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a b s t r a c t

We consider interconnections of locally input-to-state stable (LISS) systems. The class of LISS systems
is quite large, in particular it contains input-to-state stable (ISS) and integral input-to-state stable (iISS)
systems.
Local small-gain conditions both for LISS trajectory and Lyapunov formulations guaranteeing LISS of

the composite system are provided in this paper. Notably, estimates for the resulting stability region of the
composite system are also given. This in particular provides an advantage over the linearization approach,
as will be discussed.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

In this paper we study local stability properties of intercon-
nected nonlinear systems. One of themost popular frameworks for
such interconnections is input-to-state stability (ISS) introduced
in [1]. This notion has been used successfully for the investigation
of continuous and discrete time systems, systems with time de-
lays, and hybrid systems. In particular the first small-gain stability
condition for a feedback interconnection of two ISS systems which
were given in terms of ordinary differential equations was derived
in [2]. A corresponding construction of an ISS Lyapunov function
for feedback interconnections has been given in [3]. These results
were extended for the case of an interconnection of n ≥ 2 systems
in [4–6], respectively. Small-gain theorems for hybrid systems can
be found in [7,8]. Interconnected systems with time delays have
been studied in the ISS framework in [9]. A small-gain theorem for
interconnections of amore general type of systems that do not sat-
isfy the classical semigroup property has been developed in [10].
In some applications the ISS property can be rather restrictive.

A less restrictive property is for example the integral input-
to-state stability (iISS) property [11]. The set of iISS systems
contains ISS systems as a proper subset. Small-gain theorems for
interconnections of iISS systems can be found in [12,13]. Another
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way toweaken the ISS property is to consider its local version, local
input-to-state stability (LISS), but see also [14–16] for different
local stability properties. It turns out that LISS constitutes an
even bigger class of nonlinear systems than iISS systems (cf.
[17, Theorem 1]: iISS implies 0-GAS and [16, Lemma I.1]: 0-GAS
implies LISS). In broad terms, a system is LISS if the ISS property
holds locally with respect to inputs and initial states. Systems
with such restrictions and a corresponding small-gain condition
for feedback interconnections of two systems have been discussed
in [2]. Large-scale interconnections of such systems have been
considered in [18] for the first time.
Provided that the stability regions of allowable inputs and

initial conditions are quantified and suitably large, LISS is a rather
interesting property from an application perspective, as it allows
to estimate transient and asymptotic behavior of solutions of
nonlinear systems in a well-understood framework.
This paper is devoted to stability investigations of large-scale

interconnected nonlinear systems. To this extent, we consider n ≥
2 subsystems given by

ẋi = fi(x1, . . . , xn, ui), i = 1, . . . , n, (1)

where xi ∈ RNi , ui ∈ RMi , and fi : R
∑
j Nj+Mi → RNi , i = 1, . . . , n,

are assumed to be continuous and locally Lipschitz in x uniformly
for ui in compact sets, which guarantees existence (at least on
small time intervals) and uniqueness of solution for each of the
systems. Let xT denote the transposition of a vector. Introducing
xT = (xT1, . . . , x

T
n) ∈ RN , N =

∑n
i=1 Ni, M =

∑n
i=1Mi, u

T
=

(uT1, . . . , u
T
n), f (x, u)

T
= (f1(x, u1)T , . . . , fn(x, un)T ) we consider
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this interconnection as one composite systemof a larger dimension
N ,

ẋ = f (x, u). (2)

Our main results are small-gain theorems that provide sufficient
conditions for the stability of such interconnections: Under the
assumption that each system (1) is LISS (see below) and a small-
gain condition, we show that the composite system (2) is also LISS.
In particular, we provide a local small-gain condition, which

turns out to be similar butweaker than its global counterpart in [4–
6]. We also show how the Lyapunov functions of the subsystems
can be aggregated to a composite Lyapunov function. The approach
is similar and heavily inspired by its global counterpart; however,
a number of technical modifications are in order, which will
be provided. Most notably and in contrast to previous works
and existing literature based on linearization, our results provide
estimates on the regions where the stability results hold. In
addition, by utilizing the concept proposed in [16], our results also
apply to stability with respect to sets, rather than just equilibrium
points.
The paper is organized as follows. The next section introduces

the necessary notions and formally states the problem. In Section 3
we recall corresponding global results for the stronger ISS
property. Our local small-gain condition is introduced in Section 4
where we also prove some auxiliary results related to this
condition. Section 5 contains the main results of the paper. In
Section 5.3 we briefly highlight the advantages of LISS compared
to linearization approaches. An illustrative example is considered
in Section 6. Section 7 concludes the paper.

2. Notation and definitions, problem formulation

2.1. Notation

Let Rn
+
:= {x ∈ Rn : xi ≥ 0, i = 1, . . . , n} denote the positive

orthant in Rn. For a, b ∈ Rn
+
let a � b denote that ai < bi for

all i = 1, . . . , n and a ≤ b denote ai ≤ bi for all i = 1, . . . , n.
We write a < b iff a ≤ b and a 6= b. With respect to this partial
order, theminimum andmaximumof two ormore vectors is taken
component-wise. For a vector a ∈ Rn by |a| we denote the vector
(|a1|, . . . , |an|)T ∈ Rn

+
. Observe that |a| = max{a,−a}. The logical

negation of the relation ≥ is denoted by a 6≥ b and it means that
there is at least one i ∈ {1, . . . , n} such that ai < bi. It is not the
same as the relation<. For a, b ∈ Rn

