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Abstract. We consider interconnections of n nonlinear subsystems in the input-to-state stabil-
ity (ISS) framework. For each subsystem an ISS Lyapunov function is given that treats the other
subsystems as independent inputs. A gain matrix is used to encode the mutual dependencies of
the systems in the network. Under a small gain assumption on the monotone operator induced by
the gain matrix, a locally Lipschitz continuous ISS Lyapunov function is obtained constructively for
the entire network by appropriately scaling the individual Lyapunov functions for the subsystems.
The results are obtained in a general formulation of ISS; the cases of summation, maximization, and
separation with respect to external gains are obtained as corollaries.
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1. Introduction. In many applications large scale systems are obtained through
the interconnection of a number of smaller components. The stability analysis of such
interconnected systems may be a difficult task especially in the cases of a large number
of subsystems, arbitrary interconnection topologies, and nonlinear subsystems.

One of the earliest tools in the stability analysis of feedback interconnections of
nonlinear systems are small gain theorems. Such results have been obtained by many
authors starting with [36]. These results are classically built on the notion of Lp gains;
see [3] for a recent, very readable account of the developments in this area. While most
small gain results for interconnected systems yield only sufficient conditions, in [3] it
has been shown in a behavioral framework how the notion of gains can be modified
so that the small gain condition is also necessary for robust stability.

Small gain theorems for large scale systems have been developed, e.g., in
[26, 34, 23]. In [26] the notions of connective stability and stabilization are intro-
duced for interconnections of linear systems using the concept of vector Lyapunov
functions. In [23] stability conditions in terms of Lyapunov functions of subsystems
have been derived. For the linear case characterizations of quadratic stability of large
scale interconnections have been obtained in [16]. A common feature of these refer-
ences is that the gains describing the interconnection are essentially linear. With the
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introduction of the concept of input-to-state stability (ISS) in [28], it has become a
common approach to consider gains as nonlinear functions of the norm of the input.
In this nonlinear case small gain results have been derived first for the interconnection
of two systems in [18, 32]. A Lyapunov version of the same result is given in [17]. A
general small gain condition for large scale ISS systems has been presented in [6]. Re-
cently, such arguments have been used in the stability analysis of observers [1], in the
stability analysis of decentralized model predictive control [22], and in the stability
analysis of groups of autonomous vehicles.

During the revision of this paper it came to our attention that, following the first
general small gain theorems for networks [21, 33, 5, 8, 7, 6], other generalizations
of small gain results based on similar ideas have been obtained very recently using
the maximization formulation of ISS: A generalized small gain theorem for output-
Lagrange-input-to-output stable systems in network interconnections has been ob-
tained in [19]. In this reference the authors study ISS in the maximization framework
and conclude ISS from a small gain condition in the cycle formulation. It has been
noted in [8] that in the maximum case the cycle condition is equivalent to the operator
condition examined here. An extension of generalized small gain results to retarded
functional differential equations based on the more general cycle condition and vector
Lyapunov functions has recently been obtained in [20]. In this reference a construction
of a Lyapunov function is shown which takes a different approach to the construction
of an overall Lyapunov function. This construction depends vitally on the use of the
maximum formulation of ISS.

In this paper we present sufficient conditions for the existence of an ISS Lyapunov
function for a system obtained as the interconnection of many subsystems. The results
are of interest in two ways. First, it is shown that a small gain condition is sufficient
for ISS of the large scale system in the Lyapunov formulation. Second, an explicit
formula for an overall Lyapunov function is given. As the dimensions of the subsystems
are essentially lower than the dimension of their interconnection, finding Lyapunov
functions for them may be an easier task than for the whole system.

Our approach is based on the notion of ISS introduced in [28] for nonlinear systems
with inputs. A system is ISS if, roughly speaking, it is globally asymptotically stable
in the absence of inputs (so-called 0-GAS) and if any trajectory eventually enters a
ball centered at the equilibrium, which has a radius given by a monotone continuous
function, the gain, of the size of the input (the so-called asymptotic gain property);
cf. [31].

The concept of ISS turned out to be particularly well suited to the investigation
of interconnections. For example, it is known that cascades of ISS systems are again
ISS [28], and small gain results have been obtained. We briefly review the results of
[18, 17] in order to explain the motivation for the approach of this paper. Both papers
study a feedback interconnection of two ISS systems as represented in Figure 1.1.

The small gain condition in [18] is that the composition of the gain functions
γ12, γ21 is less than identity in a robust sense. We denote the composition of functions
f, g by ◦; that is, (f ◦ g)(x) := f(g(x)). The small gain condition then is that if on
(0,∞) we have

(1.1) (id + α1) ◦ γ12 ◦ (id + α2) ◦ γ21 < id

for suitable K∞-functions α1, α2, then the feedback system is an ISS system with
respect to the external inputs.

In this paper we concentrate on the equivalent definition of ISS in terms of ISS
Lyapunov functions [31]. The small gain theorem for ISS Lyapunov functions from
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Fig. 1.1. Feedback interconnection of two ISS systems with gains γ12 from Σ2 to Σ1 and γ21
from Σ1 to Σ2.

[17] states that if on (0,∞) the small gain condition

(1.2) γ12 ◦ γ21 < id

is satisfied, then an ISS Lyapunov function may be explicitly constructed as follows.
Condition (1.2) is equivalent to γ12 < γ−1

21 on (0,∞). This permits us to construct
a function σ2 ∈ K∞ such that γ21 < σ2 < γ−1

12 on (0,∞); see Figure 1.2. An ISS
Lyapunov function is then defined by scaling and taking the maximum, that is, by
setting V (x) = max{V1(x1), σ−1

2 (V2(x2))}. This ISS Lyapunov function describes sta-
bility properties of the whole interconnection. In particular, given an input u, it can
be seen how fast the corresponding trajectories converge to the neighborhood and
how large this neighborhood is.

s1

s2 γ −1
12 (s1)

γ21(s1)

Ω

Fig. 1.2. Two gain functions satisfying (1.2).

At first sight the difference between the small gain conditions in (1.1) from [18] and
(1.2) from [17] appears surprising. This might lead to the impression that the difference
comes from studying the problem in a trajectory-based or Lyapunov-based framework.
This, however, is not the case; the reason for the difference in the conditions is a result
of the formulation of the ISS condition. In [18] a summation formulation was used for
the trajectory-based case. In the maximization formulation of the trajectory case, the
small gain condition is again (1.2) [6]. In [17] the Lyapunov formulation is investigated
using maximization; the corresponding result for summation is Corollary 5.6 below,
requiring condition (1.1).

In order to generalize the existing results it is useful to reinterpret the approach
of [17]: note that the gains may be used to define a matrix

Γ :=

(
0 γ12
γ21 0

)
,
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which defines in a natural way a monotone operator on R2
+. In this way an alternative

characterization of the area between γ21 and γ−1
12 in Figure 1.2 is that it is the area

where Γ(s) < s (with respect to the natural ordering in R2
+). Thus the problem of

finding σ2 may be interpreted as the problem of finding a path σ : r �→ (r, σ2(r)), r ∈
(0,∞), such that Γ ◦ σ < σ.

We generalize this constructive procedure for a Lyapunov function in several
directions. First, the number of subsystems entering the interconnection will be ar-
bitrary. Second, the way in which the gains of subsystem i affect subsystem j will
be formulated in a general manner using the concept of monotone aggregation func-
tions (MAFs). This class of functions allows for a unified treatment of summation
and maximization or other ways of formulating ISS conditions. Following the matrix
interpretation, this leads to a monotone operator Γμ on Rn

+. The crucial thing to find
is a sufficiently regular path σ such that Γμ ◦ σ < σ. This allows for a scaling of the
Lyapunov functions for the individual subsystems to obtain one for the large scale
system.

Small gain conditions on Γμ as in [5, 6] yield sufficient conditions that guarantee
that the construction of σ can be performed. However, in [5, 6] the trajectory formu-
lation of ISS has been studied, and the main technical ingredient was, essentially, to
prove bounds on (id − Γμ)

−1. The sufficient condition for the existence of the path
σ turns out to be the same, but the path itself had not been used in [5, 6]. In fact,
the line of argument used there is completely different. It is shown in [24] that the
results of [6] also hold for the more general ISS formulation using monotone aggre-
gation functions. The condition requires essentially that the operator is not greater
or equal to the identity in a robust sense. The construction of σ then relies on a
rather delicate topological argument. What is obvious for the interconnection of two
systems is not that clear in higher dimensions. It can be seen that the small gain
condition imposed on the interconnection is actually a sufficient condition that allows
for the application of the Knaster–Kuratowski–Mazurkiewicz theorem; see [6, 24] for
further details. We show in section 9 how the construction works for three subsystems,
but it is fairly clear that this methodology is not something one would like to carry
out in higher dimensions. In the maximization formulation a viable alternative is the
approach pursued by [20].

The construction of the Lyapunov function is explicit once the scaling function
σ is known. Thus to have a really constructive procedure, a way of constructing
σ is required. We do not study this problem here, but we note that based on an
algorithm by Eaves [11], it is actually possible to turn this mere existence result into
a (numerically) constructive method [24, 9]. Using the algorithm by Eaves and the
technique of Proposition 8.8, it is then possible to construct such a vector function
(but of finite length) numerically; see [24, Chapter 4]. This will be treated in more
detail in future work.

The paper is organized as follows. The next section introduces the necessary nota-
tion and basic definitions, in particular, the notion of MAFs and different formulations
of ISS. Section 3 gives some motivating examples that also illustrate the definitions
of section 2 and explain how different MAFs occur naturally for different problems.
In section 4 we introduce small gain conditions given in terms of monotone operators
that naturally appear in the definition of ISS. Section 5 contains the main results,
namely, the existence of the vector scaling function σ and the construction of an ISS
Lyapunov function. In this section we concentrate on strongly connected networks
which are easier to deal with from a technical point of view. Once this case has been
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resolved it is shown in section 6 how simply connected networks may be treated by
studying the strongly connected components.

The actual construction of σ is given in section 8 in order to postpone the topo-
logical considerations until after applications to interconnected ISS systems have been
considered in section 7. Since the topological difficulties can be avoided in the case
n = 3, we treat this case briefly in section 9 to show a simple construction for σ.
Section 10 concludes the paper.

2. Preliminaries.

2.1. Notation and conventions. Let R be the field of real numbers and Rn be
the vector space of real column vectors of length n. We denote the set of nonnegative
real numbers by R+, and Rn

+ := (R+)
n denotes the positive orthant in Rn. On Rn

+

the standard partial order is defined as follows. For vectors v, w ∈ Rn we denote

v ≥ w :⇐⇒ vi ≥ wi for i = 1, . . . , n,

v > w :⇐⇒ vi > wi for i = 1, . . . , n,

v � w :⇐⇒ v ≥ w and v 
= w.

