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SMALL GAIN THEOREMS FOR LARGE SCALE SYSTEMS AND
CONSTRUCTION OF ISS LYAPUNOV FUNCTIONS*
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Abstract. We consider interconnections of n nonlinear subsystems in the input-to-state stabil-
ity (ISS) framework. For each subsystem an ISS Lyapunov function is given that treats the other
subsystems as independent inputs. A gain matrix is used to encode the mutual dependencies of
the systems in the network. Under a small gain assumption on the monotone operator induced by
the gain matrix, a locally Lipschitz continuous ISS Lyapunov function is obtained constructively for
the entire network by appropriately scaling the individual Lyapunov functions for the subsystems.
The results are obtained in a general formulation of ISS; the cases of summation, maximization, and
separation with respect to external gains are obtained as corollaries.
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1. Introduction. In many applications large scale systems are obtained through
the interconnection of a number of smaller components. The stability analysis of such
interconnected systems may be a difficult task especially in the cases of a large number
of subsystems, arbitrary interconnection topologies, and nonlinear subsystems.

One of the earliest tools in the stability analysis of feedback interconnections of
nonlinear systems are small gain theorems. Such results have been obtained by many
authors starting with [36]. These results are classically built on the notion of L? gains;
see [3] for a recent, very readable account of the developments in this area. While most
small gain results for interconnected systems yield only sufficient conditions, in [3] it
has been shown in a behavioral framework how the notion of gains can be modified
so that the small gain condition is also necessary for robust stability.

Small gain theorems for large scale systems have been developed, e.g., in
[26, 34, 23]. In [26] the notions of connective stability and stabilization are intro-
duced for interconnections of linear systems using the concept of vector Lyapunov
functions. In [23] stability conditions in terms of Lyapunov functions of subsystems
have been derived. For the linear case characterizations of quadratic stability of large
scale interconnections have been obtained in [16]. A common feature of these refer-
ences is that the gains describing the interconnection are essentially linear. With the
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introduction of the concept of input-to-state stability (ISS) in [28], it has become a
common approach to consider gains as nonlinear functions of the norm of the input.
In this nonlinear case small gain results have been derived first for the interconnection
of two systems in [18, 32]. A Lyapunov version of the same result is given in [17]. A
general small gain condition for large scale ISS systems has been presented in [6]. Re-
cently, such arguments have been used in the stability analysis of observers [1], in the
stability analysis of decentralized model predictive control [22], and in the stability
analysis of groups of autonomous vehicles.

During the revision of this paper it came to our attention that, following the first
general small gain theorems for networks [21, 33, 5, 8, 7, 6], other generalizations
of small gain results based on similar ideas have been obtained very recently using
the maximization formulation of ISS: A generalized small gain theorem for output-
Lagrange-input-to-output stable systems in network interconnections has been ob-
tained in [19]. In this reference the authors study ISS in the maximization framework
and conclude ISS from a small gain condition in the cycle formulation. It has been
noted in [8] that in the maximum case the cycle condition is equivalent to the operator
condition examined here. An extension of generalized small gain results to retarded
functional differential equations based on the more general cycle condition and vector
Lyapunov functions has recently been obtained in [20]. In this reference a construction
of a Lyapunov function is shown which takes a different approach to the construction
of an overall Lyapunov function. This construction depends vitally on the use of the
maximum formulation of ISS.

In this paper we present sufficient conditions for the existence of an ISS Lyapunov
function for a system obtained as the interconnection of many subsystems. The results
are of interest in two ways. First, it is shown that a small gain condition is sufficient
for ISS of the large scale system in the Lyapunov formulation. Second, an explicit
formula for an overall Lyapunov function is given. As the dimensions of the subsystems
are essentially lower than the dimension of their interconnection, finding Lyapunov
functions for them may be an easier task than for the whole system.

Our approach is based on the notion of ISS introduced in [28] for nonlinear systems
with inputs. A system is ISS if, roughly speaking, it is globally asymptotically stable
in the absence of inputs (so-called 0-GAS) and if any trajectory eventually enters a
ball centered at the equilibrium, which has a radius given by a monotone continuous
function, the gain, of the size of the input (the so-called asymptotic gain property);
cf. [31].

The concept of ISS turned out to be particularly well suited to the investigation
of interconnections. For example, it is known that cascades of ISS systems are again
ISS [28], and small gain results have been obtained. We briefly review the results of
[18, 17] in order to explain the motivation for the approach of this paper. Both papers
study a feedback interconnection of two ISS systems as represented in Figure 1.1.

The small gain condition in [18] is that the composition of the gain functions
712, ¥21 is less than identity in a robust sense. We denote the composition of functions
fsg by o; that is, (f o g)(z) := f(g(z)). The small gain condition then is that if on
(0, 00) we have

(11) (ld + O[l) 0 Y12 O (ld + OZQ) 0 Y21 < id

for suitable Ko-functions ai, a2, then the feedback system is an ISS system with
respect to the external inputs.

In this paper we concentrate on the equivalent definition of ISS in terms of ISS
Lyapunov functions [31]. The small gain theorem for ISS Lyapunov functions from

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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1 . i
e Y1 @1 = fi(zr, zo,u)

Y12 Y21

Yo 1 &9 = fo(x1,22,u)

X2

Fia. 1.1. Feedback interconnection of two ISS systems with gains yi12 from X2 to X1 and 21
from 31 to Xa.

[17] states that if on (0, c0) the small gain condition

(1.2) Y12 021 < id

is satisfied, then an ISS Lyapunov function may be explicitly constructed as follows.
Condition (1.2) is equivalent to y12 < 75, on (0,00). This permits us to construct
a function o9 € Ky such that vo; < 09 < 71_21 on (0,00); see Figure 1.2. An ISS
Lyapunov function is then defined by scaling and taking the maximum, that is, by
setting V (z) = max{Vi(z1), 05 " (Va(x2))}. This ISS Lyapunov function describes sta-
bility properties of the whole interconnection. In particular, given an input w, it can
be seen how fast the corresponding trajectories converge to the neighborhood and
how large this neighborhood is.

§2

Y (1)

Y21(s1)

S1
Fi1G. 1.2. Two gain functions satisfying (1.2).

At first sight the difference between the small gain conditions in (1.1) from [18] and
(1.2) from [17] appears surprising. This might lead to the impression that the difference
comes from studying the problem in a trajectory-based or Lyapunov-based framework.
This, however, is not the case; the reason for the difference in the conditions is a result
of the formulation of the ISS condition. In [18] a summation formulation was used for
the trajectory-based case. In the maximization formulation of the trajectory case, the
small gain condition is again (1.2) [6]. In [17] the Lyapunov formulation is investigated
using maximization; the corresponding result for summation is Corollary 5.6 below,
requiring condition (1.1).

In order to generalize the existing results it is useful to reinterpret the approach
of [17]: note that the gains may be used to define a matrix

0 72
I':=
<’Y21 0 ) ’
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which defines in a natural way a monotone operator on R .. In this way an alternative
characterization of the area between 721 and 7{21 in Figure 1.2 is that it is the area
where T'(s) < s (with respect to the natural ordering in RZ). Thus the problem of
finding o2 may be interpreted as the problem of finding a path o : r — (r,02(r)), r €
(0,00), such that Too < 0.

We generalize this constructive procedure for a Lyapunov function in several
directions. First, the number of subsystems entering the interconnection will be ar-
bitrary. Second, the way in which the gains of subsystem i affect subsystem j will
be formulated in a general manner using the concept of monotone aggregation func-
tions (MAFs). This class of functions allows for a unified treatment of summation
and maximization or other ways of formulating ISS conditions. Following the matrix
interpretation, this leads to a monotone operator I', on R’}. The crucial thing to find
is a sufficiently regular path o such that I'), o 0 < ¢. This allows for a scaling of the
Lyapunov functions for the individual subsystems to obtain one for the large scale
system.

Small gain conditions on I';, as in [5, 6] yield sufficient conditions that guarantee
that the construction of o can be performed. However, in [5, 6] the trajectory formu-
lation of ISS has been studied, and the main technical ingredient was, essentially, to
prove bounds on (id — I';,)~!. The sufficient condition for the existence of the path
o turns out to be the same, but the path itself had not been used in [5, 6]. In fact,
the line of argument used there is completely different. It is shown in [24] that the
results of [6] also hold for the more general ISS formulation using monotone aggre-
gation functions. The condition requires essentially that the operator is not greater
or equal to the identity in a robust sense. The construction of ¢ then relies on a
rather delicate topological argument. What is obvious for the interconnection of two
systems is not that clear in higher dimensions. It can be seen that the small gain
condition imposed on the interconnection is actually a sufficient condition that allows
for the application of the Knaster-Kuratowski-Mazurkiewicz theorem; see [6, 24] for
further details. We show in section 9 how the construction works for three subsystems,
but it is fairly clear that this methodology is not something one would like to carry
out in higher dimensions. In the maximization formulation a viable alternative is the
approach pursued by [20].

The construction of the Lyapunov function is explicit once the scaling function
o is known. Thus to have a really constructive procedure, a way of constructing
o is required. We do not study this problem here, but we note that based on an
algorithm by Eaves [11], it is actually possible to turn this mere existence result into
a (numerically) constructive method [24, 9]. Using the algorithm by Eaves and the
technique of Proposition 8.8, it is then possible to construct such a vector function
(but of finite length) numerically; see [24, Chapter 4]. This will be treated in more
detail in future work.