+
we write [a, b] := {s ∈ Rn

+
:

a ≤ s ≤ b}, (a, b) := {s ∈ Rn
+
: a < s < b}, and similarly

[a, b), (a, b] to denote order intervals in Rn
+
. By ‖x‖we denote the

Euclidean norm of x ∈ Rn and by ‖u‖L∞(T ) = ess. supt∈T‖u(t)‖we
denote the essential supremum norm of a measurable function u.
Reference to the time interval T is usually omitted in the case T =
R+. The set of all measurable and essentially bounded functions
is denoted by L∞. By B(x, r) we denote the open ball with respect
to the Euclidean norm around x of radius r . Let A be a nonempty
set in Rn. Then by ‖x‖A = d(x,A) = infy∈A ‖x − y‖ we denote
the distance between x andA, cf. [16]. The induced L∞-distance is
denoted by ‖x‖LA∞(T ) := ess. supt∈T‖x(t)‖A.
A continuous operator A : Rn

+
→ Rn

+
is called monotone, if

r ≤ s implies A(r) ≤ A(s). For a vector x ∈ Rn
+
we denote by x|I the

vector in Rn
+
with elements

(x|I)i =
{
xi if i ∈ I and
0 otherwise.

A function γ : R+ → R+ is said to be of classK if it is continuous,
increasing and γ (0) = 0. It is of class K∞ if, in addition, it
is unbounded. We will frequently use the class K∞ notation for
functions that are defined only on bounded intervals [0, r]. In
this case the function will obviously be bounded; however, it can
always be extended to a K∞ function on [0,∞). A function β :
R+ × R+ → R+ is said to be of class KL if, for each fixed t ,
the function β(·, t) is of classK and, for each fixed s, the function
β(s, ·) is non-increasing and tends to zero at infinity.

2.2. Local input-to-state stability (LISS)

The concept of input-to-state stability (ISS) has been first
introduced in [1]. Its local version, alsowith respect to a nonempty,
compact setA, has first appeared in [16].
Throughout let A ⊂ RN be nonempty, compact, and zero-

invariant with respect to (2), i.e., x(t, ξ , 0) ∈ A for all t ≥ 0, ξ ∈ A,
where 0 denotes the inputwhich is identically zero and x() denotes
the unique solution to (2).

Definition 2.1. System (2) is locally input-to-state stable (LISS)
with respect to A, if there exist ρ0 > 0, ρu > 0, γ ∈ K∞, and
β ∈ KL, such that for all ‖ξ‖A ≤ ρ0, ‖u‖L∞ ≤ ρ

u

‖x(t, ξ , u)‖A ≤ β(‖ξ‖A, t)+ γ (‖u‖L∞), ∀ t ≥ 0. (3)

Here γ is called LISS gain.

If ρ0 = ρu = ∞, then system (2) is called input-to-state stable
(ISS) with respect to A. It is known that ISS defined this way is
equivalent to the existence of an ISS Lyapunov function. Here we
give the definition of a LISS Lyapunov function:

Definition 2.2. A smooth function V : D → R+, with D ⊂ RN
open, is a LISS Lyapunov function of (2) if there existρ0 > 0,ρu > 0,
ψ1, ψ2 ∈ K∞, γ ∈ K∞, and a positive definite function α such
that B(0, ρ0) ⊂ D and

ψ1(‖x‖A) ≤ V (x) ≤ ψ2(‖x‖A), ∀ x ∈ RN , (4)

V (x) ≥ γ (‖u‖) H⇒ ∇V (x) · f (x, u) ≤ −α(V (x)), (5)

for all ‖x‖A ≤ ρ0, ‖u‖ ≤ ρu. The function γ is called LISS Lyapunov
gain. If ρ0 = ρu = ∞ then V is called an ISS Lyapunov function.

A related and strictly weaker stability concept (just think of the
scalar system ẋ = 0) is that of local stability:

Definition 2.3. System (2) is locally stable (LS) with respect to A,
if there exist ρ0 > 0, ρu > 0, σ , γ ∈ K∞, such that for all
‖ξ‖A ≤ ρ

0, ‖u‖L∞ ≤ ρ
u

ess. sup
t≥0

‖x(t, ξ , u)‖A ≤ σ(‖ξ‖A)+ γ (‖u‖L∞). (6)

Also related is the concept of asymptotic gains.

Definition 2.4. System (2) has the local asymptotic gain property
(LAG) with respect to A, if there exist ρ0 > 0, ρu > 0, γ ∈ K∞,
such that for all ‖ξ‖A ≤ ρ0, ‖u‖L∞ ≤ ρ

u

lim sup
t→∞

‖x(t, ξ , u)‖A ≤ γ (‖u‖L∞). (7)

Note that inequality (7) is equivalent to

lim sup
t→∞

‖x(t, ξ , u)‖A ≤ γ (ess. lim sup
t→∞

‖u‖). (8)

In all of the above stability definitions, the reference toA is usually
omitted whenA = {0}.
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2.3. Monotone aggregation functions (MAFs)

The concept of monotone aggregation functions has been
introduced in [19] and has subsequently been used in [20,6,21].
It is useful to cover different formulations for the aggregation of
multiple inputs in a unified way. Examples of MAFs include all
monotone norms on Rn

+
(which includes all p-norms).

