ(γ ISDS (|u(τ )|) , t − τ)} (4)

∀ t ∈ R+, x0 ∈ RN and essentially bounded andmeasurable inputs
u ∈ Rm.µ is called decay rate, η overshoot gain and γ ISDS robustness
gain.

Note that for large t the bound (4) takes essentially only the re-
cent values of the input u into account, in particular it follows im-
mediately from (4) that lim supt→∞ u(t) = 0 ⇒ limt→∞ x(t) =
0 as stated in the following

Lemma 2.5. If system (1) is ISDS and lim supt→∞ u(t) = 0, then it
holds

lim
t→∞
|x(t; x0, u)| = 0.

Proof. Since (1) is ISDS we have

|x(t; x0, u)|
≤ max{µ(η(|x0|), t), ess sup

τ∈[0,t]
µ(γ ISDS (|u(τ )|) , t − τ)}

= max{µ(η(|x0|), t), ess sup
τ∈[0, t2 ]

µ(γ ISDS (|u(τ )|) , t − τ),

ess sup
τ∈[ t2 ,t]

µ(γ ISDS (|u(τ )|) , t − τ)}

≤ max

{
µ(η(|x0|), t), µ

(
γ ISDS

(
‖u‖[0, t2 ]

)
,
t
2

)
,

ess sup
τ∈[ t2 ,t]

µ
(
γ ISDS (|u(τ )|) , 0

)}
.

It holds lim supt→∞ u(t) = 0 and u is essentially bounded,
i.e., ∃ K ∈ R+ such that ‖u‖[0,t] ≤ K , ∀ t > 0. Furthermore ∀ ε >
0 ∃ T > 0 such that ∀ τ ∈ [ T2 , T ] : ess sup

τ∈[ T2 ,T ]
γ ISDS(|u(τ )|) < ε. With

these considerations, theKLD-property of µ and Remark 2.2 we
get

lim
t→∞
|x(t; x0, u)| ≤ lim

t→∞
max

{
µ(η(|x0|), t),

µ

(
γ ISDS

(
‖u‖[0, t2 ]

)
,
t
2

)
, ess sup
τ∈[ t2 ,t]

γ ISDS (|u(τ )|)

}

≤ max

{
lim
t→∞

µ

(
γ ISDS(K),

t
2

)
,

lim
t→∞

ess sup
τ∈[ t2 ,t]

γ ISDS (|u(τ )|)

}
= 0. �
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Remark 2.6. The notion of ISDS was introduced in [4,7]. One ob-
tains an equivalent definition of ISDS if one replaces the Euclidean
norm in (4) by any other norm. Moreover, it can be checked that
all results in [4,7] hold true, if one uses a different norm instead of
the Euclidean one.

In the rest of the paper we assume the functionsµ, η and γ ISDS
to be C∞ in R+×R or R+ respectively. This regularity assumption
is not restrictive, because for nonsmooth rates and gains one can
find smooth functions arbitrarily close to the original ones, which
was shown in [7], Appendix B.
An important tool for the stability analysis of system (1) are

Lyapunov functions.

Definition 2.7. Given ε > 0, a function V : RN → R+, which
is locally Lipschitz continuous on RN \ {0} is called ISDS Lyapunov
function of system (1), if there exist η ∈ K∞, γ

ISDS, µ ∈ KLD
such that

|x|
1+ ε

≤ V (x) ≤ η (|x|) , ∀x ∈ RN \ {0}, (5)

V (x) > γ ISDS (|u|)⇒ ∇V (x) · f (x, u) ≤ − (1− ε) g (V (x)) (6)

for almost all x ∈ RN \ {0} and all u ∈ Rm, where µ solves the
equation

d
dt
µ(r, t) = −g (µ(r, t)) , r, t > 0 (7)

for a locally Lipschitz continuous function g : R+ → R+.

It is known that ISS implies the existence of a smooth ISS
Lyapunov function for the system (1) (see [13]). A similar result
for ISDS systems was proved in [4]. We use locally Lipschitz
continuous Lyapunov functions, which are differentiable almost
everywhere (a.e.) by the Theorem of Rademacher.

Proposition 2.8. System (1) is ISDS withµ ∈ KLD and η, γ ISDS ∈
K∞, if and only if for each ε > 0 there exists an ISDS Lyapunov
function V , which is locally Lipschitz continuous on RN \ {0}.

This follows by Theorem 4, Lemma 16 in [4] and Proposition
3.5.6 in [7].