The paper is organized as follows. The next section introduces the necessary nota-
tion and basic definitions, in particular, the notion of MAFs and different formulations
of ISS. Section 3 gives some motivating examples that also illustrate the definitions
of section 2 and explain how different MAFs occur naturally for different problems.
In section 4 we introduce small gain conditions given in terms of monotone operators
that naturally appear in the definition of ISS. Section 5 contains the main results,
namely, the existence of the vector scaling function o and the construction of an ISS
Lyapunov function. In this section we concentrate on strongly connected networks
which are easier to deal with from a technical point of view. Once this case has been
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ISS LYAPUNOV FUNCTIONS FOR INTERCONNECTED SYSTEMS 4093

resolved it is shown in section 6 how simply connected networks may be treated by
studying the strongly connected components.

The actual construction of o is given in section 8 in order to postpone the topo-
logical considerations until after applications to interconnected ISS systems have been
considered in section 7. Since the topological difficulties can be avoided in the case
n = 3, we treat this case briefly in section 9 to show a simple construction for o.
Section 10 concludes the paper.

2. Preliminaries.

2.1. Notation and conventions. Let R be the field of real numbers and R™ be
the vector space of real column vectors of length n. We denote the set of nonnegative
real numbers by R, and R’} := (Ry)" denotes the positive orthant in R™. On R’
the standard partial order is defined as follows. For vectors v, w € R™ we denote

v>wi<s= v, >w; fori=1,....n,
v>w:i<s= v, >w; fori=1,...,n,
vZw:i<= v>wand v #w.

The maximum of two vectors or matrices is to be understood componentwise. By |-| we
denote the 1-norm on R™ and by S;., the induced sphere of radius  in R™ intersected
with R, which is an (n — 1)-simplex. On R’} we denote by m; : R} — Rfl the
projection of the coordinates in R’} corresponding to the indices in I C {1,...,n}
onto R#/,

The standard scalar product in R™ is denoted by (-,-). By U.(x) we denote the
open ball of radius € around x with respect to the Euclidean norm || - ||. The induced
operator norm, i.e., the spectral norm, of matrices is also denoted by || - ||.

The space of measurable and essentially bounded functions is denoted by L
with norm || - || . To state the stability definitions that we are interested in, three
sets of comparison functions are used: K = {y: Ry — Ry, is continuous, strictly
increasing, and v(0) = 0} and Ko, = {y € K : 7 is unbounded}. A function § :
Ry x Ry — Ry is of class KL if it is of class K in the first argument and strictly
decreasing to zero in the second argument. We will call a function V : RV — R,
proper and positive definite if there are 1,12 € Ko such that

vi(|z])) < V(@) < o(||lz]]) for all z € RN .

A function «a : Ry — Ry is called positive definite if it is continuous and satisfies
a(r) =0 if and only if » = 0.

2.2. Problem statement. We consider a finite set of interconnected systems
with state * = (27,...,2L)T, where x; € RYi i = 1,...,n, and N := >_ N;. For
1 =1,...,n the dynamics of the ¢th subsystem is given by

(21) i ;ti:fi(xl,...,xn,u), $ERN, UERM, fiZRN+M—>RNi.

For each i we assume unique existence of solutions and forward completeness of
Y; in the following sense. If we interpret the variables x;, j # ¢, and u as unrestricted
inputs, then this system is assumed to have a unique solution defined on [0, 00) for
any given initial condition x;(0) € RY: and any L*>-inputs x; : [0,00) — RN j # i,
and u : [0,00) — RM. This can be guaranteed for instance by suitable Lipschitz and
growth conditions on the f;. It will be no restriction to assume that all systems have
the same (augmented) external input w.
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We write the interconnection of subsystems (2.1) as
(2.2) Y o= f(z,u), f:RNTM RN,
Associated to such a network is a directed graph, with vertices representing the sub-
systems and where the directed edges (i, ) correspond to inputs going from system

7 to system i¢; see Figure 2.1. We will call the network strongly connected if its inter-
connection graph has the same property.

u u
= fi(z1,22,76,u) | |

&2 = f2(21, 22,73, u) “l ;‘- t6 = fo(21, 26,27, u)

—
T4 = f4(T2,23, 24,25, %, )
23 = f3(T2, 23,24, u) E ’J a7 = fr(2s, 27, u)

&5 = f5(z3,24,25,u)

1 uﬁlr

u

Fic. 2.1. An example of a network of interconnected systems and the associated graph.

For networks of the type that has just been described, we wish to construct
Lyapunov functions as they are introduced now.

2.3. Stability. An appropriate stability notion to study nonlinear systems with
inputs is ISS, introduced in [28]. The standard definition is as follows. A forward
complete system & = f(z,u), with z € RV, u € R is called input-to-state stable
if there are 8 € KL and v € K such that for all initial conditions zo € R" and all
u € L®(Ry,RM), we have

(2.3) [t w0, u(- DI < Bllzoll 1) + y(llulloo) -

It is known to be an equivalent requirement to ask for the existence of an ISS Lya-
punov function [30]. These functions can be chosen to be smooth. For our purposes,
however, it will be more convenient to have a broader class of functions available for
the construction of a Lyapunov function. Thus we will call a function a Lyapunov
function candidate if the following assumption is met.

Assumption 2.1. The function V : RN — R, is continuous, proper, and positive
definite and locally Lipschitz continuous on RY \ {0}. Note that by Rademacher’s
theorem (e.g., [12, Theorem 5.8.6, p. 281]) locally Lipschitz continuous functions on
RN\ {0} are differentiable almost everywhere in RY.

DEFINITION 2.2. We will call a function satisfying Assumption 2.1 an ISS Lya-
punov function for & = f(x,u) if there exist v € K and a positive definite function «
such that in all points of differentiability of V we have

(2.4) Viz) 2 A(lul) = VV(2)f(z,u) < —a(llz]).

ISS and ISS Lyapunov functions are related in the expected manner.
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THEOREM 2.3. A system is 1SS if and only if it admits an ISS Lyapunov function
in the sense of Definition 2.2.

This has been proved for smooth ISS Lyapunov functions in the literature [30].
So the hard converse statement is clear, as it is even possible to find smooth ISS
Lyapunov functions which satisfy Definition 2.2. The sufficiency proof for the Lipschitz
continuous case goes along the lines presented in [30, 31] using the necessary tools
from nonsmooth analysis; cf. [4, Theorem 6.3].

Merely continuous ISS Lyapunov functions have been studied in [14, Chapter 3],
arising as viscosity supersolutions to certain partial differential inequalities. Here we
work with the Clarke generalized gradient OV (z) of V' at z. For functions V satisfying
Assumption 2.1, Clarke’s generalized gradient satisfies for x # 0 that

(2.5)
OV (x) = conv{¢ € R" : there exists zx — x : VV (zy) exists and VV (zx) — (} .

An equivalent formulation to (2.4) is given by
(2.6) Viz) 2 7([ull) = forall¢€dV(x): (¢, [f(r,u)) <—afl]]).

Note that (2.6) is also applicable in points where V' is not differentiable.
The gain v in (2.3) is in general different from the ISS Lyapunov gain in (2.4). In
the following we will always assume that gains are of class K.

2.4. Monotone aggregation. In this paper we concentrate on the construc-
tion of ISS Lyapunov functions for the interconnected system 3. For a single subsys-
tem (2.1), in a similar manner to (2.4), we wish to quantify the combined effect of the
inputs x;, j # 4, and u on the evolution of the state z;. As we will see in the examples
given in section 3, it depends on the system under consideration how this combined
effect can be expressed: through the sum of individual effects, using the maximum of
individual effects, or by other means. In order to be able to give a general treatment
of this, we introduce the notion of MAFs.

DEFINITION 2.4. A continuous function p : RY — Ry is called a monotone
aggregation function if the following three properties hold:

(M1) Positivity: p(s) > 0 for all s € R} and p(s) >0 if s 2 0.

(M2) Strict increaset: If x <y, then p(x) < u(y).

(M3) Unboundedness: if |z|| — oo, then u(x) — oco.
The space of MAFs is denoted by MAF,,, and u € MAF)" denotes a vector MAF; i.e.,
wi € MAF,, fori=1,...,m.

A direct consequence of (M2) and continuity is the following weaker monotonicity
property:

(M2") Monotonicity: x <y = u(z) < u(y).
In [24, 25] MAFs have additionally been required to satisfy another property:
(M4) Subadditivity: p(x +y) < p(z) + ply),
which we do not need for the constructions provided in this paper, since we take a
different approach; see section 6.
Standard examples of MAF's satisfying (M1)—(M4) are

n

§ l
/L(S) o S;, where l = ]., or M(S) i 11117ax)n S; or

1(s1, 82, 83,84) = max{sy, sa} + max{ss, s4} .

LCompare assumption (2.10), where for the purposes of this paper, (M2) is further restricted.
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On the other hand, the following function is not a MAF, since (M1) and (M3) are not
satisfied: v(s) =[], s;.

Using this definition, we can define a notion of an ISS Lyapunov function for
systems with multiple inputs. In this case ¥; in (2.1) will have several gains ;;
corresponding to the inputs x;. For notational simplicity, we will include the gain v;; =
0 throughout this paper. The following definition requires only Lipschitz continuity
of the Lyapunov function.

DEFINITION 2.5. Consider the interconnected system (2.2), and assume that for
each subsystem X;, there is a given function V; : RNi — Ry satisfying Assump-
tion 2.1.