The maximum of two vectors or matrices is to be understood componentwise. By |·| we
denote the 1-norm on Rn and by Sr, the induced sphere of radius r in Rn intersected
with Rn

+, which is an (n − 1)-simplex. On Rn
+ we denote by πI : Rn

+ → R#I
+ the

projection of the coordinates in Rn
+ corresponding to the indices in I ⊂ {1, . . . , n}

onto R#I .
The standard scalar product in Rn is denoted by 〈·, ·〉. By Uε(x) we denote the

open ball of radius ε around x with respect to the Euclidean norm ‖ · ‖. The induced
operator norm, i.e., the spectral norm, of matrices is also denoted by ‖ · ‖.

The space of measurable and essentially bounded functions is denoted by L∞

with norm ‖ · ‖∞ . To state the stability definitions that we are interested in, three
sets of comparison functions are used: K = {γ : R+ → R+, γ is continuous, strictly
increasing, and γ(0) = 0} and K∞ = {γ ∈ K : γ is unbounded}. A function β :
R+ × R+ → R+ is of class KL if it is of class K in the first argument and strictly
decreasing to zero in the second argument. We will call a function V : RN → R+

proper and positive definite if there are ψ1, ψ2 ∈ K∞ such that

ψ1(‖x‖) ≤ V (x) ≤ ψ2(‖x‖) for all x ∈ RN .

A function α : R+ → R+ is called positive definite if it is continuous and satisfies
α(r) = 0 if and only if r = 0.

2.2. Problem statement. We consider a finite set of interconnected systems
with state x = (xT1 , . . . , x

T
n )

T , where xi ∈ RNi , i = 1, . . . , n, and N :=
∑
Ni. For

i = 1, . . . , n the dynamics of the ith subsystem is given by

(2.1) Σi : ẋi = fi(x1, . . . , xn, u), x ∈ RN , u ∈ RM , fi : R
N+M → RNi .

For each i we assume unique existence of solutions and forward completeness of
Σi in the following sense. If we interpret the variables xj , j 
= i, and u as unrestricted
inputs, then this system is assumed to have a unique solution defined on [0,∞) for
any given initial condition xi(0) ∈ RNi and any L∞-inputs xj : [0,∞) → RNj , j 
= i,
and u : [0,∞) → RM . This can be guaranteed for instance by suitable Lipschitz and
growth conditions on the fi. It will be no restriction to assume that all systems have
the same (augmented) external input u.
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We write the interconnection of subsystems (2.1) as

(2.2) Σ : ẋ = f(x, u), f : RN+M → RN .

Associated to such a network is a directed graph, with vertices representing the sub-
systems and where the directed edges (i, j) correspond to inputs going from system
j to system i; see Figure 2.1. We will call the network strongly connected if its inter-
connection graph has the same property.

Fig. 2.1. An example of a network of interconnected systems and the associated graph.

For networks of the type that has just been described, we wish to construct
Lyapunov functions as they are introduced now.

2.3. Stability. An appropriate stability notion to study nonlinear systems with
inputs is ISS, introduced in [28]. The standard definition is as follows. A forward
complete system ẋ = f(x, u), with x ∈ RN , u ∈ RM , is called input-to-state stable
if there are β ∈ KL and γ ∈ K such that for all initial conditions x0 ∈ RN and all
u ∈ L∞(R+,RM ), we have

(2.3) ‖x(t;x0, u(·))‖ ≤ β(‖x0‖, t) + γ(‖u‖∞) .

It is known to be an equivalent requirement to ask for the existence of an ISS Lya-
punov function [30]. These functions can be chosen to be smooth. For our purposes,
however, it will be more convenient to have a broader class of functions available for
the construction of a Lyapunov function. Thus we will call a function a Lyapunov
function candidate if the following assumption is met.

Assumption 2.1. The function V : RN → R+ is continuous, proper, and positive
definite and locally Lipschitz continuous on RN \ {0}. Note that by Rademacher’s
theorem (e.g., [12, Theorem 5.8.6, p. 281]) locally Lipschitz continuous functions on
RN \ {0} are differentiable almost everywhere in RN .

Definition 2.2. We will call a function satisfying Assumption 2.1 an ISS Lya-
punov function for ẋ = f(x, u) if there exist γ ∈ K and a positive definite function α
such that in all points of differentiability of V we have

(2.4) V (x) ≥ γ(‖u‖) =⇒ ∇V (x)f(x, u) ≤ −α(‖x‖) .

ISS and ISS Lyapunov functions are related in the expected manner.
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Theorem 2.3. A system is ISS if and only if it admits an ISS Lyapunov function
in the sense of Definition 2.2.

This has been proved for smooth ISS Lyapunov functions in the literature [30].
So the hard converse statement is clear, as it is even possible to find smooth ISS
Lyapunov functions which satisfy Definition 2.2. The sufficiency proof for the Lipschitz
continuous case goes along the lines presented in [30, 31] using the necessary tools
from nonsmooth analysis; cf. [4, Theorem 6.3].

Merely continuous ISS Lyapunov functions have been studied in [14, Chapter 3],
arising as viscosity supersolutions to certain partial differential inequalities. Here we
work with the Clarke generalized gradient ∂V (x) of V at x. For functions V satisfying
Assumption 2.1, Clarke’s generalized gradient satisfies for x 
= 0 that

(2.5)
∂V (x) = conv {ζ ∈ Rn : there exists xk → x : ∇V (xk) exists and ∇V (xk) → ζ} .

An equivalent formulation to (2.4) is given by

(2.6) V (x) ≥ γ(‖u‖) =⇒ for all ζ ∈ ∂V (x) : 〈ζ, f(x, u)〉 ≤ −α(‖x‖) .
Note that (2.6) is also applicable in points where V is not differentiable.

The gain γ in (2.3) is in general different from the ISS Lyapunov gain in (2.4). In
the following we will always assume that gains are of class K∞.

2.4. Monotone aggregation. In this paper we concentrate on the construc-
tion of ISS Lyapunov functions for the interconnected system Σ. For a single subsys-
tem (2.1), in a similar manner to (2.4), we wish to quantify the combined effect of the
inputs xj , j 
= i, and u on the evolution of the state xi. As we will see in the examples
given in section 3, it depends on the system under consideration how this combined
effect can be expressed: through the sum of individual effects, using the maximum of
individual effects, or by other means. In order to be able to give a general treatment
of this, we introduce the notion of MAFs.

Definition 2.4. A continuous function μ : Rn
+ → R+ is called a monotone

aggregation function if the following three properties hold:
(M1) Positivity: μ(s) ≥ 0 for all s ∈ Rn

+ and μ(s) > 0 if s � 0.
(M2) Strict increase1: If x < y, then μ(x) < μ(y).
(M3) Unboundedness: if ‖x‖ → ∞, then μ(x) → ∞.

The space of MAFs is denoted by MAFn, and μ ∈ MAFm
n denotes a vector MAF; i.e.,

μi ∈ MAFn for i = 1, . . . ,m.
A direct consequence of (M2) and continuity is the following weaker monotonicity

property:
(M2′) Monotonicity: x ≤ y =⇒ μ(x) ≤ μ(y).

In [24, 25] MAFs have additionally been required to satisfy another property:
(M4) Subadditivity: μ(x+ y) ≤ μ(x) + μ(y),

which we do not need for the constructions provided in this paper, since we take a
different approach; see section 6.

Standard examples of MAFs satisfying (M1)–(M4) are

μ(s) =

n∑
i=1

sli, where l ≥ 1, or μ(s) = max
i=1,...,n

si or

μ(s1, s2, s3, s4) = max{s1, s2}+max{s3, s4} .
1Compare assumption (2.10), where for the purposes of this paper, (M2) is further restricted.
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On the other hand, the following function is not a MAF, since (M1) and (M3) are not
satisfied: ν(s) =

∏n
i=1 si.

Using this definition, we can define a notion of an ISS Lyapunov function for
systems with multiple inputs. In this case Σi in (2.1) will have several gains γij
corresponding to the inputs xj . For notational simplicity, we will include the gain γii ≡
0 throughout this paper. The following definition requires only Lipschitz continuity
of the Lyapunov function.

Definition 2.5. Consider the interconnected system (2.2), and assume that for
each subsystem Σj, there is a given function Vj : RNj → R+ satisfying Assump-
tion 2.1.

For i = 1, . . . , n the function Vi : RNi → R+ is called an ISS Lyapunov function
for Σi if there exist μi ∈ MAFn+1, γij ∈ K∞∪{0}, j 
= i, γiu ∈ K∪{0}, and a positive
definite function αi such that at all points of differentiability of Vi

Vi(xi) ≥ μi (γi1(V1(x1)), . . . , γin(Vn(xn)), γiu(‖u‖))
=⇒ ∇Vi(xi)fi(x, u) ≤ −αi(‖xi‖) .

(2.7)

The functions γij and γiu are called ISS Lyapunov gains.
Several examples of ISS Lyapunov functions are given in the next section.
Let us call xj , j 
= i, the internal inputs to Σi and u the external input. Note

that the role of functions γij and γiu is essentially to indicate whether there is any
influence of different inputs on the corresponding state. In case fi does not depend
on xj , there is no influence of xj on the state of Σi. In this case we define γij ≡ 0, in
particular, always γii ≡ 0. This allows us to collect the internal gains into a matrix

(2.8) Γ := (γij)i,j=1,...,n .

If we add the external gains as the last column into this matrix, then we denote it by
Γ. The function μi describes how the internal and external gains interactively enter
in a common influence on xi. The above definition motivates the introduction of the
following nonlinear map:

(2.9) Γμ : Rn+1
+ → Rn

+,

⎡
⎢⎢⎢⎣
s1
...
sn
r

⎤
⎥⎥⎥⎦ �→

⎡
⎢⎣
μ1(γ11(s1), . . . , γ1n(sn), γ1u(r))

...
μn(γn1(s1), . . . , γnn(sn), γnu(r))

⎤
⎥⎦ .

Similarly, we define Γμ(s) := Γμ(s, 0). The matrices Γ and Γ are from now on referred
to as gain matrices and Γμ and Γμ as gain operators.

Remark 2.6 (general assumption). Given Γ ∈ (K∞ ∪ {0})n×n and μ ∈ MAFn,
we will from now on assume that Γ and μ are compatible in the following sense: For
each i = 1, . . . , n, let Ii denote the set of indices corresponding to the nonzero entries
in the ith row of Γ. Then it is understood that also the restriction of μi to the indices
Ii satisfies (M2); i.e.,

(2.10) μi(x|Ii ) < μi(y|Ii) if x|Ii < y|Ii .
In particular we assume that the function

s �→ μ(s1, . . . , sn, 0), s ∈ Rn
+,

for μ ∈ MAFn+1 satisfies (M2). Note that (M1) and (M3) are automatically satisfied.
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The examples in the next section show explicitly how the introduced functions,
matrices, and operators may look like for some particular cases. Clearly, the gain
operators will have to satisfy certain conditions if we want to be able to deduce
that (2.2) is ISS with respect to external inputs; see section 5.

