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A B S T R A C T

Autonomous control intends to improve production systems performance by distributed and flexible

coping of complexity. Different autonomous control levels and control strategies are evaluated. The

evaluation system benchmarks the level of logistic target achievement related to the level of complexity

and the level of autonomous control. Based on real production data, simulation models were built. The

level of autonomous control in these models is increased stepwise by expanding the number of

autonomously controlled elements. For each level of autonomous control, three control strategies are

implemented and compared to the performance of conventional control.

� 2009 CIRP.
1. Introduction

Manufacturing companies are confronted with high complexity
in combination with constantly changing process parameters. Over
the last years, customers increasingly demand highly customized
products, a reduction in delivery times and due date punctuality.
Manufacturing enterprises have to rapidly adapt to these changes.
These highly dynamic and complex conditions cannot be handled
with current production planning and control methods [1].

The implementation of decentralized control, e.g. autonomous
control coming from self-organisation theory, opens new poten-
tials to cope with the new demands in logistic processes.
Autonomous control in logistics represents a new field of research
and is characterised by the ability of logistic objects (e.g. order,
pallet, and machine) to process information in order to make and
execute decisions on their own [2].

Implementation of autonomous control may increase the
robustness of a logistic system against external and internal
disturbances by influencing the behaviour of the system in a
positive manner. Furthermore, it has been shown that autonomous
control methods can help improve the logistic performance of
production systems [3].

An evaluation system is introduced here that measures the
performance of autonomous control. Furthermore, different simula-
tion models with different levels of autonomous control and different
levels of dynamic complexity are investigated and compared to the
performance of conventional control. Basis for the simulation models
are real production data of a power plant supplier.

2. Concept and evaluation of autonomous control

The vision of autonomously controlled logistic processes is
characterized by the shift of qualified capabilities from the total
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system to its elements. Motivation and hypothesis in this context is
that while increasing the systems complexity, implementation of
autonomous control leads to an improved achievement of logistic
targets.

The achievement of logistic targets in dependence of the level of
autonomous control and the level of complexity of the considered
logistic system provides the basis for measuring the logistic
potential of autonomous control. To determine the application
potential and the limitations of autonomous control shown in
Fig. 1, an evaluation system has been developed to measure the
logistic target achievement, the level of complexity and the level of
autonomous control. Basis for the shape of the curve are the
following assumptions: in highly complex systems, the achieve-
ment of logistic targets will increase with the level of autonomous
control until reaching a specific level of autonomous control.
Conventional planning and control methods with a low level of
autonomous control enable high achievement of logistic targets in
systems with a low level of complexity, but while increasing the
systems complexity the logistic target achievement decreases. The
highest level of autonomous control will in general result in a low
achievement of logistic targets. In this case, the system behaviour
will lead to anarchy, which does not ensure the achievement of
global goals [4].

The following passages describe briefly the determination of
the three axes in Fig. 1, which is presented more detailed in [5–7].
In the context of engineering science the operationalisation of
systems complexity is a task with a wide range of approaches in
research [8]. Because these approaches refer to specific aspects of
complexity, as for instance process or product complexity [9], an
entire understanding of the term complexity in the context of
logistic systems is necessary. In order to obtain a comprehensive
description of the complexity of a production system, it is essential
to define different categories of complexity and to refer them to
each other as shown in [5]. In consequence, three views of
complexity with distinction between static and dynamic parts,
structural and process-related parts as well as internal and
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Fig. 1. Correlation between logistic target achievement, level of complexity and

level of autonomous control [2].
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external parts of complexity were derived and referred to each
other. It is obvious that complexity cannot be described by a single
number but by sets of multiple factors. These parameters of
complexity can be assigned to the relevant categories and
described by vectors. So far, it is possible to detect a complexity
difference of two considered systems. Consequently, the complex-
ity axis in Fig. 1 represents an ordinal scale. Furthermore, it is
possible to compare either single parameters, complexity cate-
gories or combinations of categories, for example, the dynamic
internal structural complexity.

To measure the level of autonomous control a catalogue of
criteria was developed [6]. This catalogue is based on a
morphological scheme for characterising structures of order
processing. Furthermore, the catalogue is classified in layers of
organisation and management, information and communication
technologies as well as in material flow and logistics. These layers
relate to decision, information and execution systems. The
definition of autonomous control explained above describes the
maximum level of autonomous control where all system elements
are able to interact with other system elements and make decisions
on the basis of an inherent, decentralized target system. In general,
logistics systems contain both conventionally managed and
autonomously controlled elements and it is assumed that there
are different levels of autonomous control.