Fori=1,...,n the function V; : RN: — R_ is called an ISS Lyapunov function
for ¥, if there exist p; € MAF 411,75 € Koo U{0}, 7 # 4, viuw € KU{0}, and a positive
definite function a; such that at all points of differentiability of V;

Vili) 2 pi (rin(Vi(21), - %in (Va (@), i ([[ul])

(2.7) = VVi(w:)fi(z,u) < —aq(||z]]) -

The functions v;; and v, are called 1SS Lyapunov gains.

Several examples of ISS Lyapunov functions are given in the next section.

Let us call ;, j # 4, the internal inputs to ¥; and u the external input. Note
that the role of functions v;; and +;, is essentially to indicate whether there is any
influence of different inputs on the corresponding state. In case f; does not depend
on xj, there is no influence of x; on the state of ¥;. In this case we define v;; = 0, in
particular, always ~;; = 0. This allows us to collect the internal gains into a matrix

(2.8) I = (vij)ij=1,..n -

If we add the external gains as the last column into this matrix, then we denote it by
I". The function u; describes how the internal and external gains interactively enter
in a common influence on x;. The above definition motivates the introduction of the

following nonlinear map:

S

'1 p1(v11(51), -+, Y1n(8n), Y1u(r))
(2.9) T, :RV S RY R :

Sn

r un(Pynl (81)7 e 7’\/nn(sn)7 P)/nu(r))

Similarly, we define I',,(s) := I',,(s,0). The matrices I and I are from now on referred

to as gain matrices and I', and I', as gain operators.

Remark 2.6 (general assumption). Given I' € (Koo U {0})™*™ and p € MAF",
we will from now on assume that I' and p are compatible in the following sense: For
each i =1,...,n, let I; denote the set of indices corresponding to the nonzero entries
in the ith row of I'. Then it is understood that also the restriction of u; to the indices
I; satisfies (M2); i.e.,

(2.10) pixlr) < pi(ylr) if 2l <yl
In particular we assume that the function
s> p(s1,...,50,0), seRY,

for ;1 € MAF, 41 satisfies (M2). Note that (M1) and (M3) are automatically satisfied.
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The examples in the next section show explicitly how the introduced functions,
matrices, and operators may look like for some particular cases. Clearly, the gain
operators will have to satisfy certain conditions if we want to be able to deduce
that (2.2) is ISS with respect to external inputs; see section 5.

3. Examples for monotone aggregation. In this section we show how dif-
ferent MAFs may appear in different applications; for further examples see [10]. We
begin with a purely academic example and discuss linear systems and neural networks
later in this section. Consider the system

1 1
(3.1) &= —x— 22+ 5(1 +22H)u? + W
where z,u,w € R. Take V(z) = %x2 as a Lyapunov function candidate. It is easy to
see that if |#| > u? and |z| > |w|, then

. 1 1
V< —z? -2zt + 53:2(1 + 22?) + 5332 =2t <0

if z # 0. The conditions |z| > u? and |z| > |w| translate into |z| > max{u?, |w|}, and
in terms of V' this becomes

V(z) > max{u*/2,w?/2} = V(z) < —z*.

This is a Lyapunov ISS estimate where the gains are aggregated using a maximum; i.e.,
in this case we can take p(s1,s2) = max{sy, s2} and v, (r) = r*/2 and 7, (r) = r2/2.

Note that there is a certain arbitrariness in the choice of 1 and +;;. In the example
one could as well take v,(r) = (1) = r and p(s1,s2) = max{s}/2,s3/2}, giving
exactly the same condition, but with different gains and a different MAF. At the end
of the day the small gain condition comes down to mapping properties of I',,. Different
choices of I' and p may lead to the same operator I',. However, as we will see at a
later stage, certain choices of i can be computationally more convenient than others.
In particular, if we can choose u = max, the task of checking the small gain condition
reduces to checking a cycle condition; cf. section 8.4.

3.1. Linear systems. Consider linear interconnected systems

n

(3.2) i@ ZAiCCi-FZAijCCj + Biu;, i=1,...,n,

j=1
with z; € RY: u; € RMi and matrices A;, B;, A;; of appropriate dimensions. Each
system X; is ISS from (zf,...,2r 2l 1, ..., 2l ul)T to w; if and only if 4; is
Hurwitz. It is known that A; is Hurwitz if and only if for any given symmetric positive
definite @;, there is a unique symmetric positive definite solution P; of A?Pi +PA; =
—Q; see, e.g., [15, Corollary 3.3.47 and Remark 3.3.48, p. 284f]. Thus we choose the
Lyapunov function V;(x;) = xZTPixi, where P; is the solution corresponding to a
symmetric positive definite ;. In this case, along trajectories of the autonomous
system

&y = A,
we have

Vi = o] P Aim; + ol AT Py = —a] Qiwi < —ci|zi)?
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4098 S. N. DASHKOVSKIY, B. S. RUFFER, AND F. R. WIRTH

for ¢; := Amin(@;) > 0, the smallest eigenvalue of @;. For system (3.2) we obtain
‘./; = 2x?Pl Aixi + Z Aijxj + Biui
J#i
(3.3) < —cillzil® + 2l IP{ D 1Azl + I Billlluall | < —ecillaill?,
J#i
where the last inequality (3.3) is satisfied for a given 0 < e < 1 if

2HPH
(3-4) lzill = — P Z 1A l[lles ]| + 1 Bill[ull |
v J#i
y U 7), we note that

with u = (u?,...,ul)T. To write this implication in the form
Amin(P)]|z:])? < Vi(z:) < Amax(P)]|2z:]|%. Let us denote a? =

Amax(P;) = || P;]|; then the inequality (3.4) is satisfied if

N N
|12 (s A EN ) (s .
IR laal? > Ve 2 12 (5 ) (3 152y Wsten + il

g#i I

(2.
Amin(P;) and b2 =

This way we see that the function V; is an ISS Lyapunov function for ¥; with gains

given by
267 [ Ayl
) = (g el ) v

fori=1,...,n,i+# j, and

_ 2||Bi||¥}
(sl = Cag o
fori=1,...,n, and s > 0. Further we have
2

n
E sj+r
j=1

for s € R and r € Ry. This p; satisfies (M1), (M2), and (M3), but not (M4). By

defining v;; =0 for i = 1,...,n, we can write
0 72 ' Y M
T= Yor - Yon  V2u
Tnl e Tn,n—1 0 Tnu
and have

(25) (S 1ol 55+ 1B r)
(3.5) Tu(s,r) = :

(22) (S5 ”.Aa"]”\/_+ 1Balr)’
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Interestingly, the choice of quadratic Lyapunov functions for the subsystems naturally
leads to a nonlinear mapping I', with a useful homogeneity property; see Proposi-
tion 7.1.

3.2. Neural networks. As the next example consider a Cohen—Grossberg neu-
ral network as in [35]. The dynamics of each neuron is given by

(3.6) NN @ () = —ai(wi(t)) | bs(wi(t) = > tigsj(x(t) + Ji |
j=1
i=1,...,n, n > 2, where x; denotes the state of the ith neuron and a; is a strictly

positive amplification function. As in [35] we assume that the fixed point is shifted
to the origin. Then the function b; typically satisfies the sign condition b;(z;)z; > 0
and satisfies furthermore |b;(x;)| > b;(|x;|) for some b; € K. The activation function
s; is typically assumed to be sigmoid. The matrix T = (t;;)i j=1,..n describes the
interconnection of neurons in the network, and J; is a given constant input from
outside. However, for our consideration we allow J; to be an arbitrary measurable
function in L.

In applications the matrix 7" is usually the result of training using some learning
algorithm and appropriate training data. The specifics depend on the type of network
architecture and learning algorithm chosen and on the particular application. Such
considerations are beyond the scope of the current paper. We simply assume that T’
is given and concern ourselves solely with stability considerations.

Note that for any sigmoid function s; there exists a v; € K such that |s;(x;)| <
vi(z;]). Following [35] we assume 0 < a; < a;(x;) < @, o, @ € R.

Recall the triangle inequality for K.-functions: for any ~,p € K, and any
a,b > 0, it holds that

v(a+b) <vyo(id +p)(a) + o (id+ p~1)(b).

We claim that V;(z;) := |x;| is an ISS Lyapunov function for NN; in (3.6). Fix
an arbitrary function p € Ko and some ¢ satisfying a; > € > 0. Then by the triangle
inequality we have

b i ai - 7— . _ ai
il > b7 o (id + p) D gl (agl) | +0; o (id+p71) < |Ji|>
&4~ ia a;—¢€
-~ i n
bt | = | Dot + 1
a; o

— V; = —a(x;) | |bi(xs)| — signa; Ztijsj(xj) +signa;J; | < —elbi(x;)].
j=1

In this case we have
pi(s,7) = b; P o (id + p)(s1 + -+ + 8,) + b; P o (id + p ) (r)
which is additive with respect to the external input and

ai|tij| a;id

Yij = —E’Vj(lleh YViu =

a, — Q, — &
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The MAF p; satisfies (M1), (M2), and (M3). It satisfies (M4) if and only if (b;) " is
subadditive.

4. Monotone operators and generalized small gain conditions. In sec-
tion 2.4 we saw that in the ISS context the mutual influence between subsystems (2.1)
and the influence from external inputs to the subsystems can be quantified by the gain
matrices I and T' and gain operators I', and T',,. The interconnection structure of the
subsystems naturally leads to a weighted, directed graph, where the weights are the
nonlinear gain functions and the vertices are the subsystems. There is an edge from
the vertex i to the vertex j if and only if there is an influence of the state x; on the
state x;; i.e., there is a nonzero gain v;;.