Remark 2.9. Note that for an ISDS system it holds that the decay
rate µ and gains η, γ ISDS in Definition 2.4 are exactly the same as
in Definition 2.7. Recall that in case of ISS systems the trajectory
gains are in general different from the Lyapunov ones.

In order to have ISDS Lyapunov functions with more regularity
one can use Lemma 17 in [4], which shows that for a locally
Lipschitz function V there exists a smooth function Ṽ arbitrary
close to V .
Now we consider interconnected systems of the form (2).

Definition 2.10. We call the i-th subsystem of (2) ISDS, if there
exists a KLD-function µi and functions ηi, γ ISDSi and γ ISDSij ∈

K∞ ∪ {0}, i, j = 1, . . . , n with γ ISDSii = 0 such that the solution
xi(t, x0i , u) = xi(t)with any initial value xi(0) = x

0
i and any inputs

xj, u satisfies

|xi(t)| ≤ max
{
µi(ηi(|x0i |), t),maxj

νij(xj, t), νi(u, t)
}

(8)

for all t ∈ R+, where

νi(u, t) := ess sup
τ∈[0,t]

µi(γ
ISDS
i (|u(τ )|) , t − τ),

νij(xj, t) := sup
τ∈[0,t]

µi(γ
ISDS
ij (|xj(τ )|), t − τ),
i, j = 1, . . . , n. γ ISDSij , γ ISDSi are called (nonlinear) robustness gains.
The ISDS gain matrix Γ ISDS is defined by Γ ISDS :=

(
γ ISDSij

)
, i, j =

1, . . . , n and the map Γ ISDS : Rn
+
→ Rn

+
by

Γ ISDS (s) :=
(
max
j
γ ISDS1j (sj), . . . ,max

j
γ ISDSnj (sj)

)T
, s ∈ Rn

+
. (9)

Note that by γ ISDSij ∈ K∞ ∪ {0} and for v, w ∈ Rn
+
we get

v ≥ w ⇒ Γ ISDS(v) ≥ Γ ISDS(w).

Definition 2.11. For vector valued functions x = (xT1, . . . , x
T
n)
T
:

R+ → R
∑n
i=1 Ni with xi : R+ → RNi and times 0 ≤ t1 ≤ t2, t ∈

R+ we define

x(t) := (|x1(t)| , . . . , |xn(t)|)T ∈ Rn
+
.

For u ∈ Rm, t ∈ R+ and s ∈ Rn
+
we define

γ̄ ISDS(|u(t)|) :=
(
γ ISDS1 (|u(t)|), . . . , γ ISDSn (|u(t)|)

)T
∈ Rn

+
,

µ̄(s, t) := (µ1(s1, t), . . . , µn(sn, t))T ∈ Rn
+
,

η̄(s) := (η1(s1), . . . , ηn(sn))T ∈ Rn
+
.

Now we can rewrite condition (8) in the form

x(t) ≤ max
[
µ̄
(
η̄
(
x0
)
, t
)
, sup
τ∈[0,t]

µ̄
(
Γ ISDS

(
x(τ )

)
, t − τ

)
,

sup
τ∈[0,t]

µ̄(γ̄ ISDS (|u(τ )|) , t − τ)
]

(10)

for all t ∈ R+. Note that the maximum, supremum and essential
supremum used in (10) for vectors are taken componentwise.
If we define N := N1 + · · · + Nn, x := (xT1, . . . , x

T
n)
T and

f := (f T1 , . . . , f
T
n )
T , then (2) becomes the system of the form (1).

Now the question arises under which condition the whole system
(1) is ISDS with respect to the input u and state x?
Recall that the small-gain theorem for two interconnected ISS

systems was proved in [8]. This result was extended for the case of
n ≥ 2 interconnected ISS systems in [10], Theorem 4.4, where the
small-gain condition is of the form

Γ (s) 6≥ s, ∀ s ∈ Rn
+
\ {0}. (11)

From (10), using the KLD-property of µ and with Γ ISS :=
Γ ISDS, γ̄ ISS := γ̄ ISDS, β̄(r, t) := µ̄(η̄(r), t)we get

x(t) ≤ max
{
β̄
(
x0 , t

)
,Γ ISS

(
x
)
, γ̄ ISS(‖u‖)

}
.