3. Examples for monotone aggregation. In this section we show how dif-
ferent MAFs may appear in different applications; for further examples see [10]. We
begin with a purely academic example and discuss linear systems and neural networks
later in this section. Consider the system

(3.1) ẋ = −x− 2x3 +
1

2
(1 + 2x2)u2 +

1

2
w,

where x, u, w ∈ R. Take V (x) = 1
2x

2 as a Lyapunov function candidate. It is easy to
see that if |x| ≥ u2 and |x| ≥ |w|, then

V̇ ≤ −x2 − 2x4 +
1

2
x2(1 + 2x2) +

1

2
x2 = −x4 < 0

if x 
= 0. The conditions |x| ≥ u2 and |x| ≥ |w| translate into |x| ≥ max{u2, |w|}, and
in terms of V this becomes

V (x) ≥ max{u4/2, w2/2} =⇒ V̇ (x) ≤ −x4.
This is a Lyapunov ISS estimate where the gains are aggregated using a maximum; i.e.,
in this case we can take μ(s1, s2) = max{s1, s2} and γu(r) = r4/2 and γw(r) = r2/2.

Note that there is a certain arbitrariness in the choice of μ and γij . In the example
one could as well take γu(r) = γw(r) = r and μ(s1, s2) = max{s41/2, s22/2}, giving
exactly the same condition, but with different gains and a different MAF. At the end
of the day the small gain condition comes down to mapping properties of Γμ. Different
choices of Γ and μ may lead to the same operator Γμ. However, as we will see at a
later stage, certain choices of μ can be computationally more convenient than others.
In particular, if we can choose μ = max, the task of checking the small gain condition
reduces to checking a cycle condition; cf. section 8.4.

3.1. Linear systems. Consider linear interconnected systems

(3.2) Σi : ẋi = Aixi +
n∑

j=1

Δijxj +Biui, i = 1, . . . , n,

with xi ∈ RNi , ui ∈ RMi , and matrices Ai, Bi,Δij of appropriate dimensions. Each
system Σi is ISS from (xT1 , . . . , x

T
i−1, x

T
i+1, . . . , x

T
n , u

T
i )

T to xi if and only if Ai is
Hurwitz. It is known that Ai is Hurwitz if and only if for any given symmetric positive
definite Qi, there is a unique symmetric positive definite solution Pi of A

T
i Pi+PiAi =

−Qi; see, e.g., [15, Corollary 3.3.47 and Remark 3.3.48, p. 284f]. Thus we choose the
Lyapunov function Vi(xi) = xTi Pixi, where Pi is the solution corresponding to a
symmetric positive definite Qi. In this case, along trajectories of the autonomous
system

ẋi = Aixi,

we have

V̇i = xTi PiAixi + xTi A
T
i Pixi = −xTi Qixi ≤ −ci‖xi‖2
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for ci := λmin(Qi) > 0, the smallest eigenvalue of Qi. For system (3.2) we obtain

V̇i = 2xTi Pi

⎛
⎝Aixi +

∑
j �=i

Δijxj +Biui

⎞
⎠

≤ −ci‖xi‖2 + 2‖xi‖‖Pi‖
⎛
⎝∑

j �=i

‖Δij‖‖xj‖+ ‖Bi‖‖ui‖
⎞
⎠ ≤ −εci‖xi‖2,(3.3)

where the last inequality (3.3) is satisfied for a given 0 < ε < 1 if

(3.4) ‖xi‖ ≥ 2‖Pi‖
ci(1− ε)

⎛
⎝∑

j �=i

‖Δij‖‖xj‖+ ‖Bi‖‖u‖
⎞
⎠,

with u := (uT1 , . . . , u
T
n )

T . To write this implication in the form (2.7), we note that
λmin(Pi)‖xi‖2 ≤ Vi(xi) ≤ λmax(Pi)‖xi‖2. Let us denote a2i = λmin(Pi) and b2i =
λmax(Pi) = ‖Pi‖; then the inequality (3.4) is satisfied if

‖Pi‖ · ‖xi‖2 ≥ Vi(xi) ≥ ‖Pi‖3
(

2

ci(1− ε)

)2
⎛
⎝∑

j �=i

‖Δij‖
aj

√
Vj(xj) + ‖Bi‖‖u‖

⎞
⎠

2

.

This way we see that the function Vi is an ISS Lyapunov function for Σi with gains
given by

γij(s) =

(
2b3i

ci(1− ε)

‖Δij‖
aj

) √
s

for i = 1, . . . , n, i 
= j, and

γiu(s) =
2‖Bi‖b3i
ci(1− ε)

s

for i = 1, . . . , n, and s ≥ 0. Further we have

μi(s, r) =

⎛
⎝ n∑

j=1

sj + r

⎞
⎠

2

for s ∈ Rn
+ and r ∈ R+. This μi satisfies (M1), (M2), and (M3), but not (M4). By

defining γii ≡ 0 for i = 1, . . . , n, we can write

Γ =

⎛
⎜⎜⎜⎜⎝

0 γ12 · · · γ1n γ1u

γ21
. . . · · · γ2n γ2u

...
. . .

...
...

γn1 · · · γn,n−1 0 γnu

⎞
⎟⎟⎟⎟⎠

and have

(3.5) Γμ(s, r) =

⎛
⎜⎜⎜⎝

(
2b31

c1(1−ε)

)2(∑
j �=1

‖Δ1j‖
aj

√
sj + ‖B1‖r

)2

...(
2b3n

cn(1−ε)

)2(∑
j �=n

‖Δnj‖
aj

√
sj + ‖Bn‖r

)2

⎞
⎟⎟⎟⎠ .
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Interestingly, the choice of quadratic Lyapunov functions for the subsystems naturally
leads to a nonlinear mapping Γμ with a useful homogeneity property; see Proposi-
tion 7.1.

3.2. Neural networks. As the next example consider a Cohen–Grossberg neu-
ral network as in [35]. The dynamics of each neuron is given by

(3.6) NNi : ẋi(t) = −ai(xi(t))
⎛
⎝bi(xi(t))− n∑

j=1

tijsj(xj(t)) + Ji

⎞
⎠ ,

i = 1, . . . , n, n ≥ 2, where xi denotes the state of the ith neuron and ai is a strictly
positive amplification function. As in [35] we assume that the fixed point is shifted
to the origin. Then the function bi typically satisfies the sign condition bi(xi)xi ≥ 0
and satisfies furthermore |bi(xi)| > b̃i(|xi|) for some b̃i ∈ K∞. The activation function
si is typically assumed to be sigmoid. The matrix T = (tij)i,j=1,...,n describes the
interconnection of neurons in the network, and Ji is a given constant input from
outside. However, for our consideration we allow Ji to be an arbitrary measurable
function in L∞.

In applications the matrix T is usually the result of training using some learning
algorithm and appropriate training data. The specifics depend on the type of network
architecture and learning algorithm chosen and on the particular application. Such
considerations are beyond the scope of the current paper. We simply assume that T
is given and concern ourselves solely with stability considerations.

Note that for any sigmoid function si there exists a γi ∈ K such that |si(xi)| <
γi(|xi|). Following [35] we assume 0 < αi < ai(xi) < αi, αi, αi ∈ R.

Recall the triangle inequality for K∞-functions: for any γ, ρ ∈ K∞ and any
a, b ≥ 0, it holds that

γ(a+ b) ≤ γ ◦ (id + ρ)(a) + γ ◦ (id + ρ−1)(b).

We claim that Vi(xi) := |xi| is an ISS Lyapunov function for NNi in (3.6). Fix
an arbitrary function ρ ∈ K∞ and some ε satisfying αi > ε > 0. Then by the triangle
inequality we have

|xi| > b̃−1
i ◦ (id + ρ)

⎛
⎝ αi

αi − ε

n∑
j=1

|tij |γj(|xj |)
⎞
⎠+ b̃−1

i ◦ (id + ρ−1)

(
αi

αi − ε
|Ji|

)

b̃−1
i

⎛
⎝ αi

αi − ε

⎛
⎝ n∑

j=1

|tij |γj(|xj |) + |Ji|
⎞
⎠
⎞
⎠

=⇒ V̇i = −ai(xi)
⎛
⎝|bi(xi)| − signxi

n∑
j=1

tijsj(xj) + signxiJi

⎞
⎠ < −ε|bi(xi)| .

In this case we have

μi(s, r) = b̃−1
i ◦ (id + ρ)(s1 + · · ·+ sn) + b̃−1

i ◦ (id + ρ−1)(r)

which is additive with respect to the external input and

γij =
αi|tij |
αi − ε

γj(|xj |), γiu =
αiid

αi − ε
.
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The MAF μi satisfies (M1), (M2), and (M3). It satisfies (M4) if and only if (b̃i)
−1 is

subadditive.

4. Monotone operators and generalized small gain conditions. In sec-
tion 2.4 we saw that in the ISS context the mutual influence between subsystems (2.1)
and the influence from external inputs to the subsystems can be quantified by the gain
matrices Γ and Γ and gain operators Γμ and Γμ. The interconnection structure of the
subsystems naturally leads to a weighted, directed graph, where the weights are the
nonlinear gain functions and the vertices are the subsystems. There is an edge from
the vertex i to the vertex j if and only if there is an influence of the state xi on the
state xj ; i.e., there is a nonzero gain γji.

Connectedness properties of the interconnection graph together with mapping
properties of the gain operators will yield a generalized small gain condition. In essence
we need a nonlinear version of a Perron vector for the construction of a Lyapunov
function for the interconnected system. This will be made rigorous in the following.
But first we introduce some further notation.

The adjacency matrix AΓ = (aij) of a matrix Γ ∈ (K∞ ∪ {0})n×n is defined by
aij = 0 if γij ≡ 0, and aij = 1, otherwise. Then AΓ = (aij) is also the adjacency
matrix of the graph representing an interconnection.

We say that a matrix Γ is primitive, irreducible, or reducible if and only if AΓ is
primitive, irreducible, or reducible, respectively. Recall (and see [2] for more on this
subject) that a nonnegative matrix A is

• primitive if there exists a k ≥ 1 such that Ak is positive;
• irreducible if for every pair (i, j), there exists a k ≥ 1 such that the (i, j)th
entry of Ak is positive; obviously, primitivity implies irreducibility;

• reducible if it is not irreducible.
A network or a graph is strongly connected if and only if the associated adjacency
matrix is irreducible; see also [2].

For K∞-functions α1, . . . , αn we define a diagonal operator D : Rn
+ → Rn

+ by

(4.1) D(s) := (s1 + α1(s1), . . . , sn + αn(sn))
T , s ∈ Rn

+.