Connectedness properties of the interconnection graph together with mapping
properties of the gain operators will yield a generalized small gain condition. In essence
we need a nonlinear version of a Perron vector for the construction of a Lyapunov
function for the interconnected system. This will be made rigorous in the following.
But first we introduce some further notation.

The adjacency matrix Ar = (a;;) of a matrix I' € (K U {0})"*"™ is defined by
a;; = 01if v;; = 0, and a;; = 1, otherwise. Then Ar = (a;;) is also the adjacency
matrix of the graph representing an interconnection.

We say that a matrix ' is primitive, irreducible, or reducible if and only if Ap is
primitive, irreducible, or reducible, respectively. Recall (and see [2] for more on this
subject) that a nonnegative matrix A is

e primitive if there exists a k > 1 such that A* is positive;
e irreducible if for every pair (i,7), there exists a k > 1 such that the (¢, j)th
entry of AF is positive; obviously, primitivity implies irreducibility;
e reducible if it is not irreducible.
A network or a graph is strongly connected if and only if the associated adjacency
matrix is irreducible; see also [2].
For Koo-functions oy, ..., a, we define a diagonal operator D : R — R’} by

(4.1) D(s) = (814 a1(s1),...,8n + an(sn))?, s€RTL.

For an operator 7' : R} — R, the condition T’ # id means that for all s # 0,
T(s) # s. In words, at least one component of T'(s) has to be strictly less than the
corresponding component of s.

DEFINITION 4.1 (small gain conditions). Let a gain matriz T' and a monotone
aggregation p be given. The operator I'), is said to satisfy the small gain condi-

tion (SGC) if
(SGC) I, #id

Furthermore, T, satisfies the strong small gain condition (sSGC) if there exists a D
as in (4.1) such that

(sSGO) Dol #id.
It is not difficult to see that (sSGC) can equivalently be stated as
(sSGC") I,oD #id.

Also for (sSGC) or (sSGC’) to hold it is sufficient to assume that the function
aq,...,0n are all identical. This can be seen by defining a(s) := min; o;(s). We
abbreviate this by writing D = diag(id + «) for some o € K.
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For maps T : R — R} we define the following sets:

UT) = {s € R} : T(s) < s} = [ | A(T), where
i=1
O (T) :={se R} :T(s); < si}.

If no confusion arises we will omit the reference to T'. Topological properties of the
introduced sets are related to (SGC), (sSGC), and (sSGC’); cf. also [5, 6, 25]. They
will be used in the next section for the construction of an ISS Lyapunov function for
the interconnection.

5. Lyapunov functions. In this section we present the two main results of the
paper. The first is a topological result on the existence of a jointly unbounded path
in the set €2, provided that I', satisfies the small gain condition. This path will be
crucial in the construction of a Lyapunov function, which is the second main result
of this section.

DEFINITION 5.1. A continuous path o € I, will be called an Q-path with respect
to 'y, if

(i) for each i, the function o; ' is locally Lipschitz continuous on (0,00);

(ii) for every compact set K C (0,00), there are constants 0 < ¢ < C such that

foralli=1,...,n and all points of differentiability of 0;1, we have

(5.1) 0<c<(o;Y)(r)<C foralrek,
(ili) o(r) € QT,) for all T > 0; i.e.,
(5.2) Tu(o(r)) <o(r) forallr>0.

Now we can state the first of our two main results, which regards the existence
of Q-paths.

THEOREM 5.2. Let T’ € (Koo U{0})™*™ be a gain matriz and p € MAF,.. Assume
that one of the following assumptions is satisfied:

(i) T, is linear and the spectral radius of I, is less than one.

(ii) T s irreducible and T, # id.
(iii) p = max and T, # id.
(iv) Alternatively, assume thatT',, is bounded (i.e., T' € (K\ Koso)U{0})"*™) and
satisfies T, # id.
Then there exists an Q-path o with respect to I',.

We will postpone the proof of this rather topological result to section 8 and reap
the fruits of Theorem 5.2 first. Note, however, that for Theorem 5.2 there exists a
“cycle gain < id”-type equivalent formulation; cf. Theorem 8.14 and see [21, 33, 6, 20].

In addition to the above result, the existence of 2-paths can also be asserted
for reducible I' and I" with mixed, bounded and unbounded, class K entries; see
Theorem 8.12 and Proposition 8.13, respectively.

THEOREM 5.3. Consider the interconnected system ¥ given by (2.1) and (2.2)
where each of the subsystems 3; has an ISS Lyapunov function V;, the corresponding
gain matriz is given by (2.8), and p = (g1, ..., un)T is given by (2.7). Assume there
are an Q-path o with respect to 'y, and a function ¢ € K such that

(5.3) T, (o(r),p(r) <o(r) forall r>0
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is satisfied, then an ISS Lyapunov function for the overall system is given by

(5.4) V(z) = max o; '(Vi(x;)).

i=1,...,n

In particular, for all points of differentiability of V. we have the implication
(5.5)  V(z) >max{e ™ (yau(lul)) |i=1,...,n} = VV(2)f(z,u) < —a(|z]),

where « is a suitable positive definite function.

Note that by construction the Lyapunov function V is not smooth, even if the
functions V; for the subsystems are. This is why it is appropriate in this framework
to consider Lipschitz continuous Lyapunov functions, which are differentiable almost
everywhere.

Proof. We will show the assertion in the Clarke gradient sense. For z = 0 there

is nothing to show. So let 0 # z = (z¥,...,2T)T. Denote by I the set of indices i for
which
(5.6) V(@) = o (Vi(w:) 2 maxoy ! (Vy(a;))

j#i

Then z; # 0 for i € I. Also as V is obtained through maximization, we have because
of [4, p. 83] that

(5.7) OV (z) C conv { U dlo; oV;0 m](x)} .

el

Fix ¢ € I, and assume without loss of generality ¢ = 1. Then if we assume
V(z) > max;—1,._o{o " (viu(||ul)))}, it follows in particular that vi,,(||Jul]) < o(V(z)).
Using the abbreviation r := V(z), denoting the first component of Fu by f,hl, and
using assumption (5.3), we have

Vi(z1) = o1(r) > Tpa(o(r), ¢(r))
= m ( 1(r))s - s n(on (), o(r)]
> g [yin(o1(r) - s vin(on(r), yiu(lul))]
= [yooroo; ' (Vi(z1)), ..., im0 om ooy  (Vi(zr)), vu(llul)]
> [y o Vi), - 7m0 Va(@n), viu(llul))]

where we have used (5.6) and (M2') in the last inequality. Thus the ISS condition
(2.7) is applicable, and we have for all ¢ € 9V (z1) that

(58) <C7f1(x7u)> < _al(Hle)'
By the chain rule for Lipschitz continuous functions [4, Theorem 2.5], we have
(o7 o Vi)(i) € {cC + c€ oy (y), y = Vilzi), ¢ € IVi(x:)}.

Note that in the previous equation the number ¢ is bounded away from zero because
of (5.1). We set for p >0

ai(p) = cpi ai(p) >0,
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where c,; is the constant corresponding to the set K = {z; € RNi . p/2 <
||z:]] < 2p} given by (5.1) in the definition of an Q-path. With the convention x =

(T, ..., 21)T we now define for 7 > 0

a(r) = min{a;([lz:|) | [lll = r, V(z) = o7 (Vi(z:))} > 0.

Here we have used that for a given r > 0 and ||z|| = r, the norm of ||z;|| such that
V(x) = o; *(Vi(z;)) is bounded away from 0.

It now follows from (5.8) that if V(x) > max;—1,_n{o ' (yu(|ul]))}, then we
have for all ¢ € 9 [o7 " o V4] (z1) that

(5.9) (¢ f1(z, u)) < —a(]l]]) -

In particular, the right-hand side depends on x and not only on x;. The same argument
applies for all i € I. Now for any ( € 0V (x) we have by (5.7) that ¢ = > .., \ic;(;
for suitable \; > 0,3, .; \i = 1, and with ¢; € 9(V; om;)(x) and ¢; € do; 1 (Vi(;)). Tt
follows that

(o flau)) =Y NileiGe, fw) =Y Nileimi(G), fulw,w))
el el

= da(llz]) = —a(llall) -

icl

el

IN

This shows the assertion. d

In the absence of external inputs, ISS is the same as 0-GAS (cf. [29, 30, 31]). We
note the following consequence in the case that only global asymptotic stability is of
interest.

COROLLARY 5.4 (0-GAS for strongly interconnected networks). In the setting of
Theorem 5.3, assume that the external inputs satisfy w = 0 and that the network of
interconnected systems is strongly connected. If T, # id, then the network is 0-GAS.

Proof. By Theorem 5.2(ii) there exists an Q-path, and a nonsmooth Lyapunov for
the network is given by (5.4); hence, the origin of the externally unforced composite
system is globally asymptotically stable. d

Remark 5.5. At first sight it might seem that the previous corollary is stronger
than [18, Corollary 2.1], as no robustness term D is needed in the assumptions. How-
ever, the result here is formulated for Lyapunov functions, whereas the result in [18]
is based on the trajectory formulation of ISS in summation form. The proof in the
trajectory version essentially requires bounds on (id — I',) ™!, which relies heavily on
D unless p = max [18, 6, 24]. In contrast, for 0-GAS the D is not needed in the Lya-
punov setting, because for irreducible I' it is possible to construct the path o without
D by Theorem 5.2(ii).