This implies that each subsystem of (2) is ISS and by the small-gain
condition (11) their interconnection is ISS and hence ISDS, since by
Proposition 3.4.4 (ii) in [7] the ISDS property is equivalent to ISS.
Unfortunately by use of this equivalence we loose the quantitative
information about the rate and gains of the ISDS estimation for the
whole system.
In order to conserve the quantitative information of the ISDS

rate and gains of the overall system we prove an ISDS small-gain
theorem using ISDS Lyapunov functions in the following section.

3. Main results

In this sectionwe provide a Lyapunov version of the ISDS small-
gain theorem for n ∈ N interconnected systems, where we give an
explicit constructionmethod of an ISDS Lyapunov function and the
rate and gains of the ISDS estimation for the whole system.
For the main result in this section we consider system (2) and

define the ISDS Lyapunov functions of the subsystems by
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Definition 3.1. Given εi ∈ (0, 1), a function Vi : RNi → R+, which
is locally Lipschitz continuous on RNi \ {0} is called ISDS Lyapunov
function of the i-th subsystem in (2) for i = 1, . . . , n, if it satisfies:

(i) There exists a function ηi ∈ K∞ such that

|xi|
1+ εi

≤ Vi(xi) ≤ ηi (|xi|) (12)

for all xi ∈ RNi \ {0}.
(ii) There exist functions µi ∈ KLD, γ ISDSi ∈ K∞ ∪ {0}, γ ISDSij ∈

K∞ ∪ {0}, j = 1, . . . , n, i 6= j such that for almost all xi ∈ RNi
and all essentially bounded and measurable inputs u ∈ Rm

Vi(xi) > max{γ ISDSi (|u|) ,max
j
{γ ISDSij (Vj(xj))}}

⇒ ∇Vi(xi)fi(x1, . . . , xn, u) ≤ − (1− εi) gi(Vi(xi)),
(13)

holds, where µi ∈ KLD solves the equation d
dtµi(r, t) =

−gi (µi(r, t)) , r, t > 0 for some locally Lipschitz continuous
function gi : R+ → R+, i = 1, . . . , n.

For the proof of the main result in this section we will need the
following:

Definition 3.2. A continuous path σ ∈ Kn
∞
is called an Ω-path

with respect to Γ if

(i) for each i, the function σ−1i is locally Lipschitz continuous on
(0,∞);

(ii) for every compact set K ⊂ (0,∞) there are constants 0 <
c < C such that for all points of differentiability of σ−1i and
i = 1, . . . , nwe have

0 < c ≤ (σ−1i )′(r) ≤ C, ∀ r ∈ K ;

(iii) it holds Γ (σ (r)) < σ(r), ∀ r > 0.

Remark 3.3. LetΓ ∈ (K∞∪{0})n×n be a gainmatrix. IfΓ satisfies
the small-gain condition (11), then there exists anΩ-path σ with
respect to Γ .

The proof can be found in [12], Theorem 5.2, see also [14],
however only the existence is proved in these works. It was noted
there that if one finds a point s ∈ Rn

+
with Γ (s) < s then there

is a possibility to construct a (finite) path connecting the origin to
this point and satisfying the Definition 3.1 locally, i.e., in each point
of the path between s and the origin. In general it is a nontrivial
problem to find such s, especially in case of large n. However if Γ
is defined in terms of maximization of gains as it is done in (9) the
solution is very simple and one can construct a finite but arbitrary
‘‘long’’Ω-path.

Proposition 3.4. If Γ satisfies the small-gain condition (11), then
∀ R > 0, and P ∈ Rn

+
with Pi ≥ R there exist monotone and strictly

increasing functions σi, i = 1, . . . , n such that σ := (σ1, . . . , σn)T :
[0, 1] → Rn

+
with σ(0) = 0 and σ(1) = P.

Proof. Let Ω be the set of the points s ∈ Rn
+
satisfying Γ (s) < s.

By Remark 2.8. in [15] it follows that for any x ∈ Rn
+
we have

Γ (Q (x)) ≤ Q (x), where

Q (x) := max{x,Γ (x),Γ 2(x), . . . ,Γ n−1(x)},

i.e., Q (x) is in Ω or it belongs to the boundary of Ω . Since Ω is
an open domain it is easy to find a vector P ∈ Rn

+
(searching an

arbitrary small vicinity of Q (x)) such that Γ (P) < P . Taking x >
(R, . . . , R)T in Q (x) sufficiently large we will find a P sufficiently
large. In [12,14] it was shown that the sequence Γ k(P), k = 0,
1, . . . converges to the origin and the linear interpolation of these
points yields the desired path. �
Now we present our main result:

Theorem 3.5. Assume that each subsystem of (2) is ISDS. This means
that for each subsystem and for each εi ∈ (0, 1) there exists an ISDS
Lyapunov function Vi, which satisfies (12) and (13). Let Γ ISDS be given
by (9), satisfying the small-gain condition (11) and let σ ∈ Kn

∞

be an Ω-path from Remark 3.3 with Γ = Γ ISDS. Then the whole
system (1) is ISDS and its ISDS Lyapunov function is given by

V (x) = ψ−1
(
max
i

{
σ−1i (Vi(xi))

})
(14)

with rates and gains

g(r) = (ψ−1)′ (ψ(r))min
i

{
(σ−1i )′(σi(ψ(r)))gi(σi(ψ(r)))

}
,

r > 0,

η(r) = ψ−1
(
max
i

{
σ−1i (ηi(r))

})
, r > 0 (15)

γ ISDS(r) = ψ−1
(
max
i

{
σ−1i (γ ISDSi (r))

})
, r > 0,

where ψ(|x|) = mini σ−1i
(
|x|
√
n

)
, t ∈ R+.

Remark 3.6. Note that the small-gain condition (11) is equivalent
to the cycle condition (see [5], Lemma 2.3.14 for details). A k-
cycle in a matrix Γ = (γij)

n
i,j=1 is a sequence of K∞ functions

(γi0 i1 , γi1i2 , . . . , γik−1 ik) of length kwith i0 = ik. The cycle condition
for a matrix Γ is that all k-cycles of Γ are contractions, i.e.,

γi0 i1 ◦ γi1,i2 ◦ · · · ◦ γik−1,ik < Id,

for all i0, . . . , ik ∈ {1, . . . , n} with i0 = ik and k ≤ n. See for
example [5,6] for further details.

The proof of Theorem 3.5 follows the idea of the proof of
Theorem5.3 in [12] and corresponding results in [11]with changes
to construct the gains and rate of the whole system as in (15).

Proof. Let 0 6= x =
(
xT1, . . . , x

T
n

)T . We define
V (x) := max

i

{
σ−1i (Vi(xi))

}
, η̄(|x|) := max

i

{
σ−1i (ηi(|x|))

}
,

ψ (|x|) := min
i
σ−1i

(
|x|
√
n

)
,

where Vi satisfies (12) for i = 1, . . . , n. Note that σ−1i ∈ K∞. Let j
be such that |x|∞ = |xj|∞ for some j ∈ {1, . . . , n}, then by

max
i
σ−1i

(
|xi|
1+ εi

)
≥ max

i
σ−1i

(
|xi|∞
1+ ε

)
≥ σ−1j

(
|xj|∞
1+ ε

)
≥ min

i
σ−1i

(
|x|

√
n(1+ ε)

)
(16)

where ε := maxi εi. We have

ψ

(
|x|
1+ ε

)
≤ V (x) ≤ η(|x|). (17)

Note that V is locally Lipschitz continuous and hence it is
differentiable almost everywhere. For any i ∈ {1, . . . , n} consider
open domainsMi ∈ RN \ {0} defined by

Mi :=
{(
xT1, . . . , x

T
n

)T
∈ RN \ {0} : σ−1i (Vi(xi))

> max
j6=i

{
σ−1j (Vj(xj))

}}
.
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Now for any x̂ = (x̂T1, . . . , x̂
T
n)
T
∈ Mi it follows that there is a

neighborhood U of x̂ such that V (x) = σ−1i (Vi(xi)) holds for all
x ∈ U . Let γ̄ ISDS(|u|) := maxj{σ−1j (γ ISDSj (|u|))}, j = 1, . . . , n.
Assume V (x) > γ̄ ISDS(|u|). Then

Vi(xi) = σi(V (x)) > σi(σ
−1
i (γ ISDSi (|u|))) = γ ISDSi (|u|).

From Definition 3.2(iii) and x ∈ Mi we have

Vi(xi) = σi(V (x)) > max
j6=i

γ ISDSij (σj(V (x))) ≥ max
j6=i

γ ISDSij (Vj(xj)).