Definition 2.5 (Monotone Aggregation Functions). A function µ :
Rn
+
→ R+ is called a monotone aggregation function (MAFn) if µ

is continuous and

(M1) nonnegative: µ(s) ≥ 0 for all s ∈ Rn
+
;

(M2) strictly increasing: if x� y then µ(x) < µ(y).

By µ ∈ MAFmn we denote vector monotone aggregation functions,
i.e., µi ∈ MAFn for i = 1, . . . ,m, and if m = n we simply write
MAF n instead ofMAF nn .

A direct consequence of (M2) and continuity is that also the
weaker monotonicity property x ≤ y H⇒ µ(x) ≤ µ(y) holds
for MAFs.
Further assumptions made for global results in [6,21] include

the properties

(M3) unboundedness: if ‖x‖ → ∞ then µ(x)→∞;
(M4) sub-additivity: µ(x+ y) ≤ µ(x)+ µ(y).

Note that while we will require (M4) for a strict subset of our
main results, none of the results derived in this paper assumes
(M3). Standard examples satisfying (M1)–(M4) are summation and
maximization, which we write as

Σ : (x1, . . . , xn)T 7→
n∑
i=1

xi, and

⊕ : (x1, . . . , xn)T 7→ max
i=1,...,n

xi.

The induced vector MAFs will be denoted by the same symbols.

2.4. LISS for multiple inputs and gain matrices

The stability notions in Section 2.2 can be extended to the
case of several inputs to one subsystem as in (1), where xj, for
j 6= i, is regarded as an independent input to the ith subsystem.
This is possible for both, the trajectory formulation as well as the
Lyapunov formulation. Here we settle some unifying notation.
We assume that there exists a nonempty, compact setAi ⊂ RNi ,

zero invariant with respect to the ith subsystem.
We call the ith subsystem LISS, provided there exist ρ0i > 0,

ρ
j
i > 0, ρ

u
i > 0 and functions γij, γiu ∈ (K∞ ∪ {0}), βi ∈ KL,

and a monotone aggregation function µi ∈ MAFn+1, such that for
all ξi ∈ RNi such that ‖ξi‖Ai ≤ ρ0i , for all xj ∈ L∞(R+;R

Nj) such
that ‖xj‖LAj∞

≤ ρ
j
i (where j 6= i), and for all ui ∈ L∞(R+;R

Mi) such

that ‖ui‖L∞ ≤ ρ
u
i , the following estimate holds for all t ≥ 0:

‖xi(t; ξi, xj : j 6= i, ui)‖Ai

≤ βi(‖ξi‖Ai , t)+ µi
(
γi1(‖x1‖LA1∞ ([0,t])

), . . . ,

γin(‖xn‖LAn∞ ([0,t])), γiu(‖ui‖L∞([0,t]))
)
. (9)

Similarly, for the Lyapunov formulation of LISS we have in the
case of several inputs the following extension of Definition 2.2: A
smooth function Vi : Di → R+,Di ⊂ RNi open, such that for some
ψi1, ψi2 ∈ K∞,

ψi1(‖xi‖Ai) ≤ Vi(xi) ≤ ψi2(‖xi‖Ai), ∀ xi ∈ Di, (10)
is a LISS Lyapunov function for subsystem (1) if there exist ρ0i > 0,
ρ
j
i > 0, ρ

u
i > 0, functions γij, γiu ∈ K∞ ∪ {0}, a positive definite

function αi, and a monotone aggregation function µi ∈ MAFn+1,
such that B(0, ρ0i ) ⊂ Di and for all xi ∈ RNi with ‖xi‖Ai < ρ0i and
inputs satisfying ‖xj‖Aj < ρ

j
i for j 6= i and ui ∈ RMi , ‖ui‖ < ρui , the

following implication holds:

Vi(x) ≥ µi (γi1(V1(x1)), . . . , γin(Vn(xn)), γiu(‖ui‖))
H⇒ ∇Vi(xi) · fi(x, ui) ≤ −αi(Vi(xi)).

(11)

If all n subsystems in (1) are LISS, we can collect the gains in a
matrix

Γ =
(
γij
)n
i,j=1 , with γij ∈ K∞ ∪ {0} (12)

where we use the convention that γii ≡ 0 for i = 1, . . . , n.
Similarly, we collect the external gains γiu in a column vector
Γ e(s) = (γ1u(s1), . . . , γnu(sn))T .
The matrix Γ is called gain matrix of the interconnection (1).

Note that γij ≡ 0 means that there is no input from system j to
system i, i.e., fi does not depend on xj.
The gain matrix Γ together with µ = (µ1, . . . , µn)

T defines
monotone operators, denoted by the symbols Γµ : Rn+ → Rn

+
and

Γ µ : Rn+1+ → Rn
+
, given by

Γµ(s)i := µi (γi1(s1), . . . , γin(sn), 0) (13)

for s ∈ Rn
+
and Γ µ(s)i := µi (γi1(s1), . . . , γin(sn), γiu(sn+1)) for

s ∈ Rn+1+ .
Throughout the paper we make the following assumption to

rule out pathological cases that might otherwise occur when we
use this notation:

Assumption 2.6 (Compatibility Assumption). Given Γ ∈ (K∞ ∪
{0})n×n and µ ∈ MAF n, we will from now on assume that Γ and
µ are compatible in the following sense: For each i = 1, . . . , n, let
Ii denote the set of indices corresponding to the nonzero entries in
the ith row of Γ . Then it is understood that also the restriction of
µi to the indices Ii satisfies (M2), i.e., if x|Ii � y|Ii then µi(x|Ii) <
µi(y|Ii).