We now specialize Theorem 5.3 to particular cases of interest. Namely, when the
gain with respect to the external input w enters the ISS condition (i) additively, (ii)
via maximization, and (iii) as a factor.

COROLLARY 5.6 (additive gain of external input u). Consider the interconnected
system ¥ given by (2.1) and (2.2) where each of the subsystems 3; has an ISS Lya-
punov function V; and the corresponding gain matriz is given by (2.9). Assume that
the ISS condition is additive in the gain of u; that is,

(5.10) Lu(Vi(an), - Valan), l[ull) = Tu(Vilea), - V() + vu(llull)
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where vy ([[ul]) = (u([ull); - - s Yau(||uwl)T. If T, is irreducible and if there exists an
a € Ko such that for D = diag(id+ «) the gain operator T',, satisfies the strong small
gain condition

DoT,(s) # s,

then the interconnected system is ISS and an ISS Lyapunov function is given by (5.4),
where 0 € K2 is an arbitrary Q-path with respect to Dol,,.

Proof. By Theorem 5.2 an Q(DoI',)-path o exists. Observe that by irreducibility,
(M1), and (M3) it follows that I', (o) is unbounded in all components. Let ¢ € Koo
be such that for all r > 0

min {a(li(o(r))} 2 max {yiu(e(r)}-

Note that this is possible because on the left we take the minimum of a finite number
of Koo-functions. Then we have for all » > 0,7 =1,...,n, that

0i(r) > D oTyi(o(r)) = Tpi(a(r)) + a(Tui(a(r))) = Lpui(o(r)) +7iu(e(r) -

Thus o(r) > T, (c(r), ¢(r)) and the assertion follows from Theorem 5.3. O

COROLLARY 5.7 (maximization with respect to external gain). Consider the in-
terconnected system ¥ given by (2.1) and (2.2) where each of the subsystems ¥; has
an 1SS Lyapunov function V; and the corresponding gain matriz is given by (2.9).
Assume that u enters the ISS condition via maximization; that is,

(5.11)  Tu(Va(z),..., Val(an), [lull) = max {T,(Vi(z1),- ... Va(zn)), vu(llulD)} ,

where vy, (|Jul]) = (yu([ul]);s-- s Ynu(|ul))T. Then, if T, is irreducible and satisfies
the small gain condition

Lu(s) Z s,

the interconnected system is ISS and an ISS Lyapunov function is given by (5.4),
where o € K is an arbitrary (2-path with respect to I'), and ¢ is a Koo-function with
the property

(5.12) Yiwop(r) <Tui(o(r)), i=1,...,n,

where I, ; denotes the ith row of I'y,.

Proof. By Theorem 5.2 an Q(T',,)-path o exists. Note that by irreducibility, (M1),
and (M3) it follows that I', (o) is unbounded in all components. Hence ¢ € Ko
satisfying (5.12) exists, and we obtain

o(r) >max{ I'u(a(r)), yu(p(r)} -

This is (5.3) for the case of maximization of gains in u. The claim follows from The-
orem 5.3. O

In the next result observe that (M3) is not always necessary for the u-component
of p.

COROLLARY 5.8 (separation in gains). Consider the interconnected system X
given by (2.1) and (2.2) where each of the subsystems ¥; has an ISS Lyapunov function
Vi and the corresponding gain matriz I' is given by (2.9). Assume that I" is irreducible
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and that the gains in the ISS condition are separated; that is, there exist ;1 € MAF),
ceR, ¢>0, and v, € Koo such that

G.13)  TuVa(zn), .. Valen), [[ull) = (e +yu(llul)) Tu(Vi(zi),. .., Valen)) -

If there exists an o € Koo such that for D = diag(c-id +id - &) the gain operator T,
satisfies the strong small gain condition

DoT,(s) # s,

then the interconnected system is ISS and an ISS Lyapunov function is given by (5.4),
where o € K7 is an arbitrary Q-path with respect to D oT',,(s).

Proof. If T, is irreducible, then also DoI,, is irreducible, and so by Theorem 5.2(ii)
an Q(D oI',)-path o exists. Let ¢ € Koo be such that for all » >0

where, as in the previous corollaries, we appeal to irreducibility, (M1), and (M3).
Then for each ¢ we have

oi(r) > Tyi(o(r)(c+ a(l'yi(o(r))) = Tui(o(r))(c + yu o @(r)),
and hence

a(r) > (¢ + (p(r))lu(o(r)) = Tu(o(r), o(r);
the assertion follows from (5.13) and Theorem 5.3. O

6. The reducible case and scaling. The results that have been obtained so
far concern mostly strongly connected networks, that is, networks with an irreducible
gain operator. Already in [27] it has been shown that cascades of ISS systems are ISS.
Cascades are a special case of networks where the gain matrix is reducible. In this
section we briefly explain how a Lyapunov function for a network that is not strongly
connected may be constructed based on the construction for the strongly connected
components of the network. Another approach would be to construct the Q-path for
reducible operators I, as has been done in [25] using assumption (M4).

It is well known that if the network is not strongly connected or, equivalently, if
the gain matrix I' is reducible, then I' may be brought in upper block triangular form
via a permutation of the vertices of the network as in the nonnegative matrix case
[2, 6]. After this transformation T is of the form

Tii YTz ... Yig Yo
_ 0 To ... Taog Toy
0 coe 0 Yaa Yau

where each of the blocks on the diagonal Y;; € (Koo U {0})%%% | j = 1,...,d, is
either irreducible or 0. Let ¢; = {:_11 d;, with the convention that ¢; = 0. We denote
the states corresponding to the strongly connected components by

_ T T T
Zj = [xqg'Jrl’ ij+2’ te ijJrl]'
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We will show that in order to obtain an overall ISS Lyapunov function, it is sufficient
to construct ISS Lyapunov functions for each of the irreducible blocks (where the
respective states with higher indices are treated as inputs). The desired result is an
iterative application of the following observation.

LEMMA 6.1. Let a gain matriz T € (Koo U {0})**® be given by

= 10 72 7Y
(6.2) I‘_{O . ’m]’

and let T}, be defined by p € MAF%. Then there exist an Q-path o and ¢ € Ko such
that (5.3) holds.

Proof. By construction the maps m : r +— p1(712(r),Mu(r)) and 172 : 7 +—
to(y12(u)) are in K. Choose a Koo-function 7; > n; such that 7; satisfies the
conditions (i) and (ii) in Definition 5.1. Define o(r) = [27:1(r) T}T and ¢(r) =
min{r,n; *(r/2)}. Then it is a straightforward calculation to check that the assertion
holds. O

The result is now as follows.

PROPOSITION 6.2. Consider a simply connected interconnected system 3 given by
(2.1) and (2.2) where each of the subsystems X; has an ISS Lyapunov function V;, the
corresponding gain matriz is given by (2.8), and p = (p1, ..., pn)T is given by (2.7).
Assume that the gain matriz T is in the reduced form (6.1). If for each j = 1,...,d—1
there exists an ISS Lyapunov function W; for the state z; with respect to the inputs

Zj41s---52d,u, then there exists an ISS Lyapunov function V for the state x with
respect to the input u.
Proof. By assumption for each j = 1,...,d—1 there exist gain functions x;r € K

and xju € Koo and MAFSs [i; such that

Wi(zj) = i (xGj+1(Wit1(zj11)), -5 Xga(Wal2a))s X ([[u]]))
= VW;(2;)fi(zj, 2j41, - - - 2a,u) < —a;(l|z]]) -

We now argue by induction. If d = 1, there is nothing to show. If the result is shown
for d — 1 blocks, consider a gain matrix as in (6.1). By assumption there exists an ISS
Lyapunov function Vy_; such that

Va-1(za-1) > p1(v12(Va(za)), vu(([ul]))
= VVa_1(2zd—1)fa—1(2zd-1, za, u) < —ag—1(||zda-1]]) -

As the remaining part has only external inputs, we see that I is of the form (6.2),
and so Lemma 6.1 is applicable. This shows that the assumptions of Theorem 5.3 are
met, and so a Lyapunov function for the overall system is given by (5.4). O

It is easy to see that the assumption I', 7 id (or I', o D # id) is equivalent to
the requirement that the blocks Y;; on the diagonal satisfy the (strong) small gain
condition (SGC) (or (sSGC)). Thus we immediately obtain the following statements.

COROLLARY 6.3 (summation of gains). Consider the interconnected system X
given by (2.1) and (2.2) where each of the subsystems X; has an ISS Lyapunov function
Vi and the corresponding gain matriz is given by (2.9). Assume that the ISS condition
is additive in the gains; that is,

(6.3) Tpi(Vi(@1), .-, Valan), Jull) = Z%g )+ viu(llull) -
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If there exists an o € Ko such that for D = diag(id+«) the gain operator T',, satisfies
the strong small gain condition

DoT,(s) # s,

then the interconnected system is ISS.
Proof. After permutation I is of the form (6.1). For each of the diagonal blocks
Corollary 5.6 is applicable, and the result follows from Proposition 6.2. d
COROLLARY 6.4 (maximization of gains). Consider the interconnected system
3 given by (2.1) and (2.2) where each of the subsystems ¥; has an ISS Lyapunov
function V; and the corresponding gain matriz is given by (2.9). Assume that the
gains enter the ISS condition via maximization; that is,

(6.4) Tpi(Vi@), .-, Va(an), llull) = max {5 (Vi(21)), -, i (Va (@), viu (ul])} -

If the gain operator I, satisfies the small gain condition

Lu(s) 2 s,

then the interconnected system is ISS.
Proof. After permutation I is of the form (6.1). For each of the diagonal blocks
Corollary 5.7 is applicable, and the result follows from Proposition 6.2. d

7. Applications of the general small gain theorem. In section 3 we pre-
sented several examples of functions f;, v; and gain operators I',,, f;r Here we will
show how our main results apply to these examples. Before we proceed, let us con-
sider the special case of homogeneous I';, (of degree 1) [13]. Here I',, is homogeneous
of degree 1 if for any s € R} and any 7 > 0 we have I',(rs) = I, (s).