The catalogue of criteria consists of 13 criteria as well as
corresponding properties with an increasing level of autonomous
control in their order from left to right. An example for a criterion is
‘‘location of decision-making’’ where a logistic system with
decentralised decision-making by its elements has a higher level
of autonomous control than a system rendering central decisions.
Each property of a criterion contains a fulfilment value, which is
distributed in the range of 0 (absolutely conventionally con-
trolled)–3 (absolutely autonomously controlled). In combination
with weightings for each criterion it is possible to measure the
level of autonomous control in percentage.

Basis for concrete measuring of the degree of logistic target
achievement and the evaluation of alternatives is a vectorial
approach with logistic target vectors z as shown in the following
form [7]:

z ¼
Due date reliability
Through put time
Utilization
Work in process

2
664

3
775

This format of the vector applies to target vectors as well as to
vectors with actual values, which are used to determine the logistic
performance figures and to evaluate logistic objects and decision
alternatives. In order to consider different weights of logistic
objectives a weighting vector g is introduced. The target value
vectors of logistic objects contain the desired values for the
individual logistic objectives. By comparing the target value ztarget

with the actual value vector zactual it is possible to convert the
originated vector Dztarget-actual in a vector e with the degrees of
individual logistic achievement objective:

Dztarget�actual) e ¼

eDue date reliability½%�
eThrough put time½%�
eUtilization½%�
eWork in process½%�

2
664

3
775

with eDue date reliability, eThroughput time, eUtilization and eWork in process as
degrees of logistic target achievement for each individual objective
in [%].

The determination of the degree of logistic target achievement
takes place by normative-actual value comparison of the
respective objective considering a given distribution of actual
values and target achievement for each logistic object. Each logistic
object additionally contains a weighting vector g for its logistic
goals. The scalar product of g and e represents the achievement of
goals for individual objects. Calculating the weighted average of all
logistic objects will lead to the logistic target achievement for the
global system [7].

3. Autonomous control methods and production scenario

Next, the real production scenario and the applied autonomous
control methods will be presented. Therefore, Section 3.1 briefly
outlines the concept of the applied autonomous control methods.
Section 3.2 describes the characteristics of the production scenario
and the implementation of different complexity levels, respec-
tively, of different autonomous control levels.

3.1. Autonomous control methods

Three autonomous control methods are modelled: a queue
length estimator method (QLE), a due date method (DUE) and a
pheromone-based approach (PHE). All methods enable autono-
mous decision-making for parts running through the production
system. Intelligent parts using the QLE method pursue the
objective to reduce their own throughput time (TPT). To meet
this objective, parts are able to choose a workstation for
processing: a part enters a work system with parallel and
technologically substitutable workstations. It compares the buffer
level of each workstation and chooses the one with the lowest
workload for further processing [3,10]. The DUE method is based
on the QLE method, it also enables parts to compare their given due
dates with an estimated due date. Parts using this method will
choose the workstation, where the variation of planned and
estimated due date is the smallest [10].

The pheromone approach (PHE) is inspired by a biological
process. It imitates the process of ants marking possible routes to
food sources with pheromone trails. Succeeding ants follow the
pheromone trail with the highest concentration [11]. To transfer
this process, parts leave information about their TPT at each
machine. Parts arriving later at a certain stage of the shop floor
compare these artificial pheromones by computing average TPT
data of the last five parts and then choose a line. Hence, the
pheromone concentration depends on waiting and processing
times of previous jobs. The evaporation process of natural
pheromones is modelled by using a moving average of pheromone
TPT data. Similar approaches for modeling pheromone-based
autonomous control methods can be found in [12,13].

3.2. Production scenario

A simulation model of a power plant supplier, based on real
production data is considered. The production process in this study
involves 19 work systems, containing overall 110 different
workstations (Fig. 2). For production planning and control, the



Fig. 2. Structure of the production system.

Fig. 3. Relative target achievement of QLE method.

Table 1
Relative target achievement of all methods.