All standard examples of MAFs, i.e., monotone norms including
Σ and⊕ satisfy this assumption.

2.5. A vector formulation for trajectory LISS estimates

For the trajectory formulation (9), we introduce a shorthand
vector notation building upon gain operators:
We abbreviate ‖xi(t)‖Ai by si(t), ‖xi‖LAi∞ ([0,t])

by si,[0,t] and

form corresponding vectors s(t) = (s1(t), . . . , sn(t))T and s[0,t] =
(s1,[0,t], . . . , sn,[0,t])T . Analogously, by ei,[0,t]we refer to ‖ui‖L∞([0,t])
and by e[0,t] to the corresponding vector.
For v ∈ Rn

+
and t ∈ R+ let us write

B(v, t) = (β1(v1, t), . . . , βn(vn, t))T .

To be able to give estimates for the stability regions, we define
the vector notation ρi = (ρ i1, . . . , ρ

i
n)
T , for i = 0, . . . , n, and

ρe = (ρu1 , . . . , ρ
u
n )
T . We also define ρx := mini=1,...,n ρi. Using this

newly defined notation, the LISS estimates (9) for i = 1, . . . , n can
be written in vectorized form as follows:
Subsystems (1) are LISS for i = 1, . . . , n if there exist vectors

ρ0, ρx, ρe ∈ Rn
+
, ρ0, ρx, ρe � 0, such that for all s(0) � ρ0,

t ≥ 0, and the corresponding solutions and inputs to (1) satisfying
s[0,t] � ρx and e[0,t] � ρe, the following estimate holds:

s(t) ≤ B(s(0), t)+ µ
(
[Γ (s[0,t]),Γ e(e[0,t])]

)
. (14)
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If µ satisfies M4, then estimate (14) implies

s(t) ≤ B(s(0), t)+ Γµ(s[0,t])+ Γ e(e[0,t]). (15)

We observe that we have s(0) ≤ s[0,t] for all t ≥ 0 and hence
without loss of generality we may assume that ρ0 ≤ ρx.
Also note that in general ‖x‖LA∞([0,T ]) 6= ‖s[0,T ]‖, e.g., for the case

A = {0}, x(t) = (cos t, sin t)T with s1(t) = | cos t| and s2(t) =
| sin t|. Here we find ‖x‖LA∞([0,2π ]) = 1, while ‖s[0,2π ]‖ =

√
2. For

the Euclidean norm we have the following estimate:

Lemma 2.7. For the above defined notation in general it holds that

‖x‖L∞([0,T ]) ≤ ‖s[0,T ]‖ ≤
√
n‖x‖L∞([0,T ]).

3. Known global results

The global small-gain condition assuring the ISS property for an
interconnection of n ≥ 2 ISS systems has first been derived in [4].
An alternative proof has been given in [5]. We quote the following
result from these papers for comparison.

Theorem 3.1. Consider system (2) and suppose that each subsystem
(1) is ISS, i.e., condition (9) holds for all ξi ∈ Rn

+
, ui ∈ L∞, and

i = 1, . . . , n. Let Γ be given by (12) and let themonotone aggregation
beΣ . If there exists an α ∈ K∞, such that

(ΓΣ ◦ D)(s) 6≥ s, ∀s ∈ Rn
+
\ {0}, (16)

with D = diagn(id+α) then the system (2) is ISS from u to x.

A version of this result for generalµ satisfyingM4 follows along
the lines of the same proofs using the result [21, Theorem 6.1].
Furthermore it is known that under the same small-gain

condition an ISS Lyapunov function for (2) can be explicitly
constructed as a combination of the ISS Lyapunov functions of
subsystems, see, e.g., [6, Corollary 5.5]:

Theorem 3.2. Consider the interconnected systems (1), where each
of the subsystems Σi is assumed to have an ISS Lyapunov function Vi
and the corresponding gain matrix is given by (12). Assume that each
µi ∈ MAFn+1 satisfies (M3) and is additive in the last argument, i.e.,

µi(s, r) = µi(s, 0)+ r, for all s ∈ Rn
+
, r ∈ R+. (17)

If Γµ is irreducible and if there exists an α ∈ K∞ such that for
D = diag(id+α) the gain operator Γµ satisfies the condition

D ◦ Γµ(s) 6≥ s (18)

then the interconnected system is ISS and there exists a vector valued
function σ : R+ → Rn

+
satisfying (Γ ◦ D)(σ (r)) � σ(r),∀r > 0,

such that each component function σi is of class K∞ and piecewise
linear on (0,∞). Moreover,

V (x) = max
i
σ−1i (Vi(xi))

is a nonsmooth ISS Lyapunov function for the system (2).

Note that V (x) in this case is not smooth but only Lipschitz con-
tinuous. In [6] it has been pointed out that a Lipschitz continuous
ISS Lyapunov function is sufficient to deduce input-to-state stabil-
ity. The argument is the same for LISS Lyapunov functions.
A local version of the function σ can be constructed explicitly

as we will show below.
4. Local small-gain condition

Motivated by the global small-gain conditions we introduce
its local counterpart as follows. We say that Γµ satisfies the local
small-gain condition on [0, w∗], provided that

Γµ(w
∗)� w∗ and Γµ(s) 6≥ s, ∀ s ∈ [0, w∗], s 6= 0. (19)

In this paper we give local results similar to Theorems 3.1 and
3.2. The following lemmas will be used to obtain the main result.
We start with a simple criterion that guarantees (19).