For an operator T : Rn
+ → Rn

+, the condition T � id means that for all s 
= 0,
T (s) � s. In words, at least one component of T (s) has to be strictly less than the
corresponding component of s.

Definition 4.1 (small gain conditions). Let a gain matrix Γ and a monotone
aggregation μ be given. The operator Γμ is said to satisfy the small gain condi-
tion (SGC) if

(SGC) Γμ 
≥ id.

Furthermore, Γμ satisfies the strong small gain condition (sSGC) if there exists a D
as in (4.1) such that

(sSGC) D ◦ Γμ 
≥ id.

It is not difficult to see that (sSGC) can equivalently be stated as

(sSGC′) Γμ ◦D � id.

Also for (sSGC) or (sSGC′) to hold it is sufficient to assume that the function
α1, . . . , αn are all identical. This can be seen by defining α(s) := mini αi(s). We
abbreviate this by writing D = diag(id + α) for some α ∈ K∞.
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For maps T : Rn
+ → Rn

+ we define the following sets:

Ω(T ) := {s ∈ Rn
+ : T (s) < s} =

n⋂
i=1

Ωi(T ), where

Ωi(T ) := {s ∈ Rn
+ : T (s)i < si} .

If no confusion arises we will omit the reference to T . Topological properties of the
introduced sets are related to (SGC), (sSGC), and (sSGC′); cf. also [5, 6, 25]. They
will be used in the next section for the construction of an ISS Lyapunov function for
the interconnection.

5. Lyapunov functions. In this section we present the two main results of the
paper. The first is a topological result on the existence of a jointly unbounded path
in the set Ω, provided that Γμ satisfies the small gain condition. This path will be
crucial in the construction of a Lyapunov function, which is the second main result
of this section.

Definition 5.1. A continuous path σ ∈ Kn
∞ will be called an Ω-path with respect

to Γμ if
(i) for each i, the function σ−1

i is locally Lipschitz continuous on (0,∞);
(ii) for every compact set K ⊂ (0,∞), there are constants 0 < c < C such that

for all i = 1, . . . , n and all points of differentiability of σ−1
i , we have

(5.1) 0 < c ≤ (σ−1
i )′(r) ≤ C for all r ∈ K;

(iii) σ(r) ∈ Ω(Γμ) for all r > 0; i.e.,

(5.2) Γμ(σ(r)) < σ(r) for all r > 0.

Now we can state the first of our two main results, which regards the existence
of Ω-paths.

Theorem 5.2. Let Γ ∈ (K∞ ∪{0})n×n be a gain matrix and μ ∈ MAFn
n. Assume

that one of the following assumptions is satisfied:
(i) Γμ is linear and the spectral radius of Γμ is less than one.
(ii) Γ is irreducible and Γμ � id.
(iii) μ = max and Γμ � id.
(iv) Alternatively, assume that Γμ is bounded (i.e., Γ ∈ ((K\K∞)∪{0})n×n) and

satisfies Γμ � id.
Then there exists an Ω-path σ with respect to Γμ.

We will postpone the proof of this rather topological result to section 8 and reap
the fruits of Theorem 5.2 first. Note, however, that for Theorem 5.2 there exists a
“cycle gain < id”-type equivalent formulation; cf. Theorem 8.14 and see [21, 33, 6, 20].

In addition to the above result, the existence of Ω-paths can also be asserted
for reducible Γ and Γ with mixed, bounded and unbounded, class K entries; see
Theorem 8.12 and Proposition 8.13, respectively.

Theorem 5.3. Consider the interconnected system Σ given by (2.1) and (2.2)
where each of the subsystems Σi has an ISS Lyapunov function Vi, the corresponding
gain matrix is given by (2.8), and μ = (μ1, . . . , μn)

T is given by (2.7). Assume there
are an Ω-path σ with respect to Γμ and a function ϕ ∈ K∞ such that

(5.3) Γμ(σ(r), ϕ(r)) < σ(r) for all r > 0
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is satisfied, then an ISS Lyapunov function for the overall system is given by

(5.4) V (x) = max
i=1,...,n

σ−1
i (Vi(xi)) .

In particular, for all points of differentiability of V we have the implication

(5.5) V (x) ≥ max{ϕ−1(γiu(‖u‖)) | i = 1, . . . , n} =⇒ ∇V (x)f(x, u) ≤ −α(‖x‖),

where α is a suitable positive definite function.
Note that by construction the Lyapunov function V is not smooth, even if the

functions Vi for the subsystems are. This is why it is appropriate in this framework
to consider Lipschitz continuous Lyapunov functions, which are differentiable almost
everywhere.

Proof. We will show the assertion in the Clarke gradient sense. For x = 0 there
is nothing to show. So let 0 
= x = (xT1 , . . . , x

T
n )

T . Denote by I the set of indices i for
which

(5.6) V (x) = σ−1
i (Vi(xi)) ≥ max

j �=i
σ−1
j (Vj(xj)) .

Then xi 
= 0 for i ∈ I. Also as V is obtained through maximization, we have because
of [4, p. 83] that

(5.7) ∂V (x) ⊂ conv

{⋃
i∈I

∂[σ−1
i ◦ Vi ◦ πi](x)

}
.

Fix i ∈ I, and assume without loss of generality i = 1. Then if we assume
V (x) ≥ maxi=1,...,n{ϕ−1(γiu(‖u‖))}, it follows in particular that γ1u(‖u‖) ≤ ϕ(V (x)).
Using the abbreviation r := V (x), denoting the first component of Γμ by Γμ,1, and
using assumption (5.3), we have

V1(x1) = σ1(r) > Γμ,1(σ(r), ϕ(r))

= μ1 [γ11(σ1(r)), . . . , γ1n(σn(r)), ϕ(r)]

≥ μ1 [γ11(σ1(r)), . . . , γ1n(σn(r)), γ1u(‖u‖)]
= μ1

[
γ11 ◦ σ1 ◦ σ−1

1 (V1(x1)), . . . , γ1n ◦ σn ◦ σ−1
1 (V1(x1)), γ1u(‖u‖)

]
≥ μ1 [γ11 ◦ V1(x1), . . . , γ1n ◦ Vn(xn), γ1u(‖u‖)] ,

where we have used (5.6) and (M2′) in the last inequality. Thus the ISS condition
(2.7) is applicable, and we have for all ζ ∈ ∂V1(x1) that

(5.8) 〈ζ, f1(x, u)〉 ≤ −α1(‖x1‖).

By the chain rule for Lipschitz continuous functions [4, Theorem 2.5], we have

∂(σ−1
i ◦ Vi)(xi) ⊂ {cζ : c ∈ ∂σ−1

i (y) , y = Vi(xi) , ζ ∈ ∂Vi(xi)} .

Note that in the previous equation the number c is bounded away from zero because
of (5.1). We set for ρ > 0

α̃i(ρ) := cρ,i αi(ρ) > 0 ,
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where cρ,i is the constant corresponding to the set K := {xi ∈ RNi : ρ/2 ≤
‖xi‖ ≤ 2ρ} given by (5.1) in the definition of an Ω-path. With the convention x =
(xT1 , . . . , x

T
n )

T we now define for r > 0

α(r) = min{α̃i(‖xi‖) | ‖x‖ = r, V (x) = σ−1
i (Vi(xi))} > 0 .

Here we have used that for a given r > 0 and ‖x‖ = r, the norm of ‖xi‖ such that
V (x) = σ−1

i (Vi(xi)) is bounded away from 0.
It now follows from (5.8) that if V (x) ≥ maxi=1,...,n{ϕ−1(γiu(‖u‖))}, then we

have for all ζ ∈ ∂
[
σ−1
1 ◦ V1

]
(x1) that

(5.9) 〈ζ, f1(x, u)〉 ≤ −α(‖x‖) .

In particular, the right-hand side depends on x and not only on x1. The same argument
applies for all i ∈ I. Now for any ζ ∈ ∂V (x) we have by (5.7) that ζ =

∑
i∈I λiciζi

for suitable λi ≥ 0,
∑

i∈I λi = 1, and with ζi ∈ ∂(Vi ◦ πi)(x) and ci ∈ ∂σ−1
i (Vi(xi)). It

follows that

〈ζ, f(x, u)〉 =
∑
i∈I

λi〈ciζi, f(x, u)〉 =
∑
i∈I

λi〈ciπi(ζi), fi(x, u)〉

≤ −
∑
i∈I

λiα(‖x‖) = −α(‖x‖) .

This shows the assertion.
In the absence of external inputs, ISS is the same as 0-GAS (cf. [29, 30, 31]). We

note the following consequence in the case that only global asymptotic stability is of
interest.

Corollary 5.4 (0-GAS for strongly interconnected networks). In the setting of
Theorem 5.3, assume that the external inputs satisfy u ≡ 0 and that the network of
interconnected systems is strongly connected. If Γμ � id, then the network is 0-GAS.

Proof. By Theorem 5.2(ii) there exists an Ω-path, and a nonsmooth Lyapunov for
the network is given by (5.4); hence, the origin of the externally unforced composite
system is globally asymptotically stable.

Remark 5.5. At first sight it might seem that the previous corollary is stronger
than [18, Corollary 2.1], as no robustness term D is needed in the assumptions. How-
ever, the result here is formulated for Lyapunov functions, whereas the result in [18]
is based on the trajectory formulation of ISS in summation form. The proof in the
trajectory version essentially requires bounds on (id− Γμ)

−1, which relies heavily on
D unless μ = max [18, 6, 24]. In contrast, for 0-GAS the D is not needed in the Lya-
punov setting, because for irreducible Γ it is possible to construct the path σ without
D by Theorem 5.2(ii).

We now specialize Theorem 5.3 to particular cases of interest. Namely, when the
gain with respect to the external input u enters the ISS condition (i) additively, (ii)
via maximization, and (iii) as a factor.

Corollary 5.6 (additive gain of external input u). Consider the interconnected
system Σ given by (2.1) and (2.2) where each of the subsystems Σi has an ISS Lya-
punov function Vi and the corresponding gain matrix is given by (2.9). Assume that
the ISS condition is additive in the gain of u; that is,

(5.10) Γμ(V1(x1), . . . , Vn(xn), ‖u‖) = Γμ(V1(x1), . . . , Vn(xn)) + γu(‖u‖) ,
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where γu(‖u‖) = (γ1u(‖u‖), . . . , γnu(‖u‖))T . If Γμ is irreducible and if there exists an
α ∈ K∞ such that for D = diag(id+α) the gain operator Γμ satisfies the strong small
gain condition

D ◦ Γμ(s) 
≥ s,

then the interconnected system is ISS and an ISS Lyapunov function is given by (5.4),
where σ ∈ Kn

∞ is an arbitrary Ω-path with respect to D ◦ Γμ.
Proof. By Theorem 5.2 an Ω(D◦Γμ)-path σ exists. Observe that by irreducibility,

(M1), and (M3) it follows that Γμ(σ) is unbounded in all components. Let ϕ ∈ K∞
be such that for all r ≥ 0

min
i=1,...,n

{α(Γμ,i(σ(r)))} ≥ max
i=1,...,n

{γiu(ϕ(r))} .