PROPOSITION 7.1 (explicit paths and Lyapunov functions for homogeneous gain
operators). Let ¥ in (1.2) be a strongly connected network of subsystems (1.1) and T,
fu be the corresponding gain operators. Let I',, be homogeneous, and let Fu satisfy one
of the conditions (6.3), (6.4), or (5.13). IfT',, satisfies the strong small gain condition
(sSGC) ((SGCQC) in case of (6.4)), then the interconnection ¥ is ISS; moreover, there
exists a (nonlinear) eigenvector 0 < s € R™ of T'), such that T'\(s) = As with A < 1,
and an ISS Lyapunov function for the network is given by

(7.1) Viz) = HlZaX{Vz(%)/Sz}

Proof. First note that either Corollary 6.3, 6.4, or 5.8 can be applied, and the
ISS property follows immediately. By the assumptions of the proposition we have an
irreducible monotone homogeneous operator I';, on the positive orthant R”!. By the
generalized Perron-Frobenius theorem [13] there exists a positive eigenvector s € R.
Its eigenvalue A is less than one; otherwise, we have a contradiction to the small
gain condition. The ray defined by this vector s is a corresponding (2-path and by
Theorem 5.3 we obtain (7.1). O

One type of homogeneous operator arises from linear operators through multi-
plicative coordinate transforms. In this case we can further specialize the assumptions
of the previous result.

LEMMA 7.2. Let a € Ko satisfy? afab) = a(a)a(b) for all a,b > 0. Let D =
diag(ar), G € R™", and T}, be given by

I.(s) =D YGD(s)).

2In other words, a(r) = r° for some ¢ > 0.
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Then T, is homogeneous. Moreover, T'), # id if and only if the spectral radius of G is
less than one.

Proof. If the spectral radius of G is less than one, then there exists a positive vector
§ satisfying G5 < §: just add a small § > 0 to every entry of G so that the spectral
radius p(é) of G is still less than one, due to continuity of the spectrum. Then there
exists a Perron vector 3 such that G5 < G5 = p(G)35 < 3. Define § = D~1(3) > 0, and
observe that a=1(ab) = a~(a)a~t(b). Then we have

(7.2) [,(r3) = D"YGD(r3)) = D™ (a(r)GD(3)) = rD~(GS3)
<rD7Y8) =13

for all » > 0. So an Q-path for I';, is given by o(r) = rs for » > 0. Existence of an
2-path implies the small gain condition: the origin in R’} is globally attractive with
respect to the system s¥T! =T, (s*), as can be seen by a monotonicity argument. By
[6, Theorem 23] or [25, Proposition 4.1] we have T, # id.

Assuming that the spectral radius of G is greater or equal to one, there exists 5 €
R7, 5 # 0, such that G5 > 3. Defining § = D~*(5), we have I',(8) = D~'(GD(3)) =
D7Y(G3) > D~'(5) = 4. Hence I',, # id if and only if the spectral radius of G is less
than one.

Homogeneity of I',, is obtained as in (7.2). O

7.1. Application to linear interconnected systems. Consider the intercon-
nection (3.2) of linear systems from section 3.1.

PROPOSITION 7.3. Let each ¥; in (3.2) be ISS with a quadratic ISS Lyapunov
function V; so that the corresponding operator Iy, can be taken to be as in (3.5). If
the spectral radius r(G) of the associated matrix

ij

ci(l —e)a;
is less than one, then the interconnection
Y: &=(A+A)x+ Bu
s ISS and its (nonsmooth) 1SS Lyapunov function can be taken as

V(z) = max Slx?Pixi
for some positive vector s € R} .

Proof. We have I'), = D™Y(GD(-)), where D = diag(a) for a(r) = /7. Now «
satisfies the assumptions of Lemma 7.2, which yields that I',, satisfies the small gain
condition T', # id if and only if 7(G) < 1. If G or, equivalently, I, is irreducible,
then there exists by Proposition 7.1 an s > 0 such that I',,(s) < s. By (3.5) we see
that there exists an r* € (0, 00) such that I',(s,7*) < s. Then defining o(r) = rs and
@©(r) = +/rr* we obtain for all » > 0 that

fu(o(r), o(r)) = rfu(s,r*) <rs=o(r).

Thus the conditions of Theorem 5.3 are satisfied, and an ISS Lyapunov function can
be taken as V(x) = max; Slx;sza:l

If G is reducible, the previous construction has to be performed for every irre-
ducible block and then the scaling techniques of section 6 need to be applied. O
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7.2. Application to neural networks. Consider the neural network (3.6) dis-
cussed in section 3.2. This is a system of coupled nonlinear equations, and we have
seen that each subsystem is ISS. Note that so far we have not imposed any restric-
tions on the coefficients ¢;;. Moreover, the assumptions imposed on a;, b;, and s; are
essentially milder than in [35]. However, to obtain the ISS property of the network,
we need to require more. The small gain condition can be used for this purpose. It will
impose restrictions on the coupling terms t;;s(x;). From Corollary 5.6, Theorem 7.4
follows.

THEOREM 7.4. Consider the Cohen—Grossberg neural network (3.6). Let I';, be
given by v and pi, 3,5 = 1,...,n, as calculated for the interconnection in section 3.2.
Assume that T, satisfies the strong small gain condition D o'y, # id for s € R} \ 0.
Then this network is ISS from (Ji,...,J,)T to .

Remark 7.5. In [35] the authors have proved that there exists a unique equilibrium
point for the network and given constant external inputs. They have also proved the
exponential stability of this equilibrium. We have considered arbitrary external inputs
to the network and proved the ISS property for the interconnection.

8. Path construction. This section explains the relation between the small gain
condition for I';, and its mapping properties. Then we construct a strictly increasing
Q-path and prove Theorem 5.2 and some extensions. Let us first consider some simple
particular cases to explain the main ideas, as depicted in Figure 8.1. In the following
subsections we then proceed to the main path construction results.

§2

Y15 (s1) 5 52 Y5 (51)

Y21(s1) Y21 (s1)

S1 §1

FiG. 8.1. A sequence of points {FZ(S)}kZO for some s € Q(T',), where T'y, : Ri — Ri 18
given by T'y(s) = (m12(s2), 721 (51))T and satisfies Iy #id or, equivalently, y21 o y12 < id and the
corresponding linear interpolation; cf. Lemmas 8.1, 8.2, and 8.3.

A map T : R} — R is monotone if x < y implies T(x) < T(y). Clearly,
any matrix I' € (Koo U {0})™*"™ together with an aggregation p € MAF], induces a
monotone map I',.

LEMMA 8.1. Let T' € (KU{0})"*"™ and p € MAF}, such that T, satisfies (SGC).
If s € QT,,), then limg 00 TE(s) = 0.

Proof. If s € Q, then I',(s) < s, and by monotonicity I'%(s) < T',(s). By induc-
tion I‘ﬁ(s) is a monotonically decreasing sequence bounded from below by 0. Thus
limg, 00 I‘l’j(s) =: s* exists, and by continuity we have I',(s*) = s*. By the small gain
condition it follows that s* = 0. a

LEMMA 8.2. Assume that T' € (KU{0})"*"™ has no zero rows, and let u € MAF.
If0 < s e Q),), then

(i) 0 <Tp(s) €

(ii) for all X € [0,1] the convex combination sy := As + (1 — XN, (s) € Q.
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Proof. (i) By assumption I',,(s) < s, and so by the monotonicity assumption (M2),
we have I',(T',(s)) < T',(s). Furthermore, as s > 0 and the matrix I has no zero rows,
we have that I',(s) > 0 by assumption (M1).

(ii) As I'y(s) < s it follows for all A € (0,1) that I',(s) < sx < s. Hence by
monotonicity and using (i),

0<T,(Tu(s)) <Tpu(sa) <Tu(s) < sa.

This implies sy € © as desired. d

LEMMA 8.3. Assume that T’ € (K U{0})"*"™ has no zero rows, and let u € MAF;
be such that ', satisfies (SGC). Let s € Q(I'y,). Then there exists a path in QU {0}
connecting the origin and s.

Proof. By Lemma 8.2, the line segment {AI',(s) + (1 — A)s} C Q. By induction
all the line segments {AL5*?(s) 4 (1 — A)['%(s)} C Q for k > 1. Using Lemma 8.1, we
see that I‘ﬁ(s) — 0 as k — oo. This constructs an Q-path with respect to I',, from 0
to s. O

The following result applies to I whose entries are bounded, i.e., in (K\ Ko )U{0}.

PROPOSITION 8.4. Assume that I' € (K U {0})™*™ has no zero rows, and let
w € MAF] be such that '), satisfies (SGC). Assume furthermore that I',, is bounded;
then there exists an §)-path with respect to I',,.