Lemma 4.1. Let Γ be a gain matrix as in (12), µ ∈ MAF n, and let
w∗ ∈ Rn

+
satisfyΓµ(w∗)� w∗. Consider the trajectory {w(k)} of the

discrete monotone system w(k + 1) = Γµ(w(k)), k = 0, 1, 2 . . .
with w(0) = w∗. Then w(k) → 0 for k → ∞ if and only if Γµ
satisfies the small-gain condition (19) on [0, w∗].

Remark 4.2. The previous lemma gives an idea how the small-
gain condition (19) can be verified. First one looks for w∗ ∈ Rn
with Γµ(w∗) � w∗. Then instead of checking Γµ(s) 6≥ s for
all s ∈ [0, w∗] \ {0} one needs to check whether the sequence
w(k) converges to the origin — and the latter is quite an easy task.
For the first task, i.e., finding a suitable w∗, there exist numerical
algorithms which can be efficiently implemented. See, e.g.,
[19, Chapter 4].

Proof. To prove sufficiency letw(k)→ 0 for k→∞ and suppose
there exists a point v ∈ [0, w∗]with

Γµ(v) ≥ v (20)

and v 6= 0. Since Γµ is monotone, so is Γ kµ , i.e., the k-times
application of Γµ. Hence (20) implies Γ kµ(v) ≥ v ≥ 0, so Γ kµ(v)
does not tend to zero as k approaches infinity. But v ≤ w∗ implies
Γ kµ(v) ≤ Γ

k
µ(w

∗) = w(k), which is assumed to tend to zero. This
contradiction implies that Γµ(v) 6≥ v for all v ∈ [0, w∗] and
sufficiency is proved.
Now assume that Γµ satisfies (19) on [0, w∗] and consider the

sequence {w(k)}, k = 0, 1, . . . defined by w(k + 1) = Γµ(w(k))
and w(0) = w∗. By the monotonicity of Γµ and Γµ(w∗) � w∗

this sequence is bounded in Rn and hence it contains a convergent
subsequence that converges to some v ∈ Rn. Then by the
continuity of Γµ we have Γµ(v) = v contradicting (19) unless
v = 0. This proves the necessity. �

For the case that Γ has no zero rows and Γµ satisfies (19), the
result [21, Proposition 5.2] shows that a linear interpolation of the
sequence {Γ kµ(w

∗)}k≥0 gives a path, called anΩ-path, satisfying

σ : [0, 1] → [0, w∗], Γµ(σ (r))� σ(r), for r ∈ (0, 1], (21)

and that each component function σi is strictly increasing.
Furthermore, σ is piecewise linear and satisfies σ(0) = 0, σ (1) =
w∗. An extension is the following result.

Proposition 4.3. Let Γµ : Rn
+
→ Rn

+
be given by (13). Assume

that Γ has no zero row and satisfies (19). Then there exists a path
σ : [0, 1] → [0, w∗] and a function ϕ ∈ K∞ such that

Γ µ(σ (r), ϕ(r))� σ(r), for all r ∈ (0, 1]. (22)

Proof. Let σ be given by [21, Proposition 5.2], i.e., as a linear
interpolation of the sequence points

{Γ kµ(w
∗)}k≥0, (23)

so that σ satisfies (21). For each ρ ∈ (0, 1] let φr = sup{s > 0 :
Γ µ(σ (r), s) � σ(r)} ∈ [0,∞]. By monotonicity and continuity
of Γ µ we have φr > 0, ∀r ∈ (0, 1], so we may take any ϕ ∈ K∞
satisfying ϕ(r) < φr , ∀ r ∈ (0, 1]. �
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The following result is a local version of the main ingredient
which has been used in [5] to prove the global ISS small-gain
theorem.

Proposition 4.4. Let w∗ ∈ Rn
+
, w∗ � 0. Let Γµ given by (13)

satisfy (19) on [0, w∗]. Assume Γ has no zero row. Assume µ
satisfiesM4. Then for eachw′ ∈ (Γµ(w∗), w∗) there exists a function
ϕ ∈ K∞, such that for all w ∈ Rn

+
, 0 ≤ w ≤ w′, and all v ∈ Rn

+
we

have

(id−Γµ)(w) ≤ v H⇒ w ≤ diag(ϕ)(v). (24)

Proof. This proof essentially goes along the lines of the proof
of [5, Lemma 13] (which requires use of (M4)), once it is
established that there exists an operator D = diag(id+κ), κ ∈
K∞, such that D ◦ Γµ(s) 6≥ s for all s 6= 0, s ∈ [0, w′].
The existence of this operator D can be guaranteed using
essentially the same technical construction as in [21, Proposi-
tion 5.8]. Combining all these ingredients, one obtains the estimate
w ≤ min{w′, diag(id+κ−1)n(v)}. From here we can conclude
wi < (id+κ−1)n(vi) if vi is small. So we may take ϕ(r) = (id+
κ−1)n(r). �

Remark 4.5. Note that choice of a ‘‘large’’ ϕ in Proposition 4.4
leads to strong restrictions on initial conditions and inputs that
one gets for thewhole interconnection to be stable, see Remark 5.4.
However in some cases this is inevitable (for example, ifΓµ is close
to the identity by its mapping properties).