Relative target achievement (%)

ACL 0 ACL 1 ACL 2 ACL 3 ACL 4

QLE

CL1 76.3116 78.889 79.4542 79.5765 79.8093

CL2 70.3797 73.2958 73.9339 74.108 74.3675

CL3 63.907 67.2689 67.874 68.1049 68.4095

CL4 55.1354 58.8726 59.5491 59.885 60.1754

DUE

CL1 76.3116 78.8806 78.4598 78.6447 78.6447

CL2 70.3797 73.2881 73.0093 73.2885 73.5335

CL3 63.907 67.2638 67.1201 67.293 67.5458

CL4 55.1354 58.8448 58.9504 59.3279 59.5623

PHE

CL1 76.3116 78.0284 77.7493 77.6524 77.5741

CL2 70.3797 70.3797 72.0016 71.8127 71.8365

CL3 63.907 66.1234 65.8681 65.6076 65.5871

CL4 55.1354 57.5373 57.4244 57.2946 57.3083
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company uses a common PPC system, which is well adapted to its
requirements and which focuses in particular on the reliability of
due dates.

Regarding the 19 work systems, a set of experiments that
gradually increase levels of autonomous control and rising levels of
complexity was designed. Four work systems with 22 work-
stations, which are parallel and technologically substitutable, were
selected to implement the autonomous control methods (QLE, DUE
and PHE). To model an increasing level of autonomous control
(ACL), the number of autonomous controlled work systems is
increased stepwise in different simulation runs. Remaining work
systems are controlled conventionally (CP) and use the pre-
planned data of the PPC system to assign orders to machines. An
increase of dynamic complexity is modelled in a similar way. As
described before, the complexity of systems can be classified by a
set of parameters. In this case, all parameters (e.g. number of
machines and number of orders) are kept constant except the
number of machine breakdowns. Therefore, machine availability
as a parameter for internal structural dynamic complexity is
reduced to four steps by the implementation of stochastic machine
breakdowns. These breakdowns occur according to a random
uniform distribution and cause reduced machine availability in
steps of 5% from 100% to 85% in different simulation runs. These
different machine availabilities are here defined as complexity
level (CL). Four different complexity levels will be investigated (CL
1–CL 4).

There are two order types in this production scenario: stock
orders and customer orders. Customer orders are directly linked to
requests of customers and have a higher priority regarding due
date punctuality. For this reason, different target priorities exist for
each order type: stock orders have a high priority in the reduction
of TPT, customer orders aim additionally at due date punctuality.
To take these different logistic objectives into account, the
measurement and evaluation of logistic performance will be done
by a vectorial approach as shown above. In this respect, the
objectives throughput time and adherence of due dates are used
and weighted with predefined weight vectors gs for stock orders
and gc for customer orders:

gs ¼

0
1
0
0

2
664

3
775; gc ¼

ð1� aÞ
a
0
0

2
664

3
775

The gc vector comprises two elements, which weight the TPT (a)
and the adherence to due dates (1 � a). In total, the sum of each
weight factor element has to be 1. Thus the factor a
predetermines the weight of TPT, and adherence to due dates,
respectively. Varying a allows to consider different objective
priorities. This factor a is varied to evaluate the autonomous
control methods and to analyse their performance with respect
to different priorities of objectives. By computing Dztarget-actual

out of the original PPC and the simulation data, the relative target
achievement e of each job is determined and will finally be
weighted by calculating the scalar product of e and the
corresponding vectors gs and gc. The weighted mean value of
the relative target achievement of all jobs determines the relative
target achievement of the total system.
4. Simulation and results

The results of the discrete event simulation study concerning
the impact of increasing autonomous control and complexity
levels will be presented in the following. Section 4.1 focuses on the
relative target achievement of the QLE, DUE and PHE method for a
certain a = 0.4. The impact of the weight factor a will be
investigated in Section 4.2 by analysing the methods performances
for varying a.

4.1. Impact of autonomous control and complexity level

Fig. 3 presents the relative target achievement of the QLE
method. Each grid point in Fig. 3 represents a simulation run with a
certain level of autonomous control and dynamic complexity. In
this context, an autonomous control level of zero represents
conventional control according to the original PPC data. Fig. 3
shows that the theoretically predicted effects in Fig. 1 can be
observed in this real production data based scenario: an increase of
the autonomous control level leads to a rising relative logistic
target achievement for each complexity level.