Proof. By assumption the set I';, (R} ) is bounded, so pick s > sup ', (R’ ). Then
clearly, I',(s) < s and so s € Q. By the same argument ns € Q for all n € [1,00).
Thus a path in  through the point s exists if we find a path from s to 0 contained
in . The remainder of the result is given by Lemma 8.3. O

The difficulty now arises if I', happens to be unbounded; i.e., I' contains entries
of class K. In the unbounded case the simple construction above is not possible. In
the following we will first consider the case that all nonzero entries of I' are of class
Koo Beforehand, we introduce a few technical lemmas.

8.1. Technical lemmas. Throughout this subsection 7" : R} — R’ denotes a
continuous, monotone map; i.e., T satisfies T'(v) < T(w) whenever v < w. We start
with a few observations.

LEMMA 8.5. Let p € Koo Then there exists a p € Koo such that (id+p)~1 = id—p.

Proof. Just define p = po(id+p)~L. Then (id—p)o (id+p) = (id+p) —po (id+p) =
id+p—po(id+p)~to(id+ p) =id + p — p = id, which proves the lemma. a

LEMMA 8.6.

(i) Let D = diag(p) for some p € Ko such that p > id. Then for any k > 0 there

exist pgk),pgk) € Ko, satisfying pgk) > id such that for ka) = diag(pl(-k)),
i=1,2,

D =D o D).

(k)
2

Moreover, Dy, k >0, can be chosen such that for all 0 < s € R} we have

D (s) < D (s).

(ii) Let D = diag(id + «) for some o € K. Then there exist aq,ae € Koo such
that for D; = diag(id + «;), i = 1,2,

D:Dlng.
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For maps T : R} — R’} define the decay set
U(T):={seR}:T(s) <s},

where we again omit the reference to 7' if this is clear from the context.

LEMMA 8.7. Let T : R} — R be monotone and D = diag(p) for some p €
Koo, p >id. Then

(i) TF(W) C T*(W) for all k > 0;

(i) Y(DoT)N{s e R} : s >0} C QUT) if T satisfies T'(v) < T'(w) whenever

v < w; the same is true for D o T replaced by T o D.

The proofs of the lemmas are simple and thus omitted for reasons of space. Nev-
ertheless, they can be found in [24, pp. 10, 29].

We will need the following connectedness property in the following.

PROPOSITION 8.8. Let I' € (KU{0})™*™ and p € MAF] be such that T, satisfies
(SGC). Then ¥ is nonempty and pathwise connected. Moreover, if T';, satisfies ', (v) <
I'y(w) whenever v < w, then for any s € Q(I',,) there exists a strictly increasing €2-
path connecting 0 and s.

Proof. Note that always 0 € W; hence, ¥ cannot be empty. Along the lines of
the proof of Lemma 8.3, it follows that each point in ¥ is pathwise connected to the
origin. O

Another crucial step, which is of topological nature, regards preimages of points
in the decay set W. In general it is not guaranteed that for s € R”} with T'(s) € ¥,
we also have s € W. The set of points in ¥ for which preimages of arbitrary order are
also in W is the set

oo (T) = ﬁ T+ (),
k=0

compare Figure 8.2. Of course, this set might be empty or bounded. We will use it to

construct §2-paths for operators I',, satisfying the small gain condition.
PROPOSITION 8.9 (see [25, Proposition 5.4]). Let T : R} — R’ be monotone and

continuous and satisfy T(s) # s for all s # 0. Assume that T satisfies the property

(8.1) l[skll = 00 = [T (sk)[| — o0

as k — oo for any sequence {sy}ren C R .

F1G. 8.2. A sketch of the set Yoo C W C R} in Proposition 8.9.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



4112 S. N. DASHKOVSKIY, B. S. RUFFER, AND F. R. WIRTH

Then Voo (T) CU(T), Voo (T) NS, # D for all v > 0, and ¥ oo(T) is unbounded.

A result based on the topological fixed point theorem from Knaster, Kuratowski,
and Mazurkiewicz allows us to relate 2 and the small gain condition. It is essential
for the proof of Proposition 8.9.

PROPOSITION 8.10. Let T : R — R be monotone and continuous. If T(s) # s
for all s € R}, then the set QN S, is nonempty for all r > 0.

In particular, s € QN .S, for r > 0 implies s > 0. The proof for this result can be
found in [24, Proposition 1.5.3, p. 26] or in a slightly different form in [6].

8.2. Paths for Koo U {0} gain matrices. In this subsection we consider ma-
trices I' € (Koo U {0})™*™; i.e., all nonzero entries of I' are assumed to be unbounded
functions.

In this setting we assume and utilize that the graph associated to I' is strongly
connected; i.e., I' is irreducible. So if we consider powers Fﬁ (x) for each components
¢ and j, there exists a k = k(¢, j) such that ¢ — I‘Z(t - e;); is an unbounded function.

THEOREM 8.11. Let I' € (Koo U {0})™*™ be irreducible, i € MAF., and assume

I, #id. Then there exists a strictly increasing path o € KT satisfying
Tu(o(r)) <o(r) forallr>0.

The main technical difficulty in the proof is to construct the path in the un-
bounded direction; the other case has already been dealt with in Proposition 8.8.

The proof comprises the following steps: First, due to [25, Proposition 5.8], we
may choose a Koo-function ¢ > id so that for D = diag(y) we have I', 0 D % id. Then
we construct a monotone (but not necessarily strictly monotone) sequence {s*}>o in
(L', o D), satisfying s* =T, (D(s**1)) S s**1, so that each component sequence is
unbounded. At this point a linear interpolation of the sequence points may not yield
a strictly increasing path. So finally we use the “extra space” provided by D in the set
Q) D QI o D) to obtain a strictly increasing sequence {5*};>0 in Q(T',) which
we can linearly interpolate to obtain the desired )-path.

Proof. Since I is irreducible, it has no zero rows, and hence I';, satisfies I',(v) <
I',(w) whenever v < w. By [25, Proposition 5.8] there exists a ¢ > id so that for
D = diag(p) we have I', o D # id. Now we construct a nondecreasing sequence {s*}
in ¥(I', o D).

Let T :=T, 0 D. Then T and by induction also all powers T, [ > 1, satisfy (8.1).

By Proposition 8.9 the set W, (T) is unbounded, so we may pick an 0 # s° €
U (T). We can actually choose s° > 0, since the sequence {s*} we are going to
construct will be unbounded in every component, at which point we may replace s°
by some s¥ > 0 for k large enough.

Due to irreducibility of I' (and Remark 2.6), the following property holds: for any
pair 1 < 4,5 < n there exists an [ > 1 such that
(8.2) T (Fz(rej))i
is an unbounded and increasing function, where e; is the jth unit vector. By mono-
tonicity the same holds when 7" is considered instead of I',. Now define a sequence
{s*}r>0 by choosing

sFHL e T71(s*) N W o (T)

for k > 0. This is possible, since by definition ¥ (7") is backward invariant under 7.
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This sequence {s*} satisfies s* S s**1 by definition. We claim that it is un-
bounded, and also unbounded in every component: to this end assume first that it is
bounded. Then by monotonicity there exists a limit s* = limj_ s*. By continuity
of T and since s* = T'(s**1), we have

s* = lim s* = klim T =1 ( lim sk+1> =T(s"),
—00

k— o0 k— o0

contradicting T'(s) # s for all s # 0. Hence the sequence {s*} must be unbounded.

Let j be an index such that {s?}keN is unbounded; let ¢ € {1,...,n} be arbitrary,
and choose [ such that the function in (8.2) is unbounded for i,j,I. Choose real
numbers ry — oo such that rpe; < s¥ for all k € N. Then we have

(T'(re;))i < (T'(s%))i = st
As the term on the left goes to oo for k — oo, so does s¥. Hence {s*} is unbounded
in every component.

Now by Lemma 8.7(ii) the sequence {s*} is contained in Q(I',,), but it may not
be strictly increasing, as we only know s* < sk*1! for all k > 0. We define a strictly
increasing sequence {5*} as follows: By Lemma 8.6 for any k > 0 we may factorize
D = D™ oD so that DI, DIF > id and D (s) < DY (s) for all k > 0 and all
s > 0. Using this factorization, we define

5% = DIV (s%)

for all £ > 0. By the definition of Dék) this sequence is clearly strictly increasing and
inherits from {s*} the unboundedness in all components.
We claim that {§*} C Q(T',). This follows from

§ > s >T,0D(*) =T, 0D oD (s*) =T, 0 D () > T, (5.
Now we prove that for A € (0,1) we have (1 — \)3* + \s*+1 € Q(T,). Clearly,
35 < (1= N)EF 4+ AFEH < gt
and application of the strictly increasing operator I',, yields

TL((1—X)&% + A1) < 1, (5"
=T, 0 DY (s541) <1 0 DIV o DIFHY (5541
=sF < 5" < (1 - N)&k NG

Hence (1 — )3 + 2§81 € Q(T,).

Now we may define o as a parametrization of the linear interpolation of the points
{3*}1>0 in the unbounded direction and utilize the construction from Lemma 8.3 for
the other direction. Clearly, this function o is an Q-path as it has component functions
of class K, and is piecewise linear on every compact interval contained in (0, 00). ad

It is possible to consider the reducible case in a similar fashion. The argument is
essentially an induction over the number of irreducible and zero blocks on the diag-
onal of the reducible operator. We cite the following result from [25, Theorem 5.10].
However, for the construction of an ISS Lyapunov function in the case of reducible I,
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we take a different route as described in section 6, thus avoiding the use of assumption
(M4).