5. Main results

In the first two of the following subsections we assume that
each subsystem (1) is LISS with respect to Ai and show that
the local small-gain condition (19) is sufficient to imply LISS of
the composite system (2) with respect to A = A1 × · · · ×
An. Furthermore, we show how a LISS Lyapunov function can
be constructed. Notably, in both cases estimates for the stability
region are provided.
By linearizing the gain operator, the sufficient conditions for

interconnection stability can be simplified at the expense of the
estimates on the stability regions that onewould otherwise obtain,
see Section 5.4.

5.1. A local small-gain theorem

In this subsection we state a small-gain theorem for large-scale
interconnected systems comprised of LISS subsystems in the spirit
of [4,5].

Theorem 5.1. Let all subsystems (1), i = 1, . . . , n, satisfy (9).
Suppose Γµ satisfies (19) and Γ has no zero rows. Then there exist
ρ0 > 0, ρu > 0, β ∈ KL, and γ ∈ K∞, such that system (2)
satisfies (3) with respect to the set A.

Remark 5.2. Observe that the inequality Γµ 6≥ id in the small-
gain condition (19) is weaker than the one in (16), since the latter
additionally contains the operator D. Recall from [5, Example 18]
thatD is in fact essential to assure the global ISS property. However,
in case of local ISS this D can be omitted.

The proof consists of two steps: First we establish that system
(2) is LS and LAG with respect toA, then by a result due to Sontag
and Wang [16] LISS with respect toA follows.
Proof of Theorem 5.1. For brevity we use the notation of Sec-
tion 2.5, i.e., we assume that (14), (15) hold. Throughout the proof
let w′ ∈ (Γµ(w∗), w∗) be fixed and ϕ be given by Proposition 4.4.
Denote F := diag(ϕ). Let ε := min{ρx, ρ0, w′} ∈ Rn

+
and δ :=

F−1( 12ε) ∈ Rn
+
.

Step 1 — Existence of solutions and local stability. Let u ∈
L∞(R+;RM) such that e[0,∞] = e[0,∞](u) satisfies e[0,∞] � ρe and
Γ e(e[0,∞]) � 1

2δ. Consider initial states x(0) = ξ ∈ RN such that
s(0) = s(0; ξ, u) ∈ Rn satisfies B(s(0), 0)� 1

2δ and s(0)� ε.
Define T ∗ := inf{t ≥ 0 : s(t) = s(t; ξ, u) 6≤ ε}. Clearly

s[0,T∗] ≤ ε and hence s[0,T∗] ≤ w′. So wemay apply Proposition 4.4
to the following inequality:

(id−Γµ)(s[0,T∗]) ≤ B(s(0), 0)+ Γ e(e[0,∞]).

Hence s[0,T∗] ≤ F
(
B(s(0), 0)+ Γ e(e[0,∞])

)
� F(δ/2+δ/2) = 1

2ε.

This implies that there is no finite minimal time T ∗, such that the
component-wise distance from the trajectory x(·, ξ , u) to the setA
leaves an ε-neighborhood. Hence this trajectory stays in that open
set for all times.
Now let ρ0 := sup{‖s‖ : s ∈ Rn

+
, s ≤ ε, B(s, 0) � 1

2δ} and
choose 0 < ρu < sup{‖e‖ : e ∈ Rn

+
, e ≤ ρe,Γ e(e) ≤ 1

2δ}. Then it
follows that for ‖ξ‖A < ρ0 and ‖u‖L∞ ≤ ρ

u the solution x(·; ξ, u)
exists for all times and is bounded in ‖ · ‖A-distance by 12‖ε‖. In
fact, we have (using Lemma 2.7), the weak triangle inequality [2]
and the norm triangle inequality,

ess. sup
t≥0

‖x(t; ξ, u)‖A ≤ ‖F(B(s(0), 0)+ Γ e(e[0,∞]))‖

≤ ‖F(2B(s(0), 0))‖ + ‖F(2Γ e(e[0,∞]))‖
≤ σ(‖ξ‖A)+ γ (‖u‖L∞)

for some σ , γ ∈ K∞. This establishes LS with respect toA.

Step 2 — An estimate of the form (8) can be established using
essentially the same steps as in the proof of [5, Theorem 9].
Now by [16, Theorem 1:(f), (g)] it follows that (2) is LISS with

respect toA. �

Remark 5.3 (An Alternative to the KL-Estimate). Instead of
constructing the KL-estimate in the last step of the preceding
proof we could have argued that the setA is locally asymptotically
stable with respect to the composite, externally unforced system
ẋ = f (x, 0). Following the lines of [16, Lemma I.2] (a result showing
that 0-GAS implies LISS) and thereby using [22, Theorem 14*] for
a suitable converse Lyapunov result, local input-to-state stability
could also be shown this way. See also [23, Theorem 1] for a similar
result for hybrid systems.

Remark 5.4 (Stability Regions). In the proof we have obtained

ρ0 := sup
{
‖s‖ : s ∈ Rn

+
, s ≤ ε, B(s, 0)�

1
2
δ

}
and, essentially,

ρu = sup
{
‖e‖ : e ∈ Rn

+
, e ≤ ρe,Γ e(e) ≤

1
2
δ

}
,

where ε = min{ρx, ρ0, w′} ∈ Rn
+
and δ = F−1( 12ε) ∈ Rn

+
. Here

w′ had to be chosen in the open order interval (Γµ(w∗), w∗) and
F = diag(ϕ), with ϕ given by Proposition 4.4.
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5.2. A small-gain theorem using LISS Lyapunov functions