Especially higher complexity levels underline the effect of an
increasing autonomous control level. A comparison of the target
achievement for CL1, respectively, CL4 clarifies that. An increase of
autonomous control levels lead to an improvement of 3.5% for CL1.
The target achievement for CL4, however, is improved by 5.04%
with rising autonomous control level.

That implies that the QLE method affects the systems ability to
cope with increasing dynamic complexity in a positive manner.

Table 1 summarizes the results of relative target achievement
for all methods. It reveals a similar trend of relative target
achievement for the DUE method concerning the impact of



Fig. 4. Impact of weight factor gc.
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increasing complexity and autonomous control level, but absolute
values differ.

Although the DUE method uses information about due dates of
orders, it leads to an approximately 0.48% lower performance than
the QLE method. According to the weight vectors gs and gc it was
expected that this method generates better results than the QLE
method. This effect can be explained by the applied weight factor
gc: the QLE method decreases the TPT more than it causes a
variation in due dates. Consequently, the QLE method, even when
the TPT weighs less (a = 0.4) than adherence to due dates
(1 � a = 0.6), performs better than the DUE method in this case.

Table 1 also shows the results of the PHE method. Its
performance as compared to the QLE and the DUE method is in
average 1.68%, respectively, 1.19% lower. That indicates, that the
usage of this method is not appropriate for the target priority of
a = 0.4.

4.2. Impact of weight factors

To understand the impact of the weight factors, Fig. 4 depicts
the results of the QLE, DUE and PHE methods at complexity level
CL2 for varying values of the gc vector. Fig. 4 also presents the
results of the conventional planned (CP) scenario in form of a
transparent plane to provide a better comparability of all methods.
Notice that a = 1 means that the weight of TPT is 100%,
respectively, causes a = 0 a TPT weight of 0%.

The target achievement of the QLE method rises with increasing
a, as well as for increasing autonomous control levels. The QLE
aims at reducing TPT, thus the target achievement rises in cases of a
heavier weighting of the TPT. The DUE method follows a similar
trend regarding the influence of a, but its relative target
achievement is lower for a > 0.25. In contrast to this, the DUE
method leads to a better performance for a < 0.25 (highlighted by
arrows in Fig. 4). Below a = 0.25 the weight of due date punctuality
is strong. Hence each violation of the planned due date is punished
by a low value of target achievement and the DUE method
performs better than the QLE method. Fig. 4 indicates that both
methods (QLE and DUE) are suitable for this scenario. The choice of
a certain method depends on the global systems objectives. If due
date punctuality has a high priority (a < 0.25) the employment of
the due date method is adequate. In cases of a higher priority of
throughput time reduction (a > 0.25), the QLE should be applied.
In contrast to this, the PHE method performs worse, independent of
the autonomous control level or the weight factor a. For these
reasons, the application of the QLE or the DUE method seems to be
more suitable than implementing the PHE method.

Fig. 4 additionally shows the results for the conventional
control. Its performance rises slightly with decreasing a, due to its
primary objective the improvement of due date punctuality. The
target achievement of the conventional and the autonomous
control methods differs less for heavier weighting of the due dates.
Nevertheless, in the particular case of CL2, which is focused in
Fig. 4, the autonomous control methods perform better.

5. Summary

This paper investigated a simulation model, based on real
production data, with varying autonomous control and complexity
levels. Summarizing the results of the previous section shows that
all applied autonomous control methods behave similar regarding
the impact of both factors. For each complexity level an increase of
the autonomous control level improved the logistic performance.
This effect enhances with rising complexity levels, which implies
that autonomous control improves the handling of dynamic
complexity in the particular scenario. These tendencies generally
confirm the theoretical findings and the hypothesis presented in
Section 2 concerning the impact of increasing complexity and
autonomous control level.

Furthermore, it has been shown that logistic performance
measurement by a vectorial approach is an adequate instrument
to measure the achievement of multiple logistic objectives. The
evaluation of autonomous control methods using this approach
revealed that the QLE and the DUE method can be applied to
different target priorities. The QLE method is applicable for a high
priority of TPT reduction, whereas the DUE method performs best for
a high priority of due date punctuality. Future research will focus on
new bioinspired control methods, e.g. bacterial chemotaxis, and the
corresponding system behaviour under complex conditions.
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