THEOREM 8.12. Let I' € (Koo U {0})™*™ be reducible, p € MAF, satisfy (M4),
D = diag(id + a) for some p € Koo, and assume I')y 0 D # id. Then there exists
a monotone and continuous operator D : R} — R and a strictly increasing path
o : Ry = R} whose component functions are all unbounded such that ', 0 D(0) < o.

8.3. General I',. In the preceding subsections we have seen that it is possible
to construct 2-paths for matrices I' whose nonzero entries are either all bounded or
all unbounded. It remains to consider the case that the nonzero entries of I' are partly
of class K, and partly of class K \ Ko.. We can state the following result.

PROPOSITION 8.13. Let I' € (K U {0})™*™, and let u € MAF;. satisfy (M4).
Assume '), satisfies (sSGC). Then there exists an Q-path for T,.

Proof. Write

I'=Ty+1Tp,

with I'y € (Koo U{0})"*™ and I'p € (K\ Koo U{0})"*™. Clearly, we have (I'yy),, < T,
and (I'g), <T,, and hence both maps satisfy

(Te)u # id,

where e serves as a placeholder for the subscripts U and B.

The map (I'), is bounded. Hence s* := sup(I'), (R’ ) is a finite vector.

By Theorem 8.12 for (I'y),, there exists a Koo-function p and a Koo-path oy so
that for the diagonal operator D = diag(id + 5) we have

(Ty)u 0 D)(ou(r) < ou(r) forallr>0.

Similarly, by Proposition 8.4, there exists a Koo-path op such that (I's),(cp(r)) <
op(r) for all » > 0. In fact, and this is the key to this proof, it is possible to
reparametrize op in the region where op(r) > s* as follows: for any o, 8 € Koo
we can find a xk € K4, such that

(aok)(r) < p(r), r>0,

e.g., by choosing k € Ko satisfying x(r) < (a~' o §)(r). This is always possible.
Denote D = diag(p) (so that D =id 4+ D), and choose 7* such that D(oy(r*)) > s*.
Then after reparametrization we may assume that

op(r) < D(oy(r)) and op(r) > s*

for all » > r*. Using Lemma 8.3, we let oz : [0,7*] — R’} be a finite-length path
satisfying

Lu(op(r)) <op(r) forall re (0,r"],
o, is strictly increasing,

or(0) =0, and or(r*) = o (r*) + oy (™).

Now define o by

o(r) = op(r)+ou(r) ifr>r*,
or(r) if r <r*.
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It remains to check that o satisfies I',,(o(r)) < o(r) for r > r*. Indeed, for r > r* we
have

o(r) = ou(r) + o5(r) > (Tv)u 0 D)(ov(r)) + 5"
> (Lv)ulov(r) +o5(r) + Ts)ulov(r) + op(r))
> Lu(ou(r) +op(r)),

where the last inequality is due to (M4). This completes the proof. O

8.4. Special case: Maximization. The case when the aggregation is the max-
imum (i.e., p = max) is indeed a special case, since not only the small gain condition
can be formulated in simpler manner but also the path construction can be achieved
without the need of the diagonal operator D as before.

A cycle in a matrix I" is a finite sequence of nonzero entries of I' of the form

(Pyil,iwp)/iz,is? s 7’71'1(71'1)'
A cycle is called subordinated if i1 > max{is, ...,ix}, and it is called a contraction if
Viyiz © Viniz O O Vig,ip < id.
It is an easy exercise to show that when all subordinated cycles are contractions, then
already all cycles are contractions.

THEOREM 8.14. Let = max and I' € (KU{0})™*". If all subordinated cycles of
I' are contractions, then there exists an Q-path with respect to I',,.

The proof is composed of the following steps. The first step is to show that the
cycle condition (all cycles being contractions) is equivalent to I', # id. Note that
1 = max automatically satisfies (M4), but (M4) is actually not needed for the proof.
Then the path construction can essentially be done as before, replacing sums by
maximization, and one can even avoid the use of D = diag(id + p). Compare also [25].

8.5. Proof of Theorem 5.2. We now come to the easiest part of this section,
which is to combine all the preceding results to one general theorem for matrices with
entries of class IC, namely, Theorem 5.2.

Proof of Theorem 5.2.

(i) In the linear case we can identify I', with a real matrix with nonnegative
entries. Then there exists a positive vector v > 0 so that I'yv < v if the
spectral radius p(I',,) < 1; cf. [2] or [24, Lemma 2.0.1, p. 33]. For » > 0 this
gives I'yrv < rv; ie., a Koo-path is given by o(r) = rv.

) This is Theorem 8.11.
ii) This is Theorem 8.14.
) This is Proposition 8.4. O

9. Remarks for the case of three subsystems. Recall that a construction
of an Q-path o for the case of two subsystems was given in [17]. We have seen that
in a general case of n € N subsystems the construction involves more theory and
topological properties of I',, that follow from the small gain condition. However, in
the case of three subsystems o can be found by rather simple considerations. Here
we provide this illustrative construction. Let us consider the special case I' € (Koo U
{0})3%3, wi(s) = s1+ 82+ 83, i = 1,2, 3, and for simplicity assume that v;; € Koo for
all i # j so that

0 v2 M3 Y12(s2) + 7113(s3) 51
(9.1) T=1| v 0 s |, Tuls)=1| 121(s1) +23(s3) | 2| s2
Y31 v32 O v31(51) + 732(s2) 83
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Fix s; > 0; then it follows that there is exactly one so satisfying

(9.2) Vi3 (s1 — 112(s2)) = Va3 (52 — 721 (1)) ,

since for a fixed s; the left side of (9.2) is a strictly decreasing function of sy while
the right side of (9.2) is a strictly increasing one. The small gain condition (9.1), in
particular, ensures that vy, (75, (r)) > r for any r > 0. Let s§ be the solution of
s1 —712(s2) = 0 and s3* be the solution of s2 — y21(s1) = 0; then

53 =2 (s1) = 7112 (721 (557)) > 85"

Hence the root of the left side of (9.2) is greater than the root of the right side of
(9.2). This proves that for any s; there is always exactly one sy satisfying (9.2); see
Figure 9.1.

A
1

w3 1= ) ,/

2 ’

~~. /
S s

P!
T3 (= 2(s1)

t -+ >
* N

* * 2
S2 S2

F1G. 9.1. Visualization of (9.2).

By the continuity and monotonicity of 712,721,713, and ~s3, it follows that ss
depends continuously on s; and is strictly increasing with s1. We can define o1(r) =r
for r > 0 and o2(r) to be the unique s2 solving (9.2) for s; = r.

Denote A(r) = 431(01(r)) + 2(02(r)) and g(r) = 33 (01(r) — 112(02(r))) =
Yoz (02(1) — Y21(01(r))), and define M(r) := {s3 : h(r) < s3 < g(r)}. Let us show
that M(r) # 0 for all r > 0. If this is not true, then there exists r* > 0 such that
s5 = h(r*) > g(r*) holds. Consider the point s* := (s}, s}, s5) = (r*, o2(r"), s3).
Then s3 > g(r*) = 73 (57 — m2(s3)), 85 = g(r*) = 735'(s3 — 721(s7)), and s3 =
h(r*) = v31(s7) + v32(s5). In other words,

Y12(83) + 713(53) Ch
[(s") = | y21(s7) +723(s3) | > [ s3],
Y31(s7) + y32(s3) 83

contradicting (2.1). Hence M(r) is not empty for all r > 0.

Consider the functions h(r) and g(r). The question is how to choose o3(r) € M (r)
such that o3 € K. Note that h(r) € Koo. Let ¢g*(r) := min,>, g(u) so that
g*(r) < g¢g(r) for all » > 0. Since h(r) is unbounded, for all » > 0 the set
C(r) = argmin,>,g(u) is compact, and for all points p € C(r) the relation
g*(r) > g(p) > h(p) > h(r) holds. We have h(r) < g*(r) < g(r) for all r > 0, where g*
is a (not necessarily strictly) increasing function. Now take o3(r) := 1(g*(r) + h(r)),
and observe that o3 € Ko and h(r) < o3(r) < g¢*(r) for all » > 0. Hence
0= (01,02,03)T satisfies I',(o(r)) < o(r) for all 7 > 0.

The case where one of ;;’s is not a Koo-function but zero can be treated similarly.
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10. Conclusions. In this paper we have provided a method for the construc-
tion of ISS Lyapunov functions for interconnections of nonlinear ISS systems. The
method applies for an interconnection of an arbitrary finite number of subsystems in-
terconnected in an arbitrary way and satisfying a small gain condition. The small gain
condition is imposed on the nonlinear gain operator I', that we have introduced here.
This operator contains the information of the topological structure of the network
and the interactions between its subsystems. An ISS Lyapunov function for such a
network is given in terms of ISS Lyapunov functions of subsystems and some auxiliary
functions. We have shown how this construction is related to the small gain condition
and mapping properties of the gain operator I',, and its invariant sets. Namely, the
small gain condition guarantees the existence of an unbounded vector function with
its path in an invariant set €2 of the operator I',,. This auxiliary function can be used to
rescale the ISS Lyapunov functions of the individual subsystems and aggregate them
into an ISS Lyapunov function for the entire network. The construction technique
for this vector function has been detailed as well as the construction of the compos-
ite Lyapunov function. The constructed Lyapunov function is only locally Lipschitz
continuous so that methods from nonsmooth analysis had to be used. The proposed
method has been exemplified for linear systems and neural networks.
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