In this sectionwe assume that each subsystem i of (1) is LISS and
admits a LISS Lyapunov function Vi with the corresponding gains
γij, γiu,MAFs µi and corresponding Γµ so that the implication (11)
holds for all ‖xi‖Ai < ρ0i and x ∈ RN with ‖xj‖Aj < ρ

j
i for j 6= i and

ui ∈ RMi with ‖ui‖ < ρui . We are looking for explicit expressions
for the restrictions on the states x and inputs u such that the overall
system is LISS.
First of all let us say that vectors x = (xT1, . . . , x

T
n)
T
∈ RN

with ‖xi‖Ai ≥ ρ0i or ‖xi‖Aj ≥ ρ
j
i for at least one i are not of

interest, because the implication (11) is not available in this
case. Similarly, any x with ‖xi‖Ai > w∗i is out of interest since
then the small-gain condition does not apply. Hence a necessary
restriction on states is already given in terms of ρ0i , w

∗ and
ρx := (minj ρ

j
1, . . . ,minj ρ

j
n)
T . In some cases these restrictions

are already enough, see Corollary 5.6, for the LISS property of
the interconnection provided the local small-gain condition is
satisfied. In general we have the following result.

Theorem 5.5. Assume that each system i of the interconnection (1) is
LISS and that it admits a LISS Lyapunov function Vi satisfying (11) for
all ‖xi‖Ai < ρ0i , ‖xj‖Aj < ρ

j
i , and ‖ui‖ < ρui . Let Γ andµ be given by

(11) and assume Γ has no zero rows. Assume Γµ satisfies (19). Then
the composite system (2) is LISS with respect toA =

∏
Ai. Moreover,

a nonsmooth LISS Lyapunov function with respect to the set A is given
by

V (x) = max
i
σ−1i (Vi(xi)) (25)

where σ is given by Proposition 4.3. Moreover, with this Lyapunov
function V implication (5) holds for all x ∈ RN such that ‖xi‖Ai <
ρ̃i for all i, with ρ̃i := min

{
ρxi , ρ

0
i , w

∗

i , ψ
−1
i2 (w

∗

i )
}
and u ∈

BRM1 (0, ρ
u
1)× · · · × BRMn (0, ρ

u
n ).

Proof. By Proposition 4.3 the local small-gain condition implies
the existence of strictly increasing functions σi : [0, 1] → [0, w∗i ],
such that σ = (σ1, . . . , σn)

T satisfies (22). Note that σ−1i :

[0, w∗i ] → [0, 1] is well defined and such that for any compact
set K ⊂ (0,∞) there exist c, C > 0 such that c < (σ−1i )′ < C .
We define V (x) by (25). To assure that σ−1i (Vi(xi)) is well defined
we have required ‖xi‖Ai < ψ−1i2 (w

∗

i ) which implies Vi(xi) < w∗i
by (10).
The proof that V (x) is a LISS Lyapunov function for the

interconnection follows along the lines of the proof of Theorem 5.3
in [6]. �

Corollary 5.6. Consider interconnection (1) such that each system i
has the same properties as in Theorem 5.5. If Vi(xi) ≤ ‖xi‖Ai holds
for all i then the assertion of Theorem 5.5 holds for all x ∈ RN such
that ‖xi‖Ai < min{ρ

x
i , ρ

0
i , w

∗

i } for all i and u ∈ BRM1 (0, ρ
u
1)×· · ·×

BRMn (0, ρ
u
n ).

This follows from the fact thatψi2 can be taken to be the identity
in Theorem 5.5. The corollary shows that in this case the restriction
on initial values and external inputs depends essentially only onw∗
and certainly on the restrictions initially given for the subsystems.

5.3. Advantages of LISS vs. linearization of systems

Since LISS is a local stability concept we would like to briefly
discuss its advantages compared with local assertions obtained
by linearization. To study stability of nonlinear systems as well
as their interconnections one can resort to linearization — and
stability results for interconnections of linear systems are well
known. However, all information on stability obtained this way
holds locally, where locally means that there exists some domain
around the point of linearization where a certain stability property
holds. Usually, there is no information about the size of this
stability domain. In addition, linearization is only applicable to
consider stability of equilibrium points, not sets.
The advantage in using the LISS property in considering

interconnection stability is the possibility to obtain or at least
to estimate the regions of stability. The present results yield
information on how large initial conditions or external inputs may
be taken to produce stable behavior. Furthermore, such estimates
alsowork in the casewhen one considers invariant sets rather than
equilibrium points. To provide explicit expressions for the stability
regions of the interconnection in such cases is themainmotivation
behind this paper.

5.4. LISS small-gain theorems and linearization of gains

An important connection of the LISS approach to linear stability
theory arises of course, when the subject of the stability condition
happens to be linear, or, for that matter, can be linearized.
Assume given a gain operator Γµ : Rn

+
→ Rn

+
we have its

Jacobianmatrix at zero, denoted by JΓµ(0) ∈ Rn×n, at our disposal.
Clearly the elements of JΓµ(0) have to be nonnegative, and the
diagonal will have only zero entries. For any nonnegative matrix
G ∈ Rn×n+ let ρ(G) = max{|λ|; λ is an eigenvalue of G} denote the
spectral radius of G. Then the following statements are equivalent:

1. G satisfies ρ(G) < 1;
2. Gk → 0 as k→∞;
3. the matrix (I − G)−1 exists and is nonnegative;
4. there exists a positive vector s ∈ Rn

+
, s� 0, such that Gs� s.