Note that this is possible because on the left we take the minimum of a finite number
of K∞-functions. Then we have for all r > 0, i = 1, . . . , n, that

σi(r) > D ◦ Γμ,i(σ(r)) = Γμ,i(σ(r)) + α(Γμ,i(σ(r))) ≥ Γμ,i(σ(r)) + γiu(ϕ(r)) .

Thus σ(r) > Γμ(σ(r), ϕ(r)) and the assertion follows from Theorem 5.3.
Corollary 5.7 (maximization with respect to external gain). Consider the in-

terconnected system Σ given by (2.1) and (2.2) where each of the subsystems Σi has
an ISS Lyapunov function Vi and the corresponding gain matrix is given by (2.9).
Assume that u enters the ISS condition via maximization; that is,

(5.11) Γμ(V1(x1), . . . , Vn(xn), ‖u‖) = max {Γμ(V1(x1), . . . , Vn(xn)), γu(‖u‖)} ,

where γu(‖u‖) = (γ1u(‖u‖), . . . , γnu(‖u‖))T . Then, if Γμ is irreducible and satisfies
the small gain condition

Γμ(s) 
≥ s,

the interconnected system is ISS and an ISS Lyapunov function is given by (5.4),
where σ ∈ Kn∞ is an arbitrary Ω-path with respect to Γμ and ϕ is a K∞-function with
the property

(5.12) γiu ◦ ϕ(r) ≤ Γμ,i(σ(r)) , i = 1, . . . , n,

where Γμ,i denotes the ith row of Γμ.
Proof. By Theorem 5.2 an Ω(Γμ)-path σ exists. Note that by irreducibility, (M1),

and (M3) it follows that Γμ(σ) is unbounded in all components. Hence ϕ ∈ K∞
satisfying (5.12) exists, and we obtain

σ(r) > max { Γμ(σ(r)), γu(ϕ(r))} .

This is (5.3) for the case of maximization of gains in u. The claim follows from The-
orem 5.3.

In the next result observe that (M3) is not always necessary for the u-component
of μ.

Corollary 5.8 (separation in gains). Consider the interconnected system Σ
given by (2.1) and (2.2) where each of the subsystems Σi has an ISS Lyapunov function
Vi and the corresponding gain matrix Γ is given by (2.9). Assume that Γ is irreducible
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and that the gains in the ISS condition are separated; that is, there exist μ ∈ MAFn
n,

c ∈ R, c > 0, and γu ∈ K∞ such that

(5.13) Γμ(V1(x1), . . . , Vn(xn), ‖u‖) = (c+ γu(‖u‖)) Γμ(V1(x1), . . . , Vn(xn)) .

If there exists an α ∈ K∞ such that for D = diag(c · id + id · α) the gain operator Γμ

satisfies the strong small gain condition

D ◦ Γμ(s) 
≥ s,

then the interconnected system is ISS and an ISS Lyapunov function is given by (5.4),
where σ ∈ Kn∞ is an arbitrary Ω-path with respect to D ◦ Γμ(s).

Proof. If Γμ is irreducible, then alsoD◦Γμ is irreducible, and so by Theorem 5.2(ii)
an Ω(D ◦ Γμ)-path σ exists. Let ϕ ∈ K∞ be such that for all r ≥ 0

ϕ(r) ≤ min
i=1,...,n

{γ−1
u ◦ α ◦ Γμ,i(σ(r))} ,

where, as in the previous corollaries, we appeal to irreducibility, (M1), and (M3).
Then for each i we have

σi(r) > Γμ,i(σ(r))(c + α(Γμ,i(σ(r)))) ≥ Γμ,i(σ(r))(c + γu ◦ ϕ(r)),

and hence

σ(r) > (c+ γu(ϕ(r)))Γμ(σ(r)) = Γμ(σ(r), ϕ(r));

the assertion follows from (5.13) and Theorem 5.3.

6. The reducible case and scaling. The results that have been obtained so
far concern mostly strongly connected networks, that is, networks with an irreducible
gain operator. Already in [27] it has been shown that cascades of ISS systems are ISS.
Cascades are a special case of networks where the gain matrix is reducible. In this
section we briefly explain how a Lyapunov function for a network that is not strongly
connected may be constructed based on the construction for the strongly connected
components of the network. Another approach would be to construct the Ω-path for
reducible operators Γμ as has been done in [25] using assumption (M4).

It is well known that if the network is not strongly connected or, equivalently, if
the gain matrix Γ is reducible, then Γ may be brought in upper block triangular form
via a permutation of the vertices of the network as in the nonnegative matrix case
[2, 6]. After this transformation Γ is of the form

(6.1) Γ =

⎡
⎢⎢⎢⎣
Υ11 Υ12 . . . Υ1d Υ1u

0 Υ22 . . . Υ2d Υ2u

...
. . .

0 . . . 0 Υdd Υdu

⎤
⎥⎥⎥⎦ ,

where each of the blocks on the diagonal Υjj ∈ (K∞ ∪ {0})dj×dj , j = 1, . . . , d, is

either irreducible or 0. Let qj =
∑j−1

l=1 dl, with the convention that q1 = 0. We denote
the states corresponding to the strongly connected components by

zTj =
[
xTqj+1, xTqj+2, . . . , xTqj+1

]
.
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We will show that in order to obtain an overall ISS Lyapunov function, it is sufficient
to construct ISS Lyapunov functions for each of the irreducible blocks (where the
respective states with higher indices are treated as inputs). The desired result is an
iterative application of the following observation.

Lemma 6.1. Let a gain matrix Γ ∈ (K∞ ∪ {0})2×3
be given by

(6.2) Γ =

[
0 γ12 γ1u
0 0 γ2u

]
,

and let Γμ be defined by μ ∈ MAF2
3. Then there exist an Ω-path σ and ϕ ∈ K∞ such

that (5.3) holds.
Proof. By construction the maps η1 : r �→ μ1(γ12(r), γ1u(r)) and η2 : r �→

μ2(γ12(u)) are in K∞. Choose a K∞-function η̃1 ≥ η1 such that η̃1 satisfies the

conditions (i) and (ii) in Definition 5.1. Define σ(r) =
[
2η̃1(r) r

]T
and ϕ(r) :=

min{r, η−1
2 (r/2)}. Then it is a straightforward calculation to check that the assertion

holds.
The result is now as follows.
Proposition 6.2. Consider a simply connected interconnected system Σ given by

(2.1) and (2.2) where each of the subsystems Σi has an ISS Lyapunov function Vi, the
corresponding gain matrix is given by (2.8), and μ = (μ1, . . . , μn)

T is given by (2.7).
Assume that the gain matrix Γ is in the reduced form (6.1). If for each j = 1, . . . , d−1
there exists an ISS Lyapunov function Wj for the state zj with respect to the inputs
zj+1, . . . , zd, u, then there exists an ISS Lyapunov function V for the state x with
respect to the input u.

Proof. By assumption for each j = 1, . . . , d−1 there exist gain functions χjk ∈ K∞
and χju ∈ K∞ and MAFs μ̃j such that

Wj(zj) ≥ μ̃j(χjj+1(Wj+1(zj+1)), . . . , χjd(Wd(zd)), χju(‖u‖))
=⇒ ∇Wj(zj)fj(zj, zj+1, . . . , zd, u) < −α̃j(‖zj‖) .

We now argue by induction. If d = 1, there is nothing to show. If the result is shown
for d− 1 blocks, consider a gain matrix as in (6.1). By assumption there exists an ISS
Lyapunov function Vd−1 such that

Vd−1(zd−1) ≥ μ1(γ12(Vd(zd)), γ1u(‖u‖))
=⇒ ∇Vd−1(zd−1)fd−1(zd−1, zd, u) ≤ −αd−1(‖zd−1‖) .

As the remaining part has only external inputs, we see that Γ is of the form (6.2),
and so Lemma 6.1 is applicable. This shows that the assumptions of Theorem 5.3 are
met, and so a Lyapunov function for the overall system is given by (5.4).

It is easy to see that the assumption Γμ 
≥ id (or Γμ ◦ D 
≥ id) is equivalent to
the requirement that the blocks Υjj on the diagonal satisfy the (strong) small gain
condition (SGC) (or (sSGC)). Thus we immediately obtain the following statements.

Corollary 6.3 (summation of gains). Consider the interconnected system Σ
given by (2.1) and (2.2) where each of the subsystems Σi has an ISS Lyapunov function
Vi and the corresponding gain matrix is given by (2.9). Assume that the ISS condition
is additive in the gains; that is,

(6.3) Γμ,i(V1(x1), . . . , Vn(xn), ‖u‖) =
n∑

j=1

γij(Vj(xj)) + γiu(‖u‖) .
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If there exists an α ∈ K∞ such that for D = diag(id+α) the gain operator Γμ satisfies
the strong small gain condition

D ◦ Γμ(s) 
≥ s,

then the interconnected system is ISS.
Proof. After permutation Γ is of the form (6.1). For each of the diagonal blocks

Corollary 5.6 is applicable, and the result follows from Proposition 6.2.
Corollary 6.4 (maximization of gains). Consider the interconnected system

Σ given by (2.1) and (2.2) where each of the subsystems Σi has an ISS Lyapunov
function Vi and the corresponding gain matrix is given by (2.9). Assume that the
gains enter the ISS condition via maximization; that is,

(6.4) Γμ,i(V1(x1), . . . , Vn(xn), ‖u‖) = max {γi1(V1(x1)), . . . , γin(Vn(xn)), γiu(‖u‖)} .
If the gain operator Γμ satisfies the small gain condition

Γμ(s) 
≥ s,

then the interconnected system is ISS.
Proof. After permutation Γ is of the form (6.1). For each of the diagonal blocks

Corollary 5.7 is applicable, and the result follows from Proposition 6.2.

7. Applications of the general small gain theorem. In section 3 we pre-
sented several examples of functions μi, γi and gain operators Γμ, Γμ. Here we will
show how our main results apply to these examples. Before we proceed, let us con-
sider the special case of homogeneous Γμ (of degree 1) [13]. Here Γμ is homogeneous
of degree 1 if for any s ∈ Rn

+ and any r > 0 we have Γμ(rs) = rΓμ(s).
Proposition 7.1 (explicit paths and Lyapunov functions for homogeneous gain

operators). Let Σ in (1.2) be a strongly connected network of subsystems (1.1) and Γμ,
Γμ be the corresponding gain operators. Let Γμ be homogeneous, and let Γμ satisfy one
of the conditions (6.3), (6.4), or (5.13). If Γμ satisfies the strong small gain condition
(sSGC) ( (SGC) in case of (6.4)), then the interconnection Σ is ISS; moreover, there
exists a (nonlinear) eigenvector 0 < s ∈ Rn of Γμ such that Γμ(s) = λs with λ < 1,
and an ISS Lyapunov function for the network is given by

(7.1) V (x) = max
i

{Vi(xi)/si}.