Thus (13) implies for almost all x ∈ Mi

∇V (x)f (x, u) ≤ −(1− εi)
(
σ−1i

)′
(Vi(xi))gi(Vi(xi))

= −(1− εi)g̃i(V (x)),

where g̃i(r) := (σ−1i )′(σi(r))gi(σi(r)) is positive definite and
locally Lipschitz. As index i was arbitrary in these considerations,
with γ̄ ISDS(|u|) = maxj

{
σ−1j (γ ISDSj (|u|))

}
and ḡ(r) := mini g̃i(r),

ε = maxi εi the condition (6) for the function V is satisfied. From
(17) we get

|x|
1+ ε

≤ ψ−1
(
V (x)

)
≤ ψ−1 (η̄ (|x|))

and we define V (x) := ψ−1(V (x)) as the ISDS Lyapunov function
candidate with η (|x|) := ψ−1 (η̄ (|x|)). Note that ψ−1 ∈ K∞ and
V (x) is locally Lipschitz continuous. By the previous calculations
for V (x) it holds

V (x) ≥ ψ−1
(
γ̄ ISDS (|u|)

)
=: γ ISDS (|u|)⇒

d
dt
V (x)

≤ −(1− ε)g (V (x)) , a.e.,

where g(r) := (ψ−1)′ (ψ(r)) ḡ (ψ(r)) is locally Lipschitz
continuous. Altogether V (x) satisfies (5) and (6). Hence V (x) is the
ISDS Lyapunov function of the whole system and by application of
Proposition 2.8 the whole system is ISDS. �

In the following we present a Corollary, which is similar to
Theorem 10 in [4] for two coupled systems and covers n ∈ N
coupled systems, where the rates and gains defined in Theorem3.5
are used. We get decay rates for the trajectories of the whole
system and each subsystem of n coupled systems with external
input u = 0.

Corollary 3.7. Consider system (2) and assume that all subsystems
are ISDS with decay rates µi and gains ηi, γ ISDSi and γ ISDSij , i, j =
1, . . . , n, i 6= j. If the small-gain condition (11) is satisfied, then the
coupled system

ẋ =

ẋ1...
ẋn

 =
f1(x1, . . . , xn)...
fn(x1, . . . , xn)

 = f (x) (18)

is globally asymptotically stable at 0 ( 0-GAS) with

|xj(t)| ≤ |x(t)| ≤ µ
(
ψ−1

(
max
i

{
σ−1i

(
ηi
(∣∣x0∣∣))}) , t) (19)

for i, j = 1, . . . , n, all t ∈ R+, with functions µ, σ , ψ and ηi
from Theorem 3.5.

Remark 3.8. Note that for large n function ψ in (15) becomes
‘‘small’’ and hence the rates and gains defined by ψ−1 become
‘‘large’’ which is not desired in applications. To avoid this kind of
conservativeness one can use the maximum norm |x|∞ for the
states in the above definitions and in Theorem 3.5 and Corol-
lary 3.7. This is possible as we have noted in Remark 2.6. In this
case the division by

√
n in (16) can be avoided andwe get (15)with

ψ (|x|∞) = mini σ−1i (|x|∞). This is used in our examples below.
0 5 10 15 20

1

2

3

4

5

6

t 

 

eq. (19)
[4]
|x| ∞

Fig. 1. |x|∞ and estimations with help of Corollary 3.7 (solid curve) and Example
12 in [4] (dashed curve).

Unfortunately we cannot compare directly the estimation of
Theorem10 in [4]with our estimation (19), since another approach
for estimations of the trajectories for two coupled systems was
used in [4]. The extension of this approach to n > 2 seems to be
hardly possible. Our approach allows to consider n interconnected
systems.

4. Examples

To compare Theorem 10 in [4] with Corollary 3.7 for the case of
two subsystems we consider the Example 12 given in [4].

Example 4.1. Consider two interconnected systems

ẋ1(t) = −x1(t)+
x32(t)
2
, ẋ2(t) = −x32(t)+ x1(t).

As in [4] we choose Vi = |xi| and γ1(r) = 2
3 r
3, γ2(r) =

3
√
4
3 r, η1, η2 = Id, g1(r) =

1
4 r, g2(r) =

1
4 r
3. It is easy to check that

the small-gain condition is satisfied and anΩ-path can be chosen

by σ1(r) = Id, σ2(r) = 3
√
4.49
3 r . For x

0
1 = x

0
2 = 2 the solution xwas

calculated by Matlab. The plot of |x|∞ as well as its estimations by
(19) and from [4] are shown on Fig. 1. To compare our estimation
with [4] we plot the ISDS estimation in Example 12 in [4] with
respect to the maximum norm for states using Remark 11 in [4].
The solid (dashed) curve is the estimation of |x|∞ by Corollary 3.7
[4].
Both estimations tend to zero as well as the trajectory and provide
nearly the same estimate for the norm of the trajectory as it should
be expected.