For a proof see, e.g., [21, Lemma 1.1]. Notable is also the fact that

ρ(G) < 1 ⇐⇒ ∃D = diag(1+ ε), ε > 0 : ρ(DG) < 1,

where D is a linear version of the robustness operator which
appeared in (16) and (18).
In this case Gs� s implies that theΩ-path can be taken linear,

by defining σ(r) = sr ∈ Rn
+
. From here the function ϕ can be

constructed as before in Proposition 4.3. The composite Lyapunov
function in Theorem 5.5 then takes the simple form

V (x) = max
i
Vi(xi)/si. (26)

Similarly, for the trajectory result Theorem 5.1, the inverse (I −
JΓµ(0))−1 can be used directly instead of estimate (24). To
summarize, we obtain the following corollaries to Theorems 5.1
and 5.5, respectively, both for the case thatAi = {0} for all i.

Corollary 5.7. Let all subsystems (1), i = 1, . . . , n, satisfy (9).
Suppose Γµ is differentiable at s = 0 and assume Γ has no zero rows.
If ρ(JΓµ(0)) < 1 then system (2) is LISS.

Corollary 5.8. Assume that each system i of the interconnection (1)
is LISS and that it admits a LISS Lyapunov function Vi satisfying (11)
for all ‖xi‖ < ρ0i , ‖xj‖ < ρ

j
i , and ‖ui‖ < ρui . Let Γ andµ be given by

(11). Assume the Γµ is differentiable at zero and the Jacobian matrix
JΓµ(0) satisfies ρ(JΓµ(0)) < 1. Then the composite system (2) is LISS
and a nonsmooth LISS Lyapunov function is given by (26).
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6. Example

The following example illustrates the use of MAFs and the
application of the main result Theorem 5.5. Consider the following
system of n coupled equations with subsystems given by

ẋi(t) = −(n+ 1)xi + x2i +
n∑
j=1
j6=i

xj + ui,

xi, ui ∈ R, i = 1, . . . , n. (27)
Consider the ith subsystem. Obviously, because of the presence of
the quadratic term, this system is not 0-GAS, since for zero inputs
and a large initial states xi(0) the trajectories are unbounded. In
particular, none of the subsystem is ISS. However, it can be shown
that each subsystem is LISSwith ρ0i =

n
2 , ρ

j
i = 1−ε and ρ

u
i = 1−ε

for arbitrary small ε > 0 as follows. To this end consider Vi(xi) :=
|xi| as a LISS Lyapunov function candidate. We define γij := id
for i 6= j, γiu = id and µi : Rn+1+ → R+ by µi(s1, . . . , sn+1) :=

1
2

(
n+ 1+ ε −

√
(n+ 1+ ε)2 − 4

∑n+1
j=1
j6=i
sj

)
. Note that µi satis-

fies M1 and M2 as well as the compatibility assumption for sj ≤
1− ε, j = 1, . . . , n+ 1.
Now if Vi(xi) = |xi| > µi (γi1(|x1|), . . . , γin(|xn|), γiu(|ui|)) it

follows that V̇i(xi) < −(n + 1)|xi| + |xi|2 +
∑n
j=1 |xj| + |ui| <

−ε(|xi|). This shows that each subsystem is LISS.
Since the subsystems are only LISS, but not ISS, we cannot

apply the global result, Theorem 3.1, or its Lyapunov counterpart
Theorem 3.2, but we have to resort to the local results developed
in this paper.
Let x := (x1, . . . , xn)T and u := (u1, . . . , un)T . Let w∗ :=

(1 − ε, . . . , 1 − ε)T ∈ Rn. It is easy to check that Γµ(w∗) � w∗

and that the local small-gain condition is satisfied for this w∗. Let
σi = (1 − ε) id for i = 1, . . . , n and σ = (σ1, . . . , σn)

T and
ϕ = (1 − ε) id. Choosing ε small enough it can be checked that
for any τ ∈ (0, 1] it holds Γ µ(σ (τ ), ϕ(τ )) � (σ (τ )). Hence by
Corollary 5.6we conclude that the interconnection is LISSwith LISS
Lyapunov function V (x) := maxi |xi| and subject to the following
restrictions on x, u ∈ Rn: |xi| < 1 − ε for i = 1, . . . , n and
|ui| < 1 − ε, i.e., ρ0 = ρu = 1 − ε for some small positive
number ε.
Note that an alternative approach would be to consider instead

an interconnection of the linearized versions of subsystems (27). A
special case of the global results in Section 3 for linear systems (cf.
[5, Corollary 19]) or themore general and precise results in [24] can
then be used to assure that the composite linear system is globally
asymptotically stable, which in turn suggests that the composite
nonlinear system is at least locally asymptotically stable. However,
this approach does not provide any information about the size of
the local stability region for the nonlinear composite system or
any information about robustness of this stability with respect to
external disturbances. In contrast, Corollary 5.6 does provide this
type of information.

7. Conclusions

Wehave presented a newnonlinear tool for the stability assess-
ment of nonlinear interconnected systems, which complements
the existing linearization theory. Our approach allows to consider
general interconnections of locally input-to-state stable systems,
a class much larger than ISS systems which also includes integral
input-to-state stable systems. The results presented cover trajec-
tory estimates aswell as a Lyapunov version.Most notably, we also
provide a constructive approach to aggregate Lyapunov functions
of subsystems into a composite Lyapunov function. A nontrivial ex-
ample illustrates how this method works. In contrast to the linear
theory, the LISS approach readily provides estimates for the stabil-
ity regions.
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