Proof. First note that either Corollary 6.3, 6.4, or 5.8 can be applied, and the
ISS property follows immediately. By the assumptions of the proposition we have an
irreducible monotone homogeneous operator Γμ on the positive orthant Rn

+. By the
generalized Perron–Frobenius theorem [13] there exists a positive eigenvector s ∈ Rn

+.
Its eigenvalue λ is less than one; otherwise, we have a contradiction to the small
gain condition. The ray defined by this vector s is a corresponding Ω-path and by
Theorem 5.3 we obtain (7.1).

One type of homogeneous operator arises from linear operators through multi-
plicative coordinate transforms. In this case we can further specialize the assumptions
of the previous result.

Lemma 7.2. Let α ∈ K∞ satisfy2 α(ab) = α(a)α(b) for all a, b ≥ 0. Let D =
diag(α), G ∈ Rn×n

+ , and Γμ be given by

Γμ(s) = D−1(GD(s)) .

2In other words, α(r) = rc for some c > 0.
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Then Γμ is homogeneous. Moreover, Γμ � id if and only if the spectral radius of G is
less than one.

Proof. If the spectral radius ofG is less than one, then there exists a positive vector
s̃ satisfying Gs̃ < s̃: just add a small δ > 0 to every entry of G so that the spectral
radius ρ(G̃) of G̃ is still less than one, due to continuity of the spectrum. Then there
exists a Perron vector s̃ such that Gs̃ < G̃s̃ = ρ(G̃)s̃ < s̃. Define ŝ = D−1(s̃) > 0, and
observe that α−1(ab) = α−1(a)α−1(b). Then we have

(7.2) Γμ(rŝ) = D−1(GD(rŝ)) = D−1(α(r)GD(ŝ)) = rD−1(Gs̃)

< rD−1(s̃) = rŝ

for all r > 0. So an Ω-path for Γμ is given by σ(r) = rŝ for r ≥ 0. Existence of an
Ω-path implies the small gain condition: the origin in Rn

+ is globally attractive with
respect to the system sk+1 = Γμ(s

k), as can be seen by a monotonicity argument. By
[6, Theorem 23] or [25, Proposition 4.1] we have Γμ � id.

Assuming that the spectral radius of G is greater or equal to one, there exists s̃ ∈
Rn

+, s̃ 
= 0, such that Gs̃ ≥ s̃. Defining ŝ = D−1(s̃), we have Γμ(ŝ) = D−1(GD(ŝ)) =
D−1(Gs̃) ≥ D−1(s̃) = ŝ. Hence Γμ � id if and only if the spectral radius of G is less
than one.

Homogeneity of Γμ is obtained as in (7.2).

7.1. Application to linear interconnected systems. Consider the intercon-
nection (3.2) of linear systems from section 3.1.

Proposition 7.3. Let each Σi in (3.2) be ISS with a quadratic ISS Lyapunov
function Vi so that the corresponding operator Γμ can be taken to be as in (3.5). If
the spectral radius r(G) of the associated matrix

(7.3) G =

(
2b3i ‖Δij‖
ci(1 − ε)aj

)
ij

is less than one, then the interconnection

Σ : ẋ = (A+Δ)x+Bu

is ISS and its (nonsmooth) ISS Lyapunov function can be taken as

V (x) = max
i

1

si
xTi Pixi

for some positive vector s ∈ Rn
+.

Proof. We have Γμ = D−1(GD(·)), where D = diag(α) for α(r) =
√
r. Now α

satisfies the assumptions of Lemma 7.2, which yields that Γμ satisfies the small gain
condition Γμ � id if and only if r(G) < 1. If G or, equivalently, Γμ is irreducible,
then there exists by Proposition 7.1 an s > 0 such that Γμ(s) < s. By (3.5) we see
that there exists an r∗ ∈ (0,∞) such that Γμ(s, r

∗) < s. Then defining σ(r) = rs and
ϕ(r) =

√
rr∗ we obtain for all r > 0 that

Γμ(σ(r), ϕ(r)) = rΓμ(s, r
∗) < rs = σ(r) .

Thus the conditions of Theorem 5.3 are satisfied, and an ISS Lyapunov function can
be taken as V (x) = maxi

1
si
xTi Pixi.

If G is reducible, the previous construction has to be performed for every irre-
ducible block and then the scaling techniques of section 6 need to be applied.
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7.2. Application to neural networks. Consider the neural network (3.6) dis-
cussed in section 3.2. This is a system of coupled nonlinear equations, and we have
seen that each subsystem is ISS. Note that so far we have not imposed any restric-
tions on the coefficients tij . Moreover, the assumptions imposed on ai, bi, and si are
essentially milder than in [35]. However, to obtain the ISS property of the network,
we need to require more. The small gain condition can be used for this purpose. It will
impose restrictions on the coupling terms tijs(xj). From Corollary 5.6, Theorem 7.4
follows.

Theorem 7.4. Consider the Cohen–Grossberg neural network (3.6). Let Γμ be
given by γij and μi, i, j = 1, . . . , n, as calculated for the interconnection in section 3.2.
Assume that Γμ satisfies the strong small gain condition D ◦ Γμ 
≥ id for s ∈ Rn

+ \ 0.
Then this network is ISS from (J1, . . . , Jn)

T to x.
Remark 7.5. In [35] the authors have proved that there exists a unique equilibrium

point for the network and given constant external inputs. They have also proved the
exponential stability of this equilibrium. We have considered arbitrary external inputs
to the network and proved the ISS property for the interconnection.

8. Path construction. This section explains the relation between the small gain
condition for Γμ and its mapping properties. Then we construct a strictly increasing
Ω-path and prove Theorem 5.2 and some extensions. Let us first consider some simple
particular cases to explain the main ideas, as depicted in Figure 8.1. In the following
subsections we then proceed to the main path construction results.

s1

s2 γ −1
12 (s1)

γ21(s1)

Ω

s1

s2 γ −1
12 ( s1)

γ21(s1)

Ω

Fig. 8.1. A sequence of points {Γk
µ(s)}k≥0 for some s ∈ Ω(Γµ), where Γµ : R2

+ → R2
+ is

given by Γµ(s) = (γ12(s2), γ21(s1))T and satisfies Γµ � id or, equivalently, γ21 ◦ γ12 < id and the
corresponding linear interpolation; cf. Lemmas 8.1, 8.2, and 8.3.

A map T : Rn
+ → Rn

+ is monotone if x ≤ y implies T (x) ≤ T (y). Clearly,
any matrix Γ ∈ (K∞ ∪ {0})n×n together with an aggregation μ ∈ MAFn

n induces a
monotone map Γμ.

Lemma 8.1. Let Γ ∈ (K ∪ {0})n×n and μ ∈ MAFn
n such that Γμ satisfies (SGC).

If s ∈ Ω(Γμ), then limk→∞ Γk
μ(s) = 0.

Proof. If s ∈ Ω, then Γμ(s) < s, and by monotonicity Γ2
μ(s) ≤ Γμ(s). By induc-

tion Γk
μ(s) is a monotonically decreasing sequence bounded from below by 0. Thus

limk→∞ Γk
μ(s) =: s∗ exists, and by continuity we have Γμ(s

∗) = s∗. By the small gain
condition it follows that s∗ = 0.

Lemma 8.2. Assume that Γ ∈ (K∪{0})n×n has no zero rows, and let μ ∈ MAFn
n.

If 0 < s ∈ Ω(Γμ), then
(i) 0 < Γμ(s) ∈ Ω;
(ii) for all λ ∈ [0, 1] the convex combination sλ := λs+ (1− λ)Γμ(s) ∈ Ω.
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Proof. (i) By assumption Γμ(s) < s, and so by the monotonicity assumption (M2),
we have Γμ(Γμ(s)) < Γμ(s). Furthermore, as s > 0 and the matrix Γ has no zero rows,
we have that Γμ(s) > 0 by assumption (M1).

(ii) As Γμ(s) < s it follows for all λ ∈ (0, 1) that Γμ(s) < sλ < s. Hence by
monotonicity and using (i),

0 < Γμ(Γμ(s)) < Γμ(sλ) < Γμ(s) < sλ .

This implies sλ ∈ Ω as desired.
Lemma 8.3. Assume that Γ ∈ (K∪{0})n×n has no zero rows, and let μ ∈ MAFn

n

be such that Γμ satisfies (SGC). Let s ∈ Ω(Γμ). Then there exists a path in Ω ∪ {0}
connecting the origin and s.

Proof. By Lemma 8.2, the line segment {λΓμ(s) + (1 − λ)s} ⊂ Ω. By induction
all the line segments {λΓk+1

μ (s) + (1− λ)Γk
μ(s)} ⊂ Ω for k ≥ 1. Using Lemma 8.1, we

see that Γk
μ(s) → 0 as k → ∞. This constructs an Ω-path with respect to Γμ from 0

to s.
The following result applies to Γ whose entries are bounded, i.e., in (K\K∞)∪{0}.
Proposition 8.4. Assume that Γ ∈ (K ∪ {0})n×n has no zero rows, and let

μ ∈ MAFn
n be such that Γμ satisfies (SGC). Assume furthermore that Γμ is bounded;

then there exists an Ω-path with respect to Γμ.
Proof. By assumption the set Γμ(Rn

+) is bounded, so pick s > supΓμ(Rn
+). Then

clearly, Γμ(s) < s and so s ∈ Ω. By the same argument ηs ∈ Ω for all η ∈ [1,∞).
Thus a path in Ω through the point s exists if we find a path from s to 0 contained
in Ω. The remainder of the result is given by Lemma 8.3.

The difficulty now arises if Γμ happens to be unbounded; i.e., Γ contains entries
of class K∞. In the unbounded case the simple construction above is not possible. In
the following we will first consider the case that all nonzero entries of Γ are of class
K∞. Beforehand, we introduce a few technical lemmas.

8.1. Technical lemmas. Throughout this subsection T : Rn
+ → Rn

+ denotes a
continuous, monotone map; i.e., T satisfies T (v) ≤ T (w) whenever v ≤ w. We start
with a few observations.

Lemma 8.5. Let ρ ∈ K∞. Then there exists a ρ̃ ∈ K∞ such that (id+ρ)−1 = id−ρ̃.
Proof. Just define ρ̃ = ρ◦(id+ρ)−1. Then (id− ρ̃)◦(id+ρ) = (id+ρ)− ρ̃◦(id+ρ) =

id + ρ− ρ ◦ (id + ρ)−1 ◦ (id + ρ) = id + ρ− ρ = id, which proves the lemma.
Lemma 8.6.