The advantage of our approach is that it can be applied for larger
interconnections. The following example illustrates the application
of Theorem 3.5 for a construction of an ISDS Lyapunov function for
the case n ≥ 2.

Example 4.2. Consider n ∈ N interconnected systems of the form

ẋ1(t) = −a1x1(t)+
n∑
j>1

1
n
b1jx2j (t)+

1
n
u(t),

ẋi(t) = −aixi(t)+
1
n
bi1
√
x1(t)+

n∑
j>1, j6=i

1
n
bijxj(t)

+
1
n
u(t), i = 2, . . . , n,

(20)

for bij ∈ [0, 1) , ai = (1+ εi), εi ∈ (1,∞) and any input u ∈ Rm.
We choose Vi(xi) = |xi|∞ as an ISDS Lyapunov function candidate
for the i-th subsystem, i = 1, . . . , n and define
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Fig. 2. |x|∞ and ISDS estimation of the whole system consisting of n = 3
subsystems of the form (20).

γ ISDS1j (r) := b1jr2, j = 2, . . . , n

γ ISDSj1 (r) := bj1
√
r, j = 2, . . . , n

γ ISDSij (r) := bijr, i, j = 2, . . . , n, i 6= j,

γ ISDSi (r) := r, i = 1, . . . , n,

Γ ISDS := (γ ISDSij ), i, j = 1, . . . , n, γ ISDSii ≡ 0, ηi(r) := r and
µi(r, t) = e−εit r as solution of ddtµi(r, t) = −gi(µi(r, t)) with
gi(r) := εir we obtain that Vi is an ISDS Lyapunov function of
the i-th subsystem. To check whether the small-gain condition is
satisfied, we use the cycle condition, which is satisfied (this can be
easily verified).
We choose σ(s) = (σ1(s), . . . , σn(s))T with σ1(s) := s2 and
σj(s) := s, j = 2, . . . , n for s ∈ R+, which is one possibility
of choosing σ . Then σ is an Ω-path, which can be easily checked,
especially σ satisfies Γ ISDS (σ (s)) < σ(s), ∀s > 0.
Now by application of Theorem 3.5 the whole system is ISDS and
the ISDS Lyapunov function is given by

V (x) = ψ−1
(
max
i
σ−1i (|xi|∞)

)
with ψ(r) = mini σ−1i (r) =

{√
r, r ≥ 1,
r, r < 1 . The gains and rates

ofthe ISDS estimation and ISDS Lyapunov function, respectively,
are given by (15). Furthermore, if u(t) ≡ 0 then by Corollary 3.7
the whole system is 0-GAS and the decay rate is given by (19).
In the followingwe illustrate the trajectory and the ISDS estimation
for a system consisting of subsystems of the form (20) for n = 3.
We choose ai = 11

10 , bij =
1
2 , i, j = 1, 2, 3, i 6= j, u(t) = exp(−t)

as input and the initial values x01 = 0.5, x
0
2 = 0.8 and x

0
3 = 1.2.

Then we calculate the ISDS estimation of the whole system as
described above and get

|x(t)|∞ ≤ max{µ((x
0
3)
2, t), ess sup

τ∈[0,t]
µ(
√
u(τ ), t − τ)}.

This estimation is displayed in Fig. 2 (dashed line). To verify
whether the norm of the trajectory of the whole system is below
the ISDS estimation we solve the system of the form (20) for n = 3
byMatlab. The normof the resulting trajectory of thewhole system
is also displayed in Fig. 2. We see, if the input u(t) tends to zero the
ISDS estimation tends to zero as well, whereas in the case of ISS
this is not true. Also the norm of the trajectory tends to zero and is
below the ISDS estimation.

5. Conclusions

We have shown that a network of interconnected ISDS subsys-
tems is again ISDS if the small-gain condition (11) is satisfied. In
this case we provided explicit expressions for an ISDS Lyapunov
function and the corresponding rates and gains of the entire in-
terconnection. As an application of these results we investigated a
system of interconnections with zero external input and derived
decay rates of the subsystems and the entire system. An example
with two systems taken from [4] compares the resulting estimates
of the norm of a trajectory obtained by [4] and by (19). Another
example with n interconnected ISDS systems illustrates the appli-
cation of our main result.
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