(i) Let D = diag(ρ) for some ρ ∈ K∞ such that ρ > id. Then for any k ≥ 0 there

exist ρ
(k)
1 , ρ

(k)
2 ∈ K∞, satisfying ρ

(k)
i > id such that for D

(k)
i = diag(ρ

(k)
i ),

i = 1, 2,

D = D
(k)
1 ◦D(k)

2 .

Moreover, D
(k)
2 , k ≥ 0, can be chosen such that for all 0 < s ∈ Rn

+ we have

D
(k)
2 (s) < D

(k+1)
2 (s).

(ii) Let D = diag(id + α) for some α ∈ K∞. Then there exist α1, α2 ∈ K∞ such
that for Di = diag(id + αi), i = 1, 2,

D = D1 ◦D2.
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For maps T : Rn
+ → Rn

+ define the decay set

Ψ(T ) := {s ∈ Rn
+ : T (s) ≤ s} ,

where we again omit the reference to T if this is clear from the context.
Lemma 8.7. Let T : Rn

+ → Rn
+ be monotone and D = diag(ρ) for some ρ ∈

K∞, ρ > id. Then
(i) T k+1(Ψ) ⊂ T k(Ψ) for all k ≥ 0;
(ii) Ψ(D ◦ T ) ∩ {s ∈ Rn

+ : s > 0} ⊂ Ω(T ) if T satisfies T (v) < T (w) whenever
v < w; the same is true for D ◦ T replaced by T ◦D.

The proofs of the lemmas are simple and thus omitted for reasons of space. Nev-
ertheless, they can be found in [24, pp. 10, 29].

We will need the following connectedness property in the following.
Proposition 8.8. Let Γ ∈ (K∪{0})n×n and μ ∈ MAFn

n be such that Γμ satisfies
(SGC). Then Ψ is nonempty and pathwise connected. Moreover, if Γμ satisfies Γμ(v) <
Γμ(w) whenever v < w, then for any s ∈ Ω(Γμ) there exists a strictly increasing Ω-
path connecting 0 and s.

Proof. Note that always 0 ∈ Ψ; hence, Ψ cannot be empty. Along the lines of
the proof of Lemma 8.3, it follows that each point in Ψ is pathwise connected to the
origin.

Another crucial step, which is of topological nature, regards preimages of points
in the decay set Ψ. In general it is not guaranteed that for s ∈ Rn

+ with T (s) ∈ Ψ,
we also have s ∈ Ψ. The set of points in Ψ for which preimages of arbitrary order are
also in Ψ is the set

Ψ∞(T ) :=

∞⋂
k=0

T k(Ψ),

compare Figure 8.2. Of course, this set might be empty or bounded. We will use it to
construct Ω-paths for operators Γμ satisfying the small gain condition.

Proposition 8.9 (see [25, Proposition 5.4]). Let T : Rn
+ → Rn

+ be monotone and
continuous and satisfy T (s) � s for all s 
= 0. Assume that T satisfies the property

(8.1) ‖sk‖ → ∞ =⇒ ‖T (sk)‖ −→ ∞
as k → ∞ for any sequence {sk}k∈N ⊂ Rn

+.

Fig. 8.2. A sketch of the set Ψ∞ ⊂ Ψ ⊂ Rn
+ in Proposition 8.9.
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Then Ψ∞(T ) ⊂ Ψ(T ), Ψ∞(T ) ∩ Sr 
= ∅ for all r ≥ 0, and Ψ∞(T ) is unbounded.
A result based on the topological fixed point theorem from Knaster, Kuratowski,

and Mazurkiewicz allows us to relate Ω and the small gain condition. It is essential
for the proof of Proposition 8.9.

Proposition 8.10. Let T : Rn
+ → Rn

+ be monotone and continuous. If T (s) � s
for all s ∈ Rn

+, then the set Ω ∩ Sr is nonempty for all r > 0.
In particular, s ∈ Ω ∩ Sr for r > 0 implies s > 0. The proof for this result can be

found in [24, Proposition 1.5.3, p. 26] or in a slightly different form in [6].

8.2. Paths for K∞ ∪ {0} gain matrices. In this subsection we consider ma-
trices Γ ∈ (K∞ ∪ {0})n×n; i.e., all nonzero entries of Γ are assumed to be unbounded
functions.

In this setting we assume and utilize that the graph associated to Γ is strongly
connected; i.e., Γ is irreducible. So if we consider powers Γk

μ(x) for each components

i and j, there exists a k = k(i, j) such that t �→ Γk
μ(t · ej)i is an unbounded function.

Theorem 8.11. Let Γ ∈ (K∞ ∪ {0})n×n be irreducible, μ ∈ MAFn
n, and assume

Γμ � id. Then there exists a strictly increasing path σ ∈ Kn
∞ satisfying

Γμ(σ(r)) < σ(r) for all r > 0.

The main technical difficulty in the proof is to construct the path in the un-
bounded direction; the other case has already been dealt with in Proposition 8.8.

The proof comprises the following steps: First, due to [25, Proposition 5.8], we
may choose a K∞-function ϕ > id so that for D = diag(ϕ) we have Γμ ◦D � id. Then
we construct a monotone (but not necessarily strictly monotone) sequence {sk}k≥0 in
Ψ(Γμ ◦D), satisfying sk = Γμ(D(sk+1)) � sk+1, so that each component sequence is
unbounded. At this point a linear interpolation of the sequence points may not yield
a strictly increasing path. So finally we use the “extra space” provided by D in the set
Ω(Γμ) ⊃ Ω(Γμ ◦D) to obtain a strictly increasing sequence {s̃k}k≥0 in Ω(Γμ) which
we can linearly interpolate to obtain the desired Ω-path.

Proof. Since Γ is irreducible, it has no zero rows, and hence Γμ satisfies Γμ(v) <
Γμ(w) whenever v < w. By [25, Proposition 5.8] there exists a ϕ > id so that for
D = diag(ϕ) we have Γμ ◦D � id. Now we construct a nondecreasing sequence {sk}
in Ψ(Γμ ◦D).

Let T := Γμ ◦D. Then T and by induction also all powers T l, l ≥ 1, satisfy (8.1).
By Proposition 8.9 the set Ψ∞(T ) is unbounded, so we may pick an 0 
= s0 ∈

Ψ∞(T ). We can actually choose s0 > 0, since the sequence {sk} we are going to
construct will be unbounded in every component, at which point we may replace s0

by some sk > 0 for k large enough.
Due to irreducibility of Γ (and Remark 2.6), the following property holds: for any

pair 1 ≤ i, j ≤ n there exists an l ≥ 1 such that

(8.2) r �→ (Γl
μ(rej))i

is an unbounded and increasing function, where ej is the jth unit vector. By mono-
tonicity the same holds when T is considered instead of Γμ. Now define a sequence
{sk}k≥0 by choosing

sk+1 ∈ T−1(sk) ∩Ψ∞(T )

for k ≥ 0. This is possible, since by definition Ψ∞(T ) is backward invariant under T .
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This sequence {sk} satisfies sk � sk+1 by definition. We claim that it is un-
bounded, and also unbounded in every component: to this end assume first that it is
bounded. Then by monotonicity there exists a limit s∗ = limk→∞ sk. By continuity
of T and since sk = T (sk+1), we have

s∗ = lim
k→∞

sk = lim
k→∞

T (sk+1) = T

(
lim
k→∞

sk+1

)
= T (s∗),

contradicting T (s) � s for all s 
= 0. Hence the sequence {sk} must be unbounded.
Let j be an index such that {skj }k∈N is unbounded; let i ∈ {1, . . . , n} be arbitrary,

and choose l such that the function in (8.2) is unbounded for i, j, l. Choose real
numbers rk → ∞ such that rkej ≤ sk for all k ∈ N. Then we have

(T l(rkej))i ≤ (T l(sk))i = sk−l
i .

As the term on the left goes to ∞ for k → ∞, so does ski . Hence {sk} is unbounded
in every component.

Now by Lemma 8.7(ii) the sequence {sk} is contained in Ω(Γμ), but it may not
be strictly increasing, as we only know sk � sk+1 for all k ≥ 0. We define a strictly
increasing sequence {s̃k} as follows: By Lemma 8.6 for any k ≥ 0 we may factorize

D = D
(k)
1 ◦D(k)

2 so that D
(k)
1 , D

(k)
2 > id and D

(k)
2 (s) < D

(k+1)
2 (s) for all k ≥ 0 and all

s > 0. Using this factorization, we define

s̃k := D
(k)
2 (sk)

for all k ≥ 0. By the definition of D
(k)
2 this sequence is clearly strictly increasing and

inherits from {sk} the unboundedness in all components.
We claim that {s̃k} ⊂ Ω(Γμ). This follows from

s̃k > sk ≥ Γμ ◦D(sk) = Γμ ◦D(k)
1 ◦D(k)

2 (sk) = Γμ ◦D(k)
1 (s̃k) > Γμ(s̃

k).

Now we prove that for λ ∈ (0, 1) we have (1− λ)s̃k + λs̃k+1 ∈ Ω(Γμ). Clearly,

s̃k < (1− λ)s̃k + λs̃k+1 < s̃k+1,

and application of the strictly increasing operator Γμ yields

Γμ((1− λ)s̃k + λs̃k+1) < Γμ(s̃
k+1)

= Γμ ◦D(k+1)
2 (sk+1) < Γμ ◦D(k+1)

1 ◦D(k+1)
2 (sk+1)

= sk < s̃k < (1 − λ)s̃k + λs̃k+1.

Hence (1− λ)s̃k + λs̃k+1 ∈ Ω(Γμ).
Now we may define σ as a parametrization of the linear interpolation of the points

{s̃k}k≥0 in the unbounded direction and utilize the construction from Lemma 8.3 for
the other direction. Clearly, this function σ is an Ω-path as it has component functions
of classK∞ and is piecewise linear on every compact interval contained in (0,∞).

It is possible to consider the reducible case in a similar fashion. The argument is
essentially an induction over the number of irreducible and zero blocks on the diag-
onal of the reducible operator. We cite the following result from [25, Theorem 5.10].
However, for the construction of an ISS Lyapunov function in the case of reducible Γ,
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we take a different route as described in section 6, thus avoiding the use of assumption
(M4).

Theorem 8.12. Let Γ ∈ (K∞ ∪ {0})n×n be reducible, μ ∈ MAFn
n satisfy (M4),

D = diag(id + α) for some ρ ∈ K∞, and assume Γμ ◦ D � id. Then there exists

a monotone and continuous operator D̃ : Rn
+ → Rn

+ and a strictly increasing path

σ : R+ → Rn
+ whose component functions are all unbounded such that Γμ ◦ D̃(σ) < σ.

8.3. General Γµ. In the preceding subsections we have seen that it is possible
to construct Ω-paths for matrices Γ whose nonzero entries are either all bounded or
all unbounded. It remains to consider the case that the nonzero entries of Γ are partly
of class K∞ and partly of class K \ K∞. We can state the following result.

Proposition 8.13. Let Γ ∈ (K ∪ {0})n×n, and let μ ∈ MAFn
n satisfy (M4).

Assume Γμ satisfies (sSGC). Then there exists an Ω-path for Γμ.
Proof. Write

Γ = ΓU + ΓB,

with ΓU ∈ (K∞∪{0})n×n and ΓB ∈ (K\K∞∪{0})n×n. Clearly, we have (ΓU )μ ≤ Γμ

and (ΓB)μ ≤ Γμ, and hence both maps satisfy

(Γ•)μ � id,

where • serves as a placeholder for the subscripts U and B.
The map (ΓB)μ is bounded. Hence s∗ := sup(ΓB)μ(Rn

+) is a finite vector.
By Theorem 8.12 for (ΓU )μ there exists a K∞-function ρ̃ and a K∞-path σU so

that for the diagonal operator D̃ = diag(id + ρ̃) we have

((ΓU )μ ◦ D̃)(σU (r)) < σU (r) for all r > 0 .

Similarly, by Proposition 8.4, there exists a K∞-path σB such that (ΓB)μ(σB(r)) <
σB(r) for all r > 0. In fact, and this is the key to this proof, it is possible to
reparametrize σB in the region where σB(r) > s∗ as follows: for any α, β ∈ K∞
we can find a κ ∈ K∞ such that

(α ◦ κ)(r) < β(r), r > 0,

e.g., by choosing κ ∈ K∞ satisfying κ(r) < (α−1 ◦ β)(r). This is always possible.
Denote D̄ = diag(ρ̃) (so that D̃ = id + D̄), and choose r∗ such that D̄(σU (r

∗)) > s∗.
Then after reparametrization we may assume that

σB(r) < D̄(σU (r)) and σB(r) > s∗

for all r ≥ r∗. Using Lemma 8.3, we let σL : [0, r∗] → Rn
+ be a finite-length path

satisfying

Γμ(σL(r)) < σL(r) for all r ∈ (0, r∗],
σL is strictly increasing,

σL(0) = 0, and σL(r
∗) = σB(r

∗) + σU (r
∗).

Now define σ by

σ(r) =

{
σB(r) + σU (r) if r > r∗,
σL(r) if r < r∗.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ISS LYAPUNOV FUNCTIONS FOR INTERCONNECTED SYSTEMS 4115

It remains to check that σ satisfies Γμ(σ(r)) < σ(r) for r ≥ r∗. Indeed, for r ≥ r∗ we
have

σ(r) = σU (r) + σB(r) > ((ΓU )μ ◦ D̃)(σU (r)) + s∗

> (ΓU )μ(σU (r) + σB(r)) + (ΓB)μ(σU (r) + σB(r))

≥ Γμ(σU (r) + σB(r)),

where the last inequality is due to (M4). This completes the proof.

8.4. Special case: Maximization. The case when the aggregation is the max-
imum (i.e., μ = max) is indeed a special case, since not only the small gain condition
can be formulated in simpler manner but also the path construction can be achieved
without the need of the diagonal operator D as before.

A cycle in a matrix Γ is a finite sequence of nonzero entries of Γ of the form

(γi1,i2 , γi2,i3 , . . . , γiK ,i1).

A cycle is called subordinated if i1 > max{i2, . . . , iK}, and it is called a contraction if

γi1,i2 ◦ γi2,i3 ◦ · · · ◦ γiK ,i1 < id.

It is an easy exercise to show that when all subordinated cycles are contractions, then
already all cycles are contractions.

Theorem 8.14. Let μ = max and Γ ∈ (K∪{0})n×n. If all subordinated cycles of
Γ are contractions, then there exists an Ω-path with respect to Γμ.

The proof is composed of the following steps. The first step is to show that the
cycle condition (all cycles being contractions) is equivalent to Γμ � id. Note that
μ = max automatically satisfies (M4), but (M4) is actually not needed for the proof.
Then the path construction can essentially be done as before, replacing sums by
maximization, and one can even avoid the use of D = diag(id+ρ). Compare also [25].

8.5. Proof of Theorem 5.2. We now come to the easiest part of this section,
which is to combine all the preceding results to one general theorem for matrices with
entries of class K, namely, Theorem 5.2.

Proof of Theorem 5.2.
(i) In the linear case we can identify Γμ with a real matrix with nonnegative

entries. Then there exists a positive vector v > 0 so that Γμv < v if the
spectral radius ρ(Γμ) < 1; cf. [2] or [24, Lemma 2.0.1, p. 33]. For r > 0 this
gives Γμrv < rv; i.e., a K∞-path is given by σ(r) = rv.

(ii) This is Theorem 8.11.
(iii) This is Theorem 8.14.
(iv) This is Proposition 8.4.

9. Remarks for the case of three subsystems. Recall that a construction
of an Ω-path σ for the case of two subsystems was given in [17]. We have seen that
in a general case of n ∈ N subsystems the construction involves more theory and
topological properties of Γμ that follow from the small gain condition. However, in
the case of three subsystems σ can be found by rather simple considerations. Here
we provide this illustrative construction. Let us consider the special case Γ ∈ (K∞ ∪
{0})3×3, μi(s) = s1 + s2 + s3, i = 1, 2, 3, and for simplicity assume that γij ∈ K∞ for
all i 
= j so that

(9.1) Γ =

⎡
⎣ 0 γ12 γ13
γ21 0 γ23
γ31 γ32 0

⎤
⎦ , Γμ(s) =

⎛
⎝ γ12(s2) + γ13(s3)

γ21(s1) + γ23(s3)
γ31(s1) + γ32(s2)

⎞
⎠ 
≥

⎛
⎝ s1

s2
s3

⎞
⎠ .
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Fix s1 ≥ 0; then it follows that there is exactly one s2 satisfying

(9.2) γ−1
13 (s1 − γ12(s2)) = γ−1

23 (s2 − γ21(s1)) ,

since for a fixed s1 the left side of (9.2) is a strictly decreasing function of s2 while
the right side of (9.2) is a strictly increasing one. The small gain condition (9.1), in
particular, ensures that γ−1

12 (γ−1
21 (r)) > r for any r > 0. Let s∗2 be the solution of

s1 − γ12(s2) = 0 and s∗∗2 be the solution of s2 − γ21(s1) = 0; then

s∗2 = γ−1
12 (s1) = γ−1

12 (γ−1
21 (s∗∗2 )) > s∗∗2 .

Hence the root of the left side of (9.2) is greater than the root of the right side of
(9.2). This proves that for any s1 there is always exactly one s2 satisfying (9.2); see
Figure 9.1.

s∗
2s∗∗

2

1
13 (s1 − 12(·))

1
23 (· − 21(s1))

s2

Fig. 9.1. Visualization of (9.2).

By the continuity and monotonicity of γ12, γ21, γ13, and γ23, it follows that s2
depends continuously on s1 and is strictly increasing with s1. We can define σ1(r) = r
for r ≥ 0 and σ2(r) to be the unique s2 solving (9.2) for s1 = r.

Denote h(r) = γ31(σ1(r)) + γ32(σ2(r)) and g(r) = γ−1
13 (σ1(r) − γ12(σ2(r))) =

γ−1
23 (σ2(r) − γ21(σ1(r))), and define M(r) := {s3 : h(r) < s3 < g(r)}. Let us show

that M(r) 
= ∅ for all r > 0. If this is not true, then there exists r∗ > 0 such that
s∗3 := h(r∗) ≥ g(r∗) holds. Consider the point s∗ := (s∗1, s

∗
2, s

∗
3) := (r∗, σ2(r∗), s∗3).

Then s∗3 ≥ g(r∗) = γ−1
13 (s∗1 − γ12(s

∗
2)), s

∗
3 ≥ g(r∗) = γ−1

23 (s∗2 − γ21(s
∗
1)), and s∗3 =

h(r∗) = γ31(s
∗
1) + γ32(s

∗
2). In other words,

Γ(s∗) =

⎛
⎝γ12(s∗2) + γ13(s

∗
3)

γ21(s
∗
1) + γ23(s

∗
3)

γ31(s
∗
1) + γ32(s

∗
2)

⎞
⎠ ≥

⎛
⎝s∗1s∗2
s∗3

⎞
⎠ ,

contradicting (2.1). Hence M(r) is not empty for all r > 0.
Consider the functions h(r) and g(r). The question is how to choose σ3(r) ∈M(r)

such that σ3 ∈ K∞. Note that h(r) ∈ K∞. Let g∗(r) := minu≥r g(u) so that
g∗(r) ≤ g(r) for all r ≥ 0. Since h(r) is unbounded, for all r > 0 the set
C(r) := argminu≥r g(u) is compact, and for all points p ∈ C(r) the relation
g∗(r) ≥ g(p) > h(p) ≥ h(r) holds. We have h(r) < g∗(r) ≤ g(r) for all r > 0, where g∗

is a (not necessarily strictly) increasing function. Now take σ3(r) :=
1
2 (g

∗(r) + h(r)),
and observe that σ3 ∈ K∞ and h(r) < σ3(r) < g∗(r) for all r > 0. Hence
σ := (σ1, σ2, σ3)

T satisfies Γμ(σ(r)) < σ(r) for all r > 0.
The case where one of γij ’s is not a K∞-function but zero can be treated similarly.
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10. Conclusions. In this paper we have provided a method for the construc-
tion of ISS Lyapunov functions for interconnections of nonlinear ISS systems. The
method applies for an interconnection of an arbitrary finite number of subsystems in-
terconnected in an arbitrary way and satisfying a small gain condition. The small gain
condition is imposed on the nonlinear gain operator Γμ that we have introduced here.
This operator contains the information of the topological structure of the network
and the interactions between its subsystems. An ISS Lyapunov function for such a
network is given in terms of ISS Lyapunov functions of subsystems and some auxiliary
functions. We have shown how this construction is related to the small gain condition
and mapping properties of the gain operator Γμ and its invariant sets. Namely, the
small gain condition guarantees the existence of an unbounded vector function with
its path in an invariant set Ω of the operator Γμ. This auxiliary function can be used to
rescale the ISS Lyapunov functions of the individual subsystems and aggregate them
into an ISS Lyapunov function for the entire network. The construction technique
for this vector function has been detailed as well as the construction of the compos-
ite Lyapunov function. The constructed Lyapunov function is only locally Lipschitz
continuous so that methods from nonsmooth analysis had to be used. The proposed
method has been exemplified for linear systems and neural networks.
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[25] B. S. Rüffer, Monotone inequalities, dynamical systems, and paths in the positive orthant of
Euclidean n-space, Positivity, (2009), DOI 10.1007/s11117-009-0016-